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Copyrights

This document describes modules of Elmer, a finite element software for multiphysical problems.

The copyright of this document belongs to CSC — IT Center for Science, Finland, 1995-2009. Note that
even though the software is licensed under GPL this document is not.

Elmer program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

CSC assumes no responsibility or liability on any errors or inaccuracies in Elmer program or docu-
mentation. Any kind of material damages or other indirect consequences resulting from any Elmer part,
documentation discrepancies and errors or non-anticipated program behavior are limited to the value of
appropriate products purchased from CSC.

This document is for informational use only. All information and specifications given have been care-
fully prepared by the best efforts of CSC, and are believed to be true and accurate as of time publishing.
CSC reserves the right to modify Elmer and its documents without notice.

Additional software product copyrights included in Elmer

Copyright, and License:

UMFPACK Version 4.3, Jan. 16, 2004. Copyright (c) 2004 by Timothy A. Davis, University of Florida,
davis@cise.ufl.edu. All Rights Reserved.

UMFPACK License:

Your use or distribution of UMFPACK or any derivative code implies that you agree to this License.

THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED OR
IMPLIED. ANY USE IS AT YOUR OWN RISK.

Permission is hereby granted to use or copy this program, provided that the Copyright, this License,
and the Availability of the original version is retained on all copies. User documentation of any code that
uses UMFPACK or any modified version of UMFPACK code must cite the Copyright, this License, the
Availability note, and "Used by permission.” Permission to modify the code and to distribute modified code
is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that
the code was modified is included. This software was developed with support from the National Science
Foundation, and is provided to you free of charge.



About Elmer Models Manual

The Elmer Models Manual is part of the documentation of Elmer finite element software. Elmer Models
Manual is a selection of independent chapters describing different modules of the ElmerSolver. The reason
for the modular structure of the manual is the fact that also the structure of the software is modular. This
means for example that new models may be written without any changes in the main program. Each solver
has a separate section for theory and keywords, and often also some additional information is given, for
example on the limitations of the model. The Elmer Models Manual is best used as a reference manual
rather than a concise introduction to the matter.
The present manual corresponds to Elmer software version 6.0 for Windows NT and Unix platforms. Lat-
est documentations and program versions of Elmer are available (or links are provided) athttp://www.csc.fi/elmer.
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Model 1

Heat Equation

Module name: included in solver

Module subroutines: HeatSolve

Module authors: Juha Ruokolainen

Document authors: Juha Ruokolainen, Ville Savolainen
Document edited: July 29th 2002

1.1 Introduction

Heat equation results from the requirement of energy conservation. In addition the Fourier’s law is used to
model the heat conduction. The linearity of the equation may be ruined by temperature dependent thermal
conductivity, or by heat radiation.

1.2 Theory

1.2.1 Governing Equations

The incompressible heat equation is expressed as

. (g+(ﬁ-V)T> _ V. (KVT) =73+ ph, (1.1)

where p is the density, ¢, the heat capacity at constant pressure, 7’ the temperature, i the convection velocity,
k the heat conductivity and / is source of heat. The term T : £ is the frictional viscous heating, which is
negligible in most cases. For Newtonian fluids, the viscous part of the stress tensor is

7 = 2, (1.2)

where Z the linearized strain rate tensor.

Eq.1.1 applies also for solids, setting & = 0. For solids, conduction may be anisotropic and the conduc-
tivity a tensor.

For compressible fluids, the heat equation is written as

ot

where c, is the heat capacity at constant volume. The density needs to be calculated from the equation of
state, e.g., perfect gas law. More information is given in the chapter describing the Navier-Stokes equation.

The Elmer heat equation module is capable of simulation heat transfer by conduction, convection, and
diffuse gray radiation. Also a phase change model is included. Couplings to other modules include, convec-
tion by fluid flow, frictional heating (modules providing flow fields), and resistive heating (modules providing
magnetic and/or electric fields).

T _
ey (+a‘-VT>—V-(WT):—pv.ﬁJrT;Hpm (1.3)
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1.2.2 Phase Change Model

Elmer has an internal fixed grid phase change model. Modelling phase change is done by modifying the
definition of heat capacity according to whether a point in space is in solid or liquid phase or in a *'mushy’
region. The choice of heat capacity within the intervals is explained in detail below.

This type of algorithm is only applicable, when the phase change occurs within finite temperature inter-
val. If the modelled material is such that the phase change occurs within very sharp temperature interval,
this method might not be appropriate.

For the solidification phase change model Elmer uses, we need enthalpy. The enthalpy is defined to be

[ of
H(T) = /o (pcp + pLa)\> dA, (1.4)

where f(T) is the fraction of liquid material as a function of temperature, and L is the latent heat. The
enthalpy-temperature curve is used to compute an effective heat capacity, whereupon the equations become
identical to the heat equation. There are two ways of computing the effective heat capacity in Elmer:

OH

Cp.eff = 57’ (L.5)
and 12
VH-VH
= — . 1.
Cpoft ( NT VT ) (1.6)

The former method is used only if the local temperature gradient is very small, while the latter is the preferred
method. In transient simulations a third method is used, given by
0H/ot
c = .
Pt T ot

(1.7)

1.2.3 Additional Heat Sources

Frictional heating is calculated currently, for both incompressible and compressible fluids, by the heat source
hy=2uz : €. (1.8)

In case there are currents in the media the also the the resistive heating may need to be considered. The
Joule heating is then given by

J-J (1.9)

In the above equations, B and E are the magnetic and electric fields, respectively. The current density Jis
defined as

-

J=0o(E+1x B). (1.10)

1.2.4 Boundary Conditions

For temperature one can apply boundary conditions and have either temperature or heat flux prescribed.
Dirichlet boundary condition (temperature is prescribed) reads as

T =T, (1.11)

The value of T} can be constant or a function of time, position or other variables.
Heat flux depending on heat transfer coefficient o and external temperature 7., may be written as
orT
—k% =a(T — Text)- (1.12)
Both variables o and 75 can be constant or functions of time, position or other variables. If the heat transfer
coefficient « is equal to zero, it means that the heat flux on a boundary is identically zero. The Neumann

© CSC - IT Center for Science



1. Heat Equation 11

boundary condition —k0T/On = 0 is also used in a symmetry axis in 2D, axisymmetric or cylindrical
problems.
Heat flux can consist of idealized radiation whereupon

LT _

—ko =oe(T* -T2, (1.13)

Above, o is the Stefan-Boltzmann constant and € the surface emissivity. The emissivity and the external
temperature can again be constant or functions of time, position, or other variables.
If the surface k is receiving radiation from other surfaces in the system, then the heat flux reads as

oT; 1 N

k 4 4

—k— = oe(1 —75 Gikei T A; 1.14
kk 9”]@ 6k( k 1k5k e ik€id; z)a ( )

where the subscripts ¢ and k refer to surfaces ¢ and k, and the parameters A; and Ay, to the specific surface
areas. The factors G, are Gebhardt factors, and IV represents the total number of radiating surfaces present
in the system. Emissivities are assumed to be constant on each surface.

The heat equation is nonlinear when radiation is modelled. The nonlinear term in the boundary condition
(1.13) can be linearized as

T T2 ~ (T3 + T T* + T2 T + T2 )T — Toxt), (1.15)

where 7 is the temperature from the previous iteration.

One may also give an additional heat flux term as

oT
ko= (1.16)

1.3 Keywords

Constants

Stefan Boltzmann Real
The value of the Stefan-Boltzmann constant needed for thermal radiation.

Simulation
The simulation section gives the case control data:

Simulation Type String
Heat equation may be either Transient or Steady State.

Coordinate System String
Defines the coordinate system to be used, one of: Cartesian 1D,Cartesian 2D, Cartesian
3D, Polar 2D, Polar 3D, Cylindric, Cylindric Symmetric and Axi
Symmetric.

Timestepping Method String
Possible values of this parameter are Newmark (an additional parameter Newmark Beta must
be given), BDF (BDF Order must be given). Also as a shortcut to Newmark-method with
values of Beta= 0.0,0.5, 1.0 the keywords Explicit Euler, Crank-Nicolson, and
Implicit Euler may be given respectively. The recommended choice for the first order
time integration is the BDF method of order 2.

BDF Order Integer
Value may range from 1 to 5.

Newmark Beta Real
Value in range from 0.0 to 1.0. The value 0.0 equals to the explicit Euler integration method and
the value 1.0 equals to the implicit Euler method.

© CSC - IT Center for Science



1. Heat Equation 12

Solver solver id
The solver section defines equation solver control variables. Most of the possible keywords — related
to linear algebra, for example — are common for all the solvers and are explained elsewhere.

Equation String Heat Equation
The name of the equation.

Nonlinear System Convergence Tolerance Real
The criterion to terminate the nonlinear iteration after the relative change of the norm of the field
variable between two consecutive iterations is small enough

IT: = Tiall < el Tl

where e is the value given with this keyword.

Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations the solver is allowed to do.

Nonlinear System Newton After Iterations Integer
Change the nonlinear solver type to Newton iteration after a number of Picard iterations have
been performed. If a given convergence tolerance between two iterations is met before the it-
eration count is met, it will switch the iteration type instead. In the heat equation the Picard
iterations means that the radiation term is factorized to linear and third-power terms.

Nonlinear System Newton After Tolerance Real
Change the nonlinear solver type to Newton iteration, if the relative change of the norm of the
field variable meets a tolerance criterion:

|T; — Tial| < €l|T3],

where ¢ is the value given with this keyword.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the nonlinear equation solver. Using a
factor below unity is sometimes required to achieve convergence of the nonlinear system. A
factor above unity might speed up the convergence. Relaxed variable is defined as follows:

T, = AT, + (1 = \)T;-1,

where ) is the factor given with this keyword. The default value for the relaxation factor is unity.

Steady State Convergence Tolerance Real
With this keyword a equation specific steady state or coupled system convergence tolerance is
given. All the active equation solvers must meet their own tolerances before the whole system is
deemed converged. The tolerance criterion is:

IT: = Tiall < el Tl

where € is the value given with this keyword.

Stabilize Logical
If this flag is set true the solver will use stabilized finite element method when solving the heat
equation with a convection term. If this flag is set to False RFB (Residual Free Bubble)
stabilization is used instead (unless the next flag Bubbles is set to False in a problem with
Cartesian coordinate system). If convection dominates stabilization must be used in order to
successfully solve the equation. The default value is False.

Bubbles Logical
There is also a residual-free-bubbles formulation of the stabilized finite-element method. It is
more accurate and does not include any ad hoc terms. However, it may be computationally more
expensive. The default value is True. If both Stabilize and Bubbles orsetto False, no
stabilization is used. Note that in this case, the results might easily be nonsensical.

© CSC - IT Center for Science



1. Heat Equation 13

Smart Heater Control After Tolerance Real
The smart heater control should not be activated before the solution has somewhat settled. By
default the smart heater control is set on when the Newtonian linearization is switched on for the
temperature equation. Sometimes it may be useful to have more stringent condition for turning
on the smart heater control and then this keyword may be used to give the tolerance.

In some cases the geometry or the emissivities of the radiation boundaries change. This may require
the recomputation of the view factors and Gebhardt factors. For that purpose also dynamic computa-
tion of the factors is enabled and it is controlled by the keywords below. The radiation factors are also
automatically computed if no files for the factors are given allthough radiation boundaries exist.

Update View Factors Logical
The recomputation of the view factors is activated by setting the value of this flag to True.
False is the default.

Update Gebhardt Factors Logical
If the emissivities depend on the solution the Gebhardt factors may need to be recomputed. This
is activated by setting giving this flag value True. False is the default.

Minimum View Factor Real
This keyword determines the cut-off value under which the view factors are omitted. Neglecting
small values will not only save memory but also will make the matrix used for solving the
Gabhardt factors less dense. This consequently will enable more efficient sparse matrix strategies
in solving the Gebhardt factors. The value for this parameter might be of the order 10e-8.

Minimum Gebhardt Factor Real
The Gebhardt factors make part of matrix dense. By neglecting the smallest Gebhardt factors
the matrix structure for the heat equation may become significantly sparser and thus the solution
time may drop. The value for this parameter might also be of the order 10e-8.

Implicit Gebhardt Factor Fraction Real
In computing heat transfer problems with radiation in an implicit manner the matrix structure
becomes partially filled. This affects the performance of the linear equation solvers and also
increases the memory requirements. On the other hand explicit treatment of radiation slows
down the convergence significantly. This keyword allows that the largest Gebhardt factors are
treated in an implicit manner whereas the smallest are treated explicitely. The value should lie in
between zero (fully explicit) and one (fully implicit).

Matrix Topology Fixed Logical
If the Gebhardt factors change the matrix structure of the heat equation may also have to be
changed unless this flag is set to False. Then all factors that do not combine with the matrix
structure are omitted.

View Factors Geometry Tolerance Real
The view factors take a lot of time to compute. Therefore during the iteration a test is performed
to check whether the geometry has changed. If the relative maximum change in the coordinate
values is less than the value given by this parameter the view factors are not recomputed and the
old values are used.

View Factors Fixed After Iterations Integer
Sometimes the iteration changes the geometry of the radiation boundaries as an unwanted side-
effect. Then the geometry on the radiation boundary may be set fixed after some iterations. In
practice this is done by adding suitable Dirichlet conditions in the boundary conditions.
Gebhardt Factors Fixed After Iterations Integer
Sometimes the emissivity depends on temperature but recomputing it every time may be costly.
By this keyword the recomputation may be limited to the given number of visits to the heat
equation solver.

View Factors Fixed Tolerance Real
This keywords defines the coupled system tolerance for the heat equation after which the recom-
putation of view factors is omitted. Typically this should be defined by a geometry tolerance but
if the temperature solver follows the changes in geometry this may be a good control as well.

© CSC - IT Center for Science
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Gebhardt Factors Fixed Tolerance Real
This keywords defines the coupled system tolerance for the heat equation after which the recom-
putation of Gebhardt factors is omitted. The temperature dependence of emissivity is typically
not so strong that small temperature changes would result to a need to recompute the Gebhardt
factors as well.

Gebhardt Factors Solver Full Logical
If the view factor matrix is relatively sparse it will make sense to use a sparse matrix equation
for solving the Gebhardt factors. This flag may be used if a full matrix should be desired.

Gebhardt Factors Solver Iterative Logical
If the Gebhardt factors are solved from a sparse matrix equation also the type of solver may
be selected. The default is direct umfpack solver. Sometimes the memory usage may be a
problem or the direct strategy simply not efficient enough. Then an iterative cgs solver may be
used instead.

Viewfactor Divide Integer
For axisymmetric view factor computation gives the number of divisions for each element. The
defaultis 1.

Viewfactor Combine Elements Logical
There may be a significant amount of saved time if in the axisymmetric view factor computation
the elements that are aligned and share a common node are united. The shadowing loop will then
only be performed over these macroelements.

Equation eqg id
The equation section is used to define a set of equations for a body or set of bodies.

Heat Equation String
If set to True, solve the heat equation.

Convection String
The type of convection to be used in the heat equation, one of: None, Computed, Constant.

Phase Change Model String
One of: None, Spatial 1, Spatial 2 and Temporal. Note that when solidification
is modelled, the enthalpy-temperature- and viscosity-temperature-curves must be defined in the
material section.

Body Forces bf id
The body force section may be used to give additional force terms for the equations. The following
keywords are recognized by the base solver:

Heat Source Real
An additional heat source h for the heat equation may be given with this keyword.

Friction Heat Logical
Currently redundant key word, the frictional heating i is automatically added.

Joule Heat Logical
If set True, triggers use of the electromagnetic heating. This keywords accouns for the heating
of many different solvers; electrostatics, magnetostatics, and induction equation.

Smart Heater Control Logical
Sometimes the predescribed heat source does not lead to the desired temperature. Often the
temperature is controlled by a feedback and therefore a similar heater control in the simulation
may give more realistic results. This flag makes sets the smart heater control on for the given
body force.

Integral Heater Control Real
This keyword activates a normaliazation of the Heat Source so that the integral heating power
is the desired objective.

© CSC - IT Center for Science
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Initial Condition ic id
The initial condition section may be used to set initial values for temperature.

Temperature Real

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be effective when heat equation is solved.

Density Real
The value of density is given with this keyword. The value may be constant, or variable. For the
compressible flow, the density is computed internally, and this keyword has no effect.

Enthalpy Real
Note that, when using the solidification modelling, an enthalpy-temperature curve must be given.
The enthalpy is derived with respect to temperature to get the value of the effective heat capacity.

Viscosity Real
Viscosity is needed if viscous heating is taken into account. When using the solidification mod-
elling, a viscosity-temperature curve must be given. The viscosity must be set to high enough
value in the temperature range for solid material to effectively set the velocity to zero.

Heat Capacity Real
The value of heat capacity in constant pressure ¢, is given with this keyword. The value may
be constant, or variable. For the phase change model, this value is modified according to rules
given in the theory section.

Heat Conductivity Real
The value of heat conductivity k is given with this keyword. The value may be a constant or
variable.

Convection Velocity 1 Real
Convection velocity 1= 1, 2, 3 for the constant convection model.

Compressiblity Model Real
This setting may be used to set the compressibilty model for the flow simulations. Choices are
Incompressible and Perfect Gas. If set to the latter there may be mechanical work
performed by the heating. Then also the settings Reference Pressure and Specific
Heat Ratio mustalso be given.

Reference Pressure Real
With this keyword a reference level of pressure may be given.

Specific Heat Ratio Real
The ratio of specific heats (in constant pressure versus in constant volume) may be given with this
keyword. The default value of this setting is 5/3, which is the appropriate value for monoatomic
ideal gas.

Emissivity Real
Emissivity of the radiating surface, required for radiation model is present. If the emissivity is
not found in the radiating boundary only then will it be looked at the material properties of the
parent elements. Often locating the emissivity here makes the case definition more simple.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types. In
heat equation we may set the temperature directly by Dirichlet boundary conditions or use different
flux conditions for the temperature. The natural boundary condition of heat equation is zero flux
condition.

Temperature Real

Heat Flux BC Logical
Must be set to True, if heat flux boundary condition is present.
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Heat Flux Real
A user defined heat flux term.

Heat Transfer Coefficient Real
Defines the parameter « in the heat flux boundary condition of the type

ar

-k on

=« (T - Text) .
External Temperature Real
Defines the variable for ambient temperature 7, in the previous equation.

Radiation String
The type of radiation model for this boundary, one of: None, Idealized, Diffuse Gray.
Note that, when using the diffuse gray radiation model, the file containing the Gebhardt factors
must be given in the simulation section.

Radiation Boundary Integer
If there are many closures with radiation boundary conditions that do not see each other the
view factors may be computed separately. This keyword is used to group the boundaries to
independent sets. The default is one.

Radiation Boundary Open Logical
The closures may be partially open. Then no normalization of the view factors is enforced. The
missing part of the radiation angle is assumed to be ideal radiation. Therefore if this option is
enforced also the parameter External Temperature must be given.

Emissivity Real
Emissivity of the radiating surface, required for radiation model is present. If the emissivity is
not found here it will be searched at the parant elements.

Radiation Target Body Integer
This flag may be used to set the direction of the outward pointing normal. This is used when
computing viewfactors. A body identification number must be given. The default is that the
normal points to less dense material or outward on outer boundaries.

Smart Heater BoundaryLogical If the smart heater is activated the point for monitoring the tempera-
ture is the point with maximum z-coordinate on the boundary where this keyword is set True.
Alternatively the logical variable Phase Change is looked for.

Smart Heater TemperatureReal The desired temperature for the smart heater system is set by this
keyword. Alternatively the real variable Melting Point may be used.
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Navier-Stokes Equation
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Document edited: 10.8.2004

2.1 Introduction

In solid and liquid materials heat transfer and viscous fluid flow are governed by heat and Navier-Stokes
equations, which can be derived from the basic principles of conservation of mass, momentum and energy.
Fluid can be either Newtonian or non-Newtonian. In the latter case the consideration in Elmer is limited to
purely viscous behaviour with the power-law model.

In the following we present the governing equations of fluid flow, heat transfer and stresses in elastic
material applied in Elmer. Also the most usual boundary conditions applied in computations are described.

2.2 Theory
The momentum and continuity equations can be written as
ol _ -
p(u+(U-V)ﬁ)—V~0:p, (2.1)
ot
and
9 - .
E—F(wV)p +p(V 1) =0, (2.2)
where G is the stress tensor. For Newtonian fluids
— — 2 = =
T = 2UE — gu(V i) — pl, (2.3)

where p is the viscosity, p is the pressure, I the unit tensor and Z the linearized strain rate tensor, i.e.

1 [/ 0u; Ouy
= = . 24
i 2(axj+axi> @4
The density of an ideal gas depends on the pressure and temperature through the equation of state
p
= = 2.5
P= R (2.5)
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where R is the gas constant:

R = 5 Cp- (2.6)
The specific heat ratio -y is defined as
— 2.7)
Cy

where ¢, and ¢, are the heat capacities in constant pressure and volume, respectively. The value of v depends
solely on the internal molecular properties of the gas.
An imcompressibe flow is characterized by the condition p=constant, from which it follows that

V-d=0. (2.8)

Enforcing the constraint (2.8) in (2.27), (2.2) and (2.3), the equations reduce to the Navier-Stokes equations

p(?:—i—(ﬂ'-V)ﬁ)—V-(Qus)—kVp = of, (2.9)
Vi = 0. (2.10)

Compressible flows are modelled by the equations (2.27)-(2.7). Then, it is possible to replace the state

equation (2.5) by
1
p=—=D; (2.11)
C

where ¢ = ¢(p, T, .. .) is the speed of sound. The equation (2.11) can be used with liquid materials as well.

Most commonly the term p f represents a force due to gravity, in which case the vector f is the gravita-
tional acceleration. It can also represent, for instance, the Lorentz force when magnetohydrodynamic effects
are present.

For isothermal flows the equations (2.9) and (2.10) desrcibe the system in full. For thermal flows also
the heat equation needs to be solved.

For thermal incompressible fluid flows we assume that the Boussinesq approximation is valid. This
means that the density of the fluid is constant except in the body force term where the density depends
linearly on temperature through the equation

p=po(l—pB(T —Tp)), (2.12)

where 3 is the volume expansion coefficient and the subscript O refers to a reference state. Assuming that
the gravitational acceleration g is the only external force, then the force poG(1 — B(T — Tp)) is caused in the
fluid by temperature variations. This phenomenon is called Grashof convection or natural convection.

One can choose between transient and steady state analysis. In transient analysis one has to set, besides
boundary conditions, also initial values for the unknown variables.

2.2.1 Boundary Conditions

For the Navier-Stokes equation one can apply boundary conditions for velocity components or the tangential
or normal stresses may be defined.
In 2D or axisymmetric cases the Dirichlet boundary condition for velocity component w; is simply

u; = ul. (2.13)

?

A value uf’ can be constant or a function of time, position or other variables. In cylindrical cases the Dirichlet
boundary condition for angular velocity u? is

u = w, (2.14)

where w is the rotation rate.
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2. Navier-Stokes Equation 19

In axisymmetric geometries one has to set u,, = 0 and Ju, /Or = 0 on the symmetry axis.
If there is no flow across the surface, then

i-i=0 (2.15)

where 77 is the outward unit normal to the boundary.
Surface stresses can be divided into normal and tangential stresses. Normal stress is usually written in
the form
~

n= = — Da 2.16
o A (2.16)

where 7 is the surface tension coefficient, R the mean curvature and p, the atmospheric (or external) pres-
sure. Tangential stress has the form
d. =V, 2.17)

where V is the surface gradient operator.

The coefficient y is a thermophysical property depending on the temperature. Temperature differences
on the surface influence the transport of momentum and heat near the surface. This phenomenon is called
Marangoni convection or thermocapillary convection. The temperature dependence of the surface tension
coefficient can be approximated by a linear relation:

v =1 —=HT —1Tp)), (2.18)

where ¥ is the temperature coefficient of the surface tension and the subscript 0 refers to a reference state.
If a Boussinesq hypothesis is made, i.e., the surface tension coefficient is constant except in (2.17) due to
(2.18), the boundary condition for tangential stress becomes

Gy = 97V, T. (2.19)

In equation (2.16) it holds then that v = ~y. The linear temperature dependence of the surface tension
coefficient is naturally only one way to present the dependence. In fact, the coefficient v can be any user
defined function in Elmer. One may also give the force vector on a boundary directly as in

Fi=4. (2.20)

2.2.2 Linearization

As is well known, the convective transport term of the Navier-Stokes equations and the heat equation is a
source of both physical and numerical instability. The numerical instability must be compensated somehow
in order to solve the equations on a computer. For this reason the so called stabilized finite element method
([2],[1]) is used in Elmer to discretize these equations.

The convection term of the Navier-Stokes equations is nonlinear and has to be linearized for computer
solution. There are two linearizations of the convection term in Elmer:

— —

(@ V)i~ U- VU 2.21)

and
(@-V)ir (G- VU+U-V)i—(U-V)U, (2.22)

where 1 is the velocity vector from the previous iteration. The first of the methods is called Picard iteration
or the method of the fixed point, while the latter is called Newton iteration. The convergence rate of the
Picard iteration is of first order, and the convergence might at times be very slow. The convergence rate of
the Newton method is of second order, but to succesfully use this method, a good initial guess for velocity
and pressure fields is required. The solution to this problem is to first take a couple of Picard iterations, and
switch to Newton iteration after the convergence has begun.
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2. Navier-Stokes Equation 20

2.2.3 Non-newtonian Material Models

There are several non-newtonian material models. All are functions of the strainrate 7. The simple power
law model has a problematic behavior at low shear rates. The more complicated models provide a smooth
transition from low to high shearrates.

Power law
0"t if A > Ao
e S (2.23)
Y 1Y <o
where 7., is constant, g is the critical shear rate, and n is the viscosity exponent.
Carreau-Yasuda o
N="1e +An(1+(c)?) v, (2.24)

where 7)o is the high shearrate viscosity ¥ — oo provided that n < 1. For shearrates approaching zero the
viscosity is g = 7)o + An. An is thus the maximum viscosity difference between low and high shearrate.
This model recovers the plain Carreau model when the Yasuda exponent y = 2.

The model can be made temperature dependent. One choice is to multiply Az and ¢ by factor exp(d(1/T—
1/Ty)), where d and Tj are model parameters.

Cross A
N
=Moo + ———, 2.25
1= oo+ T (2.25)
where again 7)., is the high shearrate viscosity.
Powell-Eyring
asinh(c)

0= oo + Ancéw- (226)

2.2.4 Flow in Porous Media

A simple porous media model is provided in the Navier-Stokes solver. It utilizes the Darcy’s law that states
that the flow resistance is proportinal to the velocity and thus the modified momentum equation reads

o _ .
p<£+(ﬂ'V)ﬁ>—V~a+rﬂ:pf7 2.27)

where r is the porous resistivity which may also be an orthotropic tensor. Usually the given parameter is
permeability which is the inverse of the resistivity as defined here. No other features of the porous media
flow is taken into consideration. Note that for large value of r only the bubble stabilization is found to work.

2.2.5 Coupling to Electric Fields

In electrokinetics the fluid may have charges that are coupled to external electric fields. This results to an
external force that is of the form

fo=—pVe, (2.28)

where p. is the charge density and ¢ is the external electric field. The charge density may also be a variable.
More specifically this force may be used to couple the Navier-Stokes equation to the Poisson-Boltzmann
equation describing the charge distribution in electric doubly layers. Also other types of forces that are
proportional to the gradient of the field may be considered.

2.2.6 Coupling to Magnetic Fields

If the fluid has free charges it may couple with an magnetic field. The magnetic field induced force term for
the flow momentum equations is defined as

frn=Jx B, (2.29)
Here B and E are the magnetic and electric fields, respectively. The current density J is defined as

J=0o(E+1x B). (2.30)
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2.3 Keywords

Constants

Gravity Size 4 Real [x y z abs]
The above statement gives a real vector whose length is four. In this case the first three compo-
nents give the direction vector of the gravity and the fourth component gives its intensity.

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere.

Equation String [Navier-Stokes]
The name of the equation.

Nonlinear System Convergence Tolerance Real
this keyword gives a criterion to terminate the nonlinear iteration after the relative change of the
norm of the field variable between two consecutive iterations is small enough

i — wi—a|| < ef|uil],

where € is the value given with this keyword.

Nonlinear System Max Iterations Integer
The maxmimum number of nonlinear iterations the solver is allowed to do.

Nonlinear System Newton After Iterations Integer
Change the nonlinear solver type to Newton iteration after a number of Picard iterations have
been performed. If a given convergence tolerance between two iterations is met before the itera-
tion count is met, it will switch the iteration type instead.

Nonlinear System Newton After Tolerance Real
Change the nonlinear solver type to Newton iteration, if the relative change of the norm of the
field variable meets a tolerance criterion:

i — wi—a|| < ef|uil],

where ¢ is the value given with this keyword.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the nonlinear equation solver. Using a factor
below unity is sometimes required to achive convergence of the nonlinear system. A factor above
unity might speed up the convergence. Relaxed variable is defined as follows:

u, = Aug + (1= w1,

where ) is the factor given with this keyword. The default value for the relaxation factor is unity.

Steady State Convergence Tolerance Real
With this keyword a equation specific steady state or coupled system convergence tolerance is
given. All the active equation solvers must meet their own tolerances before the whole system is
deemed converged. The tolerance criterion is:

g —wi—a|] < el|uil],

where ¢ is the value given with this keyword.
Stabilize TLogical

If this flag is set true the solver will use stabilized finite element method when solving the Navier-
Stokes equations. Usually stabilization of the equations must be done in order to succesfully
solve the equations. If solving for the compressible Navier-Stokes equations, a bubble function
formulation is used instead of the stabilized formulation regardless of the setting of this keyword.
Also for the incompressible Navier-Stokes equations, the bubbles may be selected by setting this
flag to False.
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Equation eqg id
The equation section is used to define a set of equations for a body or set of bodies:

Navier-Stokes TLogical
if set to True, solve the Navier-Stokes equations.

Magnetic Induction Logical
If set to True, solve the magnetic induction equation along with the Navier-Stokes equations.

Convection String [None, Computed, Constant]
The convection type to be used in the heat equation, one of: None, Computed, Constant.
The second choice is used for thermal flows.

Body Force bf id
The body force section may be used to give additional force terms for the equations.

Boussinesq Logical
If set true, sets the Boussinesq model on.

Flow BodyForce i Real
May be used to give additional body force for the flow momentum equations, i=1, 2, 3.

Lorentz Force Logical
If set true, triggers the magnetic field force for the flow mementum equations.

Potential Force Logical
If this is set true the force used for the electricstatic coupling is activated.

Potential Field Real

The field to which gradient the external force is proportional to. For example the electrostatic
field.

Potential Coefficient Real
The coefficient that multiplies the gradient term. For example, the charge density.

Initial Condition ic id
The initial codition section may be used to set initial values for the field variables. The following
variables are active:

Pressure Real

Velocity i Real
For each velocity component 1= 1,2, 3.

Kinetic Energy Real
For the k-¢ turbulence model.

Kinetic Energy Dissipation Real

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be set in Navier-Stokes equation.

Density Real The value of density is given with this keyword. The value may be constant, or
variable. For the of compressible flow, the density is computed internally, and this keyword has
no effect.

Viscosity Real
The relationship between stress and strain velocity. When using the solidification modelling, a
viscosity-temperature curve must be given. The viscosity must be set to high enough value in
the temperature range for solid material to effectively set the velocity to zero.

Reference Temperature Real
This is the reference temperature for the Boussinesq model of temperature dependence of density.

© CSC - IT Center for Science



2. Navier-Stokes Equation 23

Heat Expansion Coefficient real
For the Boussinesq model the heat expansion coefficient must be given with this keyword. De-
fault is 0.0.

Applied Magnetic Field i Real
An applied magnetic field may be given with these keywords with i=1, 2, 3.

Compressiblity Model String
This setting may be used to set the compressibilty model for the flow simulations. Currently the
setting may be set to either Incompressible,Perfect GasandArtificialCompressible.
If perfect gas model is chosen the settings Reference Pressure and Specific Heat
Ratio must also be given. The artificial compressibility model may be used to boost conver-
gence in fluid-structure-interaction cases. The default value of this setting is Incompressible.

Reference Pressure Real
with this keyword a reference level of pressure may be given. This setting applies only if the
Compressiblity Model is setto the value Perfect Gas.

Specific Heat Ratio Real
The ratio of specfic heats (in constant pressure versus in constant volume) may be given with this
keyword. This setting applies only if the Compressiblity Model is setto value Perfect
Gas. The default value of this setting is 5/3, which is the appropriate value for monoatomic
ideal gas.

For the k- turbulence model the model parameters may also be given in the material section using the
following keywords

KE SigmaK Real [1.0]

KE SigmaE Real [1.3]

KE Cl Real [1.44]

KE C2 Real [1.92]

KE Cmu Real [0.09]

Non-newtonian material laws are also defined in material section. For the power law the constant
coefficient is given by the keyword Viscosity.

Viscosity Model String
The choices are power law, carreau, cross, powell eyringandthermal carreau.
If none is given the fluid is treated as newtonian.

Viscosity Exponent Real
Parameter n in the models power law, Carreau, Cross

Viscosity Difference Real
Difference An between high and low shearrate viscosities. Ablicable to Carreau, Cross and
Powell-Eyring models.

Viscosity Transition Real
Parameter c in the Carreau, Cross and Powell-Eyring models.

Critical Shear Rate Real [0.0]
Optional parameter 7 in power law viscosity model.

Yasuda Exponent Real
Optional parameter y in Carreau model. The default is 2. If activated the model is the more
generic Yasuda-Carreau model.

Viscosity Temp Ref Real
Paremeter 7T in the thermal Carreau-Yasuda model.

Viscosity Temp Exp Real
Paremeter d in the thermal Carreau-Yasuda model.

© CSC - IT Center for Science



2. Navier-Stokes Equation 24

Porosity is defined by the material properties

Porous Media Logical
If this keyword is set True then the porous model will be active in the material.

Porous Resistance Real
This keyword may give a constant resistance or also a orthotropic resistance where the resistance
of each velocity component is given separately.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to Navier-
Stokes equation are

Velocity i Real
Dirichlet boundary condition for each velocity component i= 1, 2, 3.

Pressure Real
Absolute pressure.

Normal-Tangential Velocity Real
The Dirichlet conditions for the vector variables may be given in normal-tangential coordinate
system instead of the coordinate axis directed system using the keywords

Flow Force BC Logical
Set to t rue, if there is a force boundary condition for the Navier-Stokes equations.

Surface Tension Expansion Coefficient Real
Triggers a tangetial stress boundary condition to be used. If the keyword Surface Tension
Expansion Coefficient is given, a linear dependence of the surface tension coefficient
on the temperature is assumed. Note that this boundary condition is the tangential derivative of
the surface tension coefficient

Surface Tension Coefficient Real
Triggers the same physical model as the previous one except no linearity is assumed. The value
is assumed to hold the dependence explicitely.

External Pressure Real
A pressure boundary condition directed normal to the surface.

Pressure i Real
A pressure force in the given direction i= 1,2, 3.

Free Surface Logical
Specifies a free surface.

Free Moving Logical
Specifies whether the regeneration of mesh is free to move the nodes of a given boundary when
remeshing after moving the free surface nodal points. The default is that the boundary nodes are
fixed.

The k-¢ turbulence model also has its own set of boundary condition keywords (in addition to the
Dirichlet settings):

Wall Law Logical
The flag activates the (Reichardts) law of the wall for the boundary specified. the default is 9.0.

Boundary Layer Thickness Real
The distance from the boundary node of the meshed domain to the physical wall.
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3.1 Introduction

Advection-diffusion equation (sometimes called diffusion-convection equation) describes the transport of a
scalar quantity or a chemical species by convection and diffusion. The difference in the nomenclature usually
indicates that an advected quantity does not have an effect on the velocity field of the total fluid flow but
a convected quantity has. Advection-diffusion equation is derived from the principle of mass conservation
of each species in the fluid mixture. Advection-diffusion equation may have sources or sinks, and several
advection-diffusion equations may be coupled together via chemical reactions.

Fick’s law is used to model the diffusive flux. Diffusion may be anisotropic, which may be physically
reasonable at least in solids. If the velocity field is identically zero, the advection-diffusion equation reduces
to the diffusion equation, which is applicable in solids.

Heat equation is a special case of the advection-diffusion (or diffusion-convection) equation, and it is
described elsewhere in this manual.

3.2 Theory

3.2.1 Governing Equations

The advection-diffusion equation may, in general, be expressed in terms of relative or absolute mass or
molar concentrations. In Elmer, when the transported quantity is carried by an incompressible fluid (or it is
diffused in a solid), relative mass concentration ¢; = C;/p for the species 7 is used (C; is the absolute mass
concentration in units kg/m3, and p the total density of the mixture). We have used the approximation valid
for dilute multispecies flows, i.e., 0 < ¢; < 1. The advection-diffusion equation is now written as

ot

where ' is the advection velocity, D; the diffusion coefficient and \S; is a source, sink or a reaction term. The
diffusion coefficient may be a tensor.

For a compressible fluid, the concentration should be expressed in absolute mass units, and the advection-
diffusion equation reads

9C;
ot
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For a situation, where the quantity is transported through a phase change boundary, it is convenient to
scale the absolute mass formulation by the respective solubilities of the different phases. Such a case is for
example the surface of a liquid, where the transported quantity is evaporated into a gaseous material. The
scaled concentration variable satisfies the equilibrium boundary condition on the phase change boundary
automatically, and thus the advection-diffusion equation can be solved for both materials simultaneously.
The scaling is following c

3

)
Ci,mar

where z; is the concentration of species ¢ relative to its maximum solubility in the current material in absolute
mass units. The maximum solubility has to be a constant (temperature independent) for the absolute mass
formulation of the advection-diffusion equation to remain unchanged.

It is also possible to include temperature dependent diffusion (Soret diffusion). This introduces an addi-
tional term on the right had side of the equation:

(3.3)

T =

V- (pDirVT), (3.4)

where D; r is the thermal diffusion coefficient of species i. The coefficient D; 7 has to be given in the units
m?/ K s regardless of the units used for concentration.

The velocity of the advecting fluid, ¥, is typically calculated by the Navier-Stokes equation and read in
from a restart file. All quantities can also be functions of, e.g., temperature that is given or solved by the
heat equation. Several advection-diffusion equations for different species 7 may be coupled and solved for
the same velocity field.

Given volume species sources S; can be prescribed. They are given in absolute mass units, i.e., kg/m?s.
If the equation is scaled to maximum solubility, the source term can be given in absolute mass units, or in
scaled units, S; sc = S;/Ci maz. Which is the default.

3.2.2 Boundary Conditions

For each species one can apply either a prescribed concentration or a mass flux as boundary conditions.
Dirichlet boundary condition reads as
Ci = Cip, (3.5)

or
Ci = Cip, (3.6)

depending on the units. If the concentration is scaled to maximum solubility, the Dirichlet boundary condi-
tions have to be given also in scaled values, z; = C; 4/C; maz- In all variations, the boundary value can be
constant or a function of time, position or other variables.

One may specify a mass flux 7; perpendicular to the boundary by

oC;
nen=—D;— = 3.7
Ji-1n an (3.7
In relative mass units, this may be written as
- o 801’
Ji-n= 7,0Di78 =g. (3.8)
n

Thus the units in the flux boundary condition are always kg/m?s except when the equation is scaled to
maximum solubility. In that case the default is to give flux condition in scaled units, gsc = 9/C; maw»
although the physical units are also possible.

The mass flux may also be specified by a mass transfer coefficient 3 and an external concentration Cl ¢

oC;
on

On the boundaries where no boundary condition is specified, the boundary condition g = 0 is applied.
This zero flux condition is also used at a symmetry axis in 2D, axisymmetric or cylindrical problems.

_Di - ﬁ(cz - Ci,ext)~ (39)
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The equilibrium boundary condition on phase change boundaries under certain conditions is that the
relative amounts of the transported quantity are equal on both sides of the boundary,

(1) (2)
Cf _ G ; (3.10)
Clhar Climaa

where the superscripts (1) and (2) refer to different sides of the boundary. This boundary condition is
automatically satisfied if the equation is scaled with the maximum solubilities Cl(]n)1 oz

However, the scaling causes a discontinuity into the mass flux of the species through the phase change
surface. The solver compensates this effect as long as such a boundary is flagged in the command file by the

user.

3.3 Keywords

Simulation
The simulation section gives the case control data:

Simulation Type String
Advection-diffusion equation may be either Transient or Steady State.

Coordinate System String

Defines the coordinate system to be used, one of: Cartesian 1D,Cartesian 2D, Cartesian

3D, Polar 2D, Polar 3D, Cylindric, Cylindric Symmetric and Axi
Symmetric.

Timestepping Method String
Possible values of this parameter are Newmark (an additional parameter Newmark Beta must
be given), BDF (BDF Order must be given). Also as a shortcut to Newmark-method with
values of Beta=0.0,0.5, 1.0 the keywords Explicit Euler, Crank-Nicolson,
and Implicit Euler may be given respectively. The recommended choice for the first order
time integration is the BDF method of order 2.

BDF Order Integer
Value may range from 1 to 5.

Newmark Beta Real
Value in range from 0.0 to 1.0. The value 0.0 equals to the explicit Euler integration method and
the value 1.0 equals to the implicit Euler method.

Solver solver id
The solver section defines equation solver control variables. Most of the possible keywords — related
to linear algebra, for example — are common for all the solvers and are explained elsewhere.

Equation String [Advection Diffusion Equation Varname]
The name of the equation, e.g., Advection Diffusion Equation Oxygen.

Variable String Varname
The name of the variable, e.g., Oxygen.

Procedure File "AdvectionDiffusion" "AdvectionDiffusionSolver"
The name of the file and subroutine.

Nonlinear System Convergence Tolerance Real
The criterion to terminate the nonlinear iteration after the relative change of the norm of the field
variable between two consecutive iterations k is small enough

Jur — up—1]| < €flugl],

where ¢ is the value given with this keyword, and w is either ¢; or C;.
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Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations the solver is allowed to do.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the nonlinear equation solver. Using a
factor below unity is sometimes required to achieve convergence of the nonlinear system. A
factor above unity might speed up the convergence. Relaxed variable is defined as follows:

uy, = Aug + (1= Nug_1,

where ) is the factor given with this keyword. The default value for the relaxation factor is unity.

Steady State Convergence Tolerance Real
With this keyword a equation specific steady state or coupled system convergence tolerance is
given. All the active equation solvers must meet their own tolerances for their variable u before
the whole system is deemed converged. The tolerance criterion is:

lJui — wi—1|] < €l|Ti|,

where e is the value given with this keyword.

Stabilize TLogical
If this flag is set true the solver will use stabilized finite element method when solving the
advection-diffusion equation with a convection term. If this flag is set to False, RFB (Residual
Free Bubble) stabilization is used instead (unless the next flag Bubbles is set to False in a
problem with Cartesian coordinate system). If convection dominates, some form of stabilization
must be used in order to succesfully solve the equation. The default value is False.

Bubbles Logical
There is also a residual-free-bubbles formulation of the stabilized finite-element method. It is
more accurate and does not include any ad hoc terms. However, it may be computationally more
expensive. The default value is True. If both Stabilize and Bubbles orsetto False, no
stabilization is used. This choice may be enforced in a problem with Cartesian coordinates, but
the results might be nonsensical. Both Stabilize and Bubbles should not be set to True
simultaneously.

Equation eqg id
The equation section is used to define a set of equations for a body or set of bodies.

Advection Diffusion Equation Varname Logical
If set to True, solve the advection-diffusion equation.

Convection String
The type of convection to be used in the advection-diffusion equation, one of: None, Computed,
Constant.

Concentration Units String
If set to Absolute Mass, absolute mass units are used for concentration. Recommended for
a compressible flow. Also possible to select Mass To Max Solubility which causes the
absolute mass formulation of the equation to be scaled by the maximum solubilities of each
material.

Body Forces bf id
The body force section may be used to give additional force terms for the equations. The following
keyword is recognized by the solver:

Varname Diffusion Source Real
An additional volume source for the advection-diffusion equation may be given with this key-
word. It may depend on coordinates, temperature and other variables, such as concentration of
other chemical species, and thus describe a source, a sink or a reaction term. Given in absolute
mass units or, in case of scaling, in the scaled units.
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Physical Units Logical True
With this keyword, the source term can be given in absolute mass units regardless of scaling.

Initial Condition ic id
The initial condition section may be used to set initial values for the concentration ¢;, C; or x;.

Varname Real

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be effective when advection-diffusion equation is solved.

Convection Velocity 1 Real
Convection velocity 1= 1, 2, 3 for the constant convection model.

Density Real
The value of density of the transporting fluid is given with this keyword. The value may be
constant, or variable. For compressible flow, the density of the transporting fluid is computed
internally, and this keyword has no effect.

Compressibility Model String
This setting may be used to set the compressibility model for the flow simulations. Choices are
Incompressible and Perfect Gas. If set to the latter, the density is calculated from the
ideal gas law. Then also the settings Reference Pressure, Specific Heat Ratio
and Heat Capacity must be given.

Reference Pressure Real
With this keyword a reference level of pressure may be given.

Specific Heat Ratio Real
The ratio of specific heats (in constant pressure versus in constant volume) may be given with this
keyword. The default value of this setting is 5/3, which is the appropriate value for monoatomic
ideal gas.

Heat Capacity Real
For the compressible flow, specific heat in constant volume.

Varname Diffusivity Real
The diffusivity D given by, e.g., Oxygen Diffusivity. Can be a constant or variable. For
an anisotropic case, may also be a tensor D;;.

Varname Soret Diffusivity Real
The thermal diffusivity coefficient D given by, e.g., Oxygen Soret Diffusivity. Can
be a constant or variable.

Varname Maximum Solubility Real
The maximum solubility of the species in absolute mass units. Has to be a constant value.

Boundary Condition bc id
In advection-diffusion equation we may set the concentration directly by Dirichlet boundary condi-
tions or use mass flux condition. The natural boundary condition is zero flux condition.

Varname Real

Mass Transfer Coefficient Real

External Concentration Real
These two keywords are used to define flux condition that depends on the external concentration
and a mass transfer coefficient. This condition is only applicable to absolute mass formulation
of the equation (see keywords for Equation block).

Varname Flux Real
A user defined mass flux term in absolute mass units or, in case of scaling, in the scaled units.
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Physical Units Logical True
With this keyword, the flux boundary condition can be given in absolute mass units regardless of
scaling. Note that this keyword does NOT affect the Dirichlet boundary condition nor the mass
transfer coefficient bc.

Varname Solubility Change Boundary Logical True
This keyword marks the boundary over which the maximum solubility changes. Has to be present
for the mass flux continuity to be preserved.

Normal Target Body Integer bd id
In a solubility change boundary, this keyword can be used to control on which side the mass flux
compensation is done. Basically, this can be done on either side but there can be some effect on
the accuracy or on the speed of the solution. Recommended is to give as normal target the body
with less dense mesh, or the direction of average species transport. If normal target body is not
specified, the material with smaller density is used.
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Linear Elasticity Solver

Module name: included in solver
Module subroutines: StressSolve

Module authors: Juha Ruokolainen
Document authors: Juha Ruokolainen
Document edited: 22.04.2007

4.1 Introduction

This module computes displacement field from Navier equations. The Navier equations correspond to linear
theory of elastic deformation of solids. The material may be anisotropic and stresses may be computed as a
post processing step, if requested by the user. Thermal stresses may also be requested.

4.2 Theory
The dynamical equation for elastic deformation of solids may be written as
o2d -
p@—Vw:f, 4.1

where p is density, dis the displacement field, f given volume force, and 7 the stress tensor. Stress tensor is
given by

7 = ke — BT — Ty), 4.2)
where ¢ is the strain and quantity C' is the elastic modulus. The elastic modulus is a fourth order tensor,
which has at the most 21 (in 3D, 10 in 2D) independent components due to symmetries. In Elmer thermal
stresses may be considered by giving the heat expansion tensor (3 and reference temperature of the stress free
state Tj). The temperature field 7" may be solved by the heat equation solver or otherwise. The linearized
strains are given simply as:

- %(ch—i— (Vd)™). 4.3)

For isotropic materials the elastic modulus tensor may be reduced to two independent values, either the
Lame parameters, or equivalently to Youngs modulus and Poisson ratio. The stress tensor given in terms of
Lame parameters is: .

T=2ue+ AV -dI — (T — Tp)I, 4.4)
where 1 and A are the first and second Lame parameters respectively, 3 the heat expansion coefficient, and
I is the unit tensor. Lame parameters in terms of Youngs modulus and Poisson ratio read

Yk Y

G e 7S AT )

EDETk *-5)
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except for plane stress situations (7, = 0) where y is defined as

Yk
= 4.6
Quantities Y and « are the Youngs modulus and Poisson ratio respectively.
For anisotropic materials, the stress-strain relations may be given in somewhat different form:
TV = Fe Vs (47)

where Ty and ey are the stress and strain vectors respectively. The 6 x 6 matrix £ (in 3D, 4 x 4 in 2D) is
the matrix of elastic coefficients. The stress and strain vectors are defined as

v =(Ts Ty T2 Tay Ty T:cz)T 4.8)
and
ev = (e €y €5 2eqy 26y, 25m)T. (4.9)
In 2D the stress vector is
Tv=_(Tp Ty T2 T$y)T (4.10)
and the strain vector
ey = (g5 €y €2 25$y)T. 4.11)

When plane stress computation is requested 7, = 0, otherwise €, = 0. Cylindrically symmetric case is
identical to the 2D case, the components are given in the order of r, z, and ¢. The matrix F is given as input
for the anisotropic material model of Elmer.

In addition to steady state and time dependent equations, modal and stability analysis may be considered.
In modal analysis the Fourier transform of the homogeneous form of the dynamical equation is

pwd =V - 7(¢), (4.12)
or

/p(bkwk s = /Tz] 61] 7;) ds2, (4.13)

where w is the angular frequency and d) is the corresponding vibration mode.
When modal analysis of pre-stressed solids are considered, we first perform a steady analysis to compute
stress tensor, here denoted by o;;, and solve the variational equation

w2 / PRy dL = / 715 (®)e; (1) dQ + / oij Ok O 1) (4.14)
Q Q z; axj

The last term on the right-hand-side represents here the geometric stiffness due to external loads, thermal
stresses etc.
In stability analysis the buckling modes ¢ are obtained from

7/\/ 9%k D Qf/nj(ﬂ)ew(ﬁ) , (4.15)

'I
J 09@ 8303

where A is the margin of safety with respect to bifurcation (the current load can be multiplied by factor A
before stability is lost).
The equations may be interpreted as generalized eigenproblems and solved with standard techniques.

4.2.1 Boundary Conditions
For each boundary either a Dirichlet boundary condition
di = d (4.16)

or a force boundary condition
TR=3q 4.17)

must be given.
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4.2.2 Model Lumping

For linear structures it is possible to create a lumped model that gives the same dependence between force
and displacement as the original distributed model,

F=KD (4.18)

where F = (Fy Fy F, M, M, M) and X = (Dy Dy D, ¢g ¢y #.)T. However, the lumped model is not
uniquely defined as it depends on the force or displacement distribution used in the model lumping. In the
current model lumping procedure the lumping is done with respect to a given boundary. The lumped force
and momentum are then integrals over this boundary,

Fi= [ faa (4.19)
A

Lumped displacements and angles are determined as the mean values over the boundary,
1
D, =— / d; dA. (4.20)
AJa

Therefore the methodology works best if the boundary is quite rigid in itself.

There are two different model lumping algorithms. The first one uses pure lumped forces and lumped
moments to define the corresponding displacements and angles. In 3D this means six different permutations.
Each permutation gives one row of the inverse matrix K . Pure lumped forces are obtained by constant
force distributions whereas pure moments are obtained by linearly varying loads vanishing at the center of
area. Pure moments are easily achieved only for relatively simple boundaries which may limit the usability
of the model lumping utility.

The second choice for model lumping is to set pure translations and rotations on the boundary and
compute the resulting forces on the boundary. This method is not limited by geometric constraints. Also
here six permutations are required to get the required data. In this method the resulting matrix equation is
often better behaving as in the model lumping by pure forces which may be a reason anonther reason to
favour this procedure.

4.3 Keywords

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere.

Equation String [Stress Analysis]|
The name of the equation.

Eigen Analysis Logical
Modal or stability analysis may be requested with this keyword.

Eigen System Values Integer
The number of the lowest eigen states must be given with this keyword, if modal or stability
analysis is in effect.

Harmonic Analysis Logical
Time-harmonic analysis where the solution becomes complex if damping is defined. The solu-
tion algorithm assumes that the diagonal entries in the matrix equation dominates.

Frequency Real
The frequency related to the harmonic analysis. If the simulation type is scanning this may a
scalar function, otherwise it is assumed to be a vector of the desired frequencies.

Stability Analysis Logical
If set to t rue, then eigen analysis is stability analysis. Otherwise modal analysis is performed.
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Geometric Stiffness Logical
If set to t rue, then geometric stiffness is taken into account in modal analysis.

Calculate Stresses Logical
If set to t rue the stress tensor will be computed and written to output in addition to Von Mises
stress.

Model Lumping Logical
If model lumping is desired this flag should be set to True.

Model Lumping Filename File
The results from model lumping are saved into an external file the name of which is given by
this keyword.

Fix Displacements Logical
This keyword defined if the displacements or forces are set and thereby chooces the model lump-
ing aklgorhitm.

Constant Bulk System Logical
For some type of analysis only the boundary conditions change from one subroutine call to
another. Then the original matrix may be maintaied using this logical keyword. The purpose is
mainly to save time spent on matrix assembly.

Update Transient System Logical
Even if the matrix is defined constant it may change with time. The time may also be pseudo-time
and then for example the frequency could change with time thus making the harmonic system
different between each timestep. This keyword has effect only if the previous keyword is also
defined to be true.

Equation eqg id
The equation section is used to define a set of equations for a body or set of bodies:

Stress Analysis Logical
if set to True, solve the Navier equations.

Plane Stress Logical
If set to True, compute the solution according to the plane stress situtation 7,, = 0. Applies
only in 2D.

Body Force bf id
The body force section may be used to give additional force terms for the equations.

Stress Bodyforce 1,2,3 Real
May be used to give volume force.

Initial Condition ic id
The initial condition section may be used to set initial values for the field variables. The following
variables are active:

Displacement i Real
For each displacement component i= 1,2, 3.

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be set in Navier equations.

Density Real The value of density is given with this keyword. The value may be constant, or
variable.

Poisson Ratio Real
For isotropic materials Poisson ratio must be given with this keyword.
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Youngs Modulus Real
The elastic modulus must be given with this keyword. The modulus may be given as a scalar for
the isotropic case or as 6 X 6 (3D) or 4 x 4 (2D and axisymmetric) matrix for the anisotropic
case. Although the matrices are symmetric, all entries must be given.

Heat Expansion Coefficient Real
If thermal stresses are to be computed this keyword may be used to give the value of the heat
expansion coefficient. May also be given as 3 x 3 tensor for 3D cases, and 2 x 2 tensor for 2D
cases.

Reference Temperature Real
If thermal stresses are to be computed this keyword may be used to give the value of the reference
temperature of the stress free state.

Rotate Elasticity Tensor Logical
For anisotropic materials the principal directions of anisotropy do not always correspond to the
coordinate axes. Setting this keyord to True enables the user to input Youngs Modulus matrix
with respect to the principal directions of anisotropy. Otherwise Youngs Modulus should be
given with respect to the coordinate axis directions.

Material Coordinates Unit Vector 1(3) Real [1 0 0]
Material Coordinates Unit Vector 2(3) Real [0 0.7071 0.7071]

Material Coordinates Unit Vector 3(3) Real [0 -0.7071 0.7071]
The above vectors define the principal directions of the anisotropic material. These are needed
only if Rotate Elasticity Tensor is setto True. The values given above define the
direction of anisotropy to differ from the coordinate axes by a rotation of 45 degrees about x-axis,
for example.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to Navier
equations are

Displacement i Real
Dirichlet boundary condition for each displacement component i= 1, 2, 3.

Normal-Tangential Displacement Logical
The Dirichlet conditions for the vector variables may be given in normal-tangential coordinate
system instead of the coordinate axis directed system. The first component will in this case be
the normal component and the components 2, 3 two orthogonal tangent directions.

Normal Force Real
A force normal to the boundary is given with this keyword.

Force i1 Real
A force in the given in coordinate directions 1= 1,2, 3.

Model Lumping Boundary Logical True
When using the model lumping utility the user must define which boundary is to be loaded in
order to determined the lumped model.
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Mesh Adaptation Solver

Module name: included in solver
Module subroutines: MeshSolver
Module authors: Juha Ruokolainen
Document authors: Juha Ruokolainen
Document edited: April 5th 2002

5.1 Introduction

Moving boundaries are often encourtered in different types of computations, i.e. Fluid-Structure-Interaction
(FSI) problems. Moving boundaries pose the problem of mesh adaptation to the boundaries. With this solver,
instead of generating the whole mesh afresh when a boundary is moved, the current mesh nodes are moved
so that the mesh hopefully remains ’good’. This type of solution only applies to cases where the changes
in geometry are relatively small. It is, however, often cheaper in terms of CPU time to use this module in
contranst to regenerate the whole mesh.

For time dependent simulations the mesh deformation velocity is also computed. The name of this
variable is Mesh Velocity.

5.2 Theory

The equation for elastic deformation of the mesh, given displacement of the boundaries, may be written as
-V.-r=0, (5.1

where, d is the mesh displacement field and 7 the stress tensor.
The stress tensor given in terms of Lame parameters is:

T =2us + AV - dl (5.2)

where p and A are the first and second Lame parameters respectively, and [ is the unit tensor. The linearized
strains are given as:

1, -
€= 5(w + (Vd)1). (5.3)
Lame parameters in terms of Youngs modulus and Poisson ratio read
Yk Y
— S N — 54
=0 —2x) 2(1 + r) SR

Quantities Y and « are the Youngs modulus and Poisson ratio respectively. Note that in this context the
values of the material parameters are fictional, and may be chosen to help convergence or quality of the
resulting mesh.
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5.2.1 Boundary Conditions

For each boundary a Dirichlet boundary condition

di=d’ (5.5)
may be given. Usually this the displacement is given a priori or computed by, for example, the elasticity
solvers.

5.3 Keywords

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere.

Equation String [Mesh Update]
The name of the equation.

Equation eg id
The equation section is used to define a set of equations for a body or set of bodies:

Mesh Update TLogical
if set to True, solve the mesh adaptation equations.

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be set in Navier equations.

Poisson Ratio Real
For isotropic materials Poisson ratio must be given with this keyword.

Youngs Modulus Real
The elastic modulus must be given with this keyword.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to Navier
equations are

Mesh Update i Real
Dirichlet boundary condition for each displacement component i= 1,2, 3. The boundary dis-
placement may be computed some other solver. The computed displacment field then may be
used in the setting in the following way:

Mesh Update i Equals Displacement i with i=1,2, 3. Including such lines in the
boundary condition setting will give the mesh update on the boundary directly from the dis-
placement solver.

5.4 Examples

5.4.1 A Simple FSI computation using MeshSolver

In this simple computation Navier-Stokes equations are solved in the domain shown in the two pictures
below. On the left there is an inflow boundary, and on the right an outflow boundary. In the block inside the
flow domain (the mesh is not shown for the block), the elasticity equations are solved. The block is fixed at
the bottom, and is otherwise deformed by the fluid pressure and flow fields. The whole system is iterated as
follows:

© CSC - IT Center for Science



5. Mesh Adaptation Solver 39

e Solve fluid flow,
e Solve deformation of the block,
o Solve the fluid domain mesh with MeshSolver according to the displacements of the block,

until convergence is obtained.

Figure 5.1: The original computational mesh (up), and the mesh of the converged solution (down) of a FSI
computation.
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Elastic Linear Plate Solver

Module name: Smitc

Module subroutines: SmitcSolver

Module authors: Mikko Lyly, Jani Paavilainen
Document authors: Mikko Lyly, Peter Raback
Document created: August 26th 2002

6.1 Introduction

The linear elastic plate elements of Elmer are based on the shear deformable model of Reissner and Mindlin.The
finite element discretization is performed using the so called stabilized MITC-plate elements, which are free
from numerical locking.

6.1.1 Reissner-Mindlin model

The displacement % = (uy,uy,u,) of a Reissner-Mindlin plate (thin or moderately thick linearly elastic
body which in its undeformed reference configuration occupies the three dimensional region ) x (—%, %)
where (2 is the midsurface and ¢ the thickness) is obtained from the kinematic equations

us(@,y,2) = w(z,y) (6.3)

where 6, and 6,, are components of the rotation vector § = (6, 6,) and w is the transverse deflection of the
mid-surface, see Figure 1.
The functions w and § = (6, 0,) are determined from the condition that they minimize the total potential

energy
1

f/@:mdﬂ—&-/w-qdﬁ—/pwdﬁ (6.4)
2J)o= — Q- Q

where p is the transverse pressure load, £ = %(L@ + L@T) is the curvature of the mid-surface, v = Vw — ¢
is the transverse shear strain, m = £ : k is the bending moment, and ¢ = G - «y the transverse shear force
vector. The fourth order tensor F and second order tensor G define the bending and shear rigidities of the
cross section, respectively. For linearly elastic materials we have G - v = Gty and

E:n= K[+

- — VUV

(tre)1] (6.5)

where K = Et3/[12(1 — v?)] is the bending stiffness, E is Young’s modulus, G' shear modulus, and v
Poisson ratio. The design of the tensors £ and G for orthoropic and perforated materials is discussed in
section 6.3.

40



6. Elastic Linear Plate Solver 41

The minimizer of the energy satisfies the equilibrium equations

V-m+q¢g=0 (6.6)
—V-qg=p (6.7)

6.1.2 Surface tension
When surface tension is present, the following term is added to the energy:

1
7/yw-7.ywd9 6.8)
2 Jo

where 7 is a second order tensor representing the given normal force (usually 7" = T'I, where T is constant).
The equilibrium equation (6.7) is then rewritten as

V- (¢g+T -Vw)=p (6.9)

6.1.3 Boundary conditions
The following boundary conditions can be applied in the Reissner-Mindlin plate model:

e Soft fixed edge: w=0and 0 -n =0

Hard fixed edge: w =0and § =0

Soft simply supported edge: w = 0

Hard simply supported edge: w =0and § -t =0

Freeedge: m-n=0and (¢+7 -Vw) -n =0

The boundary conditions can of course be non-homogenous as well. For fixed and simply supported edges
the prescribed values of w, 6, 6 - n, and 0 - t, are taken into account on matrix level after finite element
discretization. On the free part of the edge, the non-homogenous case is trated by adding the following

terms in the energy:
/ gnw dI' + / m,, - 9dl’ (6.10)
Tiree r

free

where g, = ¢ - n and m,, = m - n are prescribed functions.

6.1.4 Kirchhoff plates

When the thickness of the plate is small (f << diam(2)), the Reissner-Mindlin model can be considered
as a penalty approximation of the classical plate model of Kirchhoff. The Kirchhoff model is obtained from
(6.1)-(6.9) by enforcing the constraint v = 0. The governing equations are then reduced to

KAAw —TAw =1p (6.11)

6.1.5 Transient and natural mode analysis

A transient plate model is obtained by adding the interia term ptw on the left hand-side of (6.7), (6.9), and
(6.11). Here p is the density of the material. The natural vibration frequencies and mode shapes are then
obtained by taking p = 0 and solving the Fourier transformed equations.
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6.2 Finite element implementation

The direct minimization of (6.4) using the standard Galerkin finite element method fails due to the well
known numerical locking phenomena (the method is unable to deal with the Kirchhoff constraint v = 0,
which becomes valid when ¢ is small). In order to avoid locking, Elmer utilizes the so called SMITC
(Stabilization and Mixed Interpolation of Tensorial Components) elements, which are known to be optimally
convergent and work well under all conditions [4].

The linear element of the SMITC-family was first introduced by Brezzi, Fortin and Stenberg in [2]. The
method is defined by replacing the shear energy term in (6.4) by the following numerical modification:

/ 2,4, 49 (6.12)
Q

where ) is called the reduced shear strain (sometimes also referred to as the assumed or substitute shear)
and g, = (t* + ah?)7'G - v, the reduced shear force. Here / is the mesh size (the diameter of the biggest
element) and o« > 0 is a numerical stabilization parameter (typically o = 0.15).

The reduced shear y L is defined elementwise such that

Tnk = (ax — bry,ax + cxx) (6.13)

for any element K. The parameters ax, bx, and cg, are determined from the conditions

/E(l—lh)id&:o (6.14)

for every edge E of K. Here ¢ is the counterclockwise tangent to E.

It has been shown [3] that the linear SMITC-element is equivalent to the T3BL (Triangle, 3 nodes,
Linked Interpolation) element of Xu, Auricchio and Taylor [8, 1], the anisoparametrically interpolateed
MIN3 element of Tessler and Hughes [7], and the TRIA3 element of MacNeal [5]. We refer to [3] for a
more detailed discussion.

6.3 Elastic parameters for perforated plates

In microelectromechanical systems the plate stuctures are often perforated in order to reduce the squeezed-
film damping effect. This has also an effect on the elasticity equation. If there are so many holes that it is
not feasible to treat them individually their effect may be homogenized over the whole structure. In practice
this means that the original elastic parameters are replaced by effective parameters that take into account the
holes. This method was reported by Pedersen et al. [6] and implemented into the solver by Jani Paavilainen.

In the homogenization effective parameters for an ortotropic plate are defined so that the unperforated
model approximates the perforated plate. The basic idea is to set the analytical expressions of the deforma-
tion energies of the perforated and unperforated plates equal. This method is inherently limited to simple
geometries where analytical expressions may be found. So far, only square holes have been implemented in
the solver.

The unit cell of a perforated plate may be assumed to consist of one small square plate with side b — 2a,
and of four beams of length a as shown in Figure 6.1. Using approximate formulas an analytical formula for
the deformation energy of the perforated plate is obtained. This has to be equal to the deformation energy of
an unperforated ortoropic membrane. From this condition we get a set of equations from which the effective
parameters may be solved.

The elasticity tensor has three independent components, C1; = Cas, C1o = Caq, and Cyy. The expres-
sions for these are [6],

_ _E [blb—2a) | a(b—2a)?
Cn = Cxn= 12 { =2 b (6.15)
vE(b— 2a)
Cia = Cq = 0 =07 (6.16)
B E 12Ka(b — 2a)
Cu = wEiiy {2b(b ~2a) + bhs} . (6.17)
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basic
element

2a

Figure 6.1: The basic element of the perforated plate consisting of five rectangular beams

where K is a constant!, defined as

|

The midplane tension of the perfomarated plate may be reduced to lateral stresses of the ortotropic plate

by a simple scaling,
T =+/(1-4a%/b?) Ty, (6.19)

where is the tension 7} of the perforated plate. Using this reduced tension and the modified material param-
eters of equations (6.15), (6.16) and (6.17) the ortoropic plate mimics the behavior of the perforated plate
when looking at macroscopic quantities. However, the model is not suitable for approximating maximum
stresses around the holes, for example.

(1—-0.632522) (b—2a)3h, josh >b—2a

(1-063525) (b= 20)h%, josh < b~ 2a. (6.18)

W= Wl

6.4 Keywords

Solver solver id

Equation String SmitcSolver

Procedure File "Smitc" "SmitcSolver"
The procedure which inludes the linear plate model.

Variable String Deflection
This may be of any name as far as it is used consistently also elsewhere.

Variable DOFs Integer 3
Degrees of freedom for the deflection. The first degree is the displacment and the two following
ones are its derivatives in the direction of the coordinate axis.

Eigen Analysis Logical
Also the eigenvalues and eigenmodes of the elasticity equation may be computed. This is done
automatically by calling a eigensolver after the original equation has been solved. The default is
False.

'In article [6] there is an error in the definition of K. In the article there is an expression (b — 2a)/h3, which would make K
discontinuous at h = b — 2a.
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Eigen System Values Integer

If the eigenvalues are computed this keyword gives the number of eigenmodes to be computed.
The lowest eigenvalues are always solved for.

Hole Correction Logical

If the plate is perforated the holes may be taken into account by a homogenized model. This is
activated with this keyword. The default is False.

Procedure File "Smict" "SmitcSolver"
Material mat id
Density Real
Density of the plate.
Poisson ratio Real

Youngs modulus Real
The elastic parameters are given with Youngs modulus and Poisson ratio.

Thickness Real
Thickness of the plate.

Tension Real
The plate may be pre-stressed.

Hole Size Real

Hole Fraction Real

If Hole Correction is True the solver tries to find the size and relative fraction of the
holes. If these are present the hole is assumed to be a square hole.

Boundary Condition bc id

Deflection i Real
Dirichlet BC for the components of the deflection, i=1,2,3.

Body Force bf id

Pressure Real
Possibility for a body forces. For coupled systems there is a possibility to have up to three forces.
The two others are then marked with Pressure Band Pressure C.

Spring Real
The local spring which results to a local force when multiplyed by the displacement.

Damping Real

The local damping which results to a local force when multiplyed by the displacement velocity.
The spring and damping may also be defined as material parameters.

Bibliography

[1] F. Auricchio and R.L. Taylor. A triangular thick plate finite element with an exact thin limit. Finite
Element in Analysis and Design, 19:57-68, 1995.

[2] M. Fortin F. Brezzi and R. Stenberg. Error analysis of mixed-interpolated elements for reissner-mindlin
plates. Mathematical Models and Methods in Applied Sciences, 1:125-151, 1991.

[3] M. Lyly. On the connection between some linear triangular reissner-mindlin plate bending elements.
Numerische Mathematik, 85:77-107, 2000.

[4] M. Lyly and R. Stenberg. Stabilized mitc plate bending elements. In Advances in Finite Element
Techniques (M. Papadrakakis and B.H.V. Topping, eds.) Civil Comp Press., pages 11-16, 1994.

© CSC - IT Center for Science



BIBLIOGRAPHY 45

[5] R.H. MacNeal. Derivation of element stiffness matrices by assumed strain distribution. Nucl. Engrg.
Design, 70:3—12, 1982.

[6] M. Pedersen, W. Olthuis, and P. Bergveld. On the mechanical behaviour of thin perforated plates and
their application in silicon condenser microphones. Sensors and Actuators, A 54:6.

[7] A. Tessler and T.J.R. Hughes. A three-node mindlin plate element with improved transverse shear.
Comp. Meths. Appl. Mech. Engrg., 50:71-101, 1985.

[8] Z. Xu. A thick-thin triangular plate element. Int. J. Num. Meths. Eng., 33:963-973, 1992.

© CSC - IT Center for Science



Model 7

Helmholtz Solver

Module name: HelmholtzSolve

Module subroutines: HelmholtzSolver

Module authors: Juha Ruokolainen, Mikko Lyly
Document authors: Juha Ruokolainen
Document edited: March 30th 2006

7.1 Introduction

This module solves the Helmholtz equation, which is the Fourier transform of the wave equation.

7.2 Theory

For example, sound propagation in air is fairly well described by the wave equation:
1 0%
—— —V’p=0. 7.1
= 952 p (7.1)

When linear the equation may be written in frequency space as
kP +V?P =0, (7.2)

where k = w/c. This is the Helmholtz equation. The instantaneous pressure may be computed from the
given field P: ‘
p(t) = R(Pe™') = R(P) cos(wt) — 3(P) sin(wt), (7.3)

where ¢ = v/—1 is the imaginary unity.
In Elmer the equation has an added term which is proportional to first time derivative of the field, where-
upon the equation becomes
(k* —ikD)P 4+ V*P = 0, (7.4)

where D is the damping factor.

7.2.1 Boundary Conditions
The usual boundary condition for the Helmholtz equation is to give the flux on the boundary:
VP.-ii=yg, (7.5)

also Dirichlet boundary conditions may be set. The Sommerfeldt or far field boundary condition is as follows

VP . i+ %P -0, (1.6)
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where the complex-valued quantity Z may be defined by the user. It is noted that incoming and outgoing
waves may be approximated by setting Z = *c, respectively.

7.3 Keywords

Simulation
This section gives values to parameters concerning the simulation as whole.

Frequency Real
Give simulation frequency in units of 1/s. Alternatively use the Angular Frequency key-
word.

Angular Frequency Real
Give simulation frequency in units of 1/rad. Alternatively use the Frequency keyword.

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere. Note also that for the Helmholtz equation ILUT
preconditioning works well.

Equation String [Helmholtz]
The name of the equation.

Procedure File ["HelmholtzSolve" "HelmholtzSolver"]
This keyword is used to give the Elmer solver the place where to search for the Helmholtz
equation solver.

Variable String [Pressure]
Give a name to the field variable.

Variable DOFs 1Integer [2]
This keyword must be present, and must be set to the value 2.

Bubbles Logical
If set to True this keyword activates the bubble stabilization.

Equation eqg id
The equation section is used to define a set of equations for a body or set of bodies:

Helmholtz Logical
If set to True, solve the Helmholtz equation, the name of the variable must match the Equation
setting in the Solver section.

Initial Condition ic id
The initial condition section may be used to set initial values for the field variables. The following
variables are active:

Pressure i1 Real
For each the real and imaginary parts of the solved field i= 1, 2.

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be set in Helmholtz equation.

Sound Speed Real
This keyword is use to give the value of the speed of sound.

Sound Damping Real
This keyword is use to give the value of the damping factor D in equation 7.4.
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Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to
Helmholtz equations are

Pressure i Real
Dirichlet boundary condition

for real and imaginary parts of the variable. Here the values 1= 1, 2 correspond to the real and
imaginary parts of the unknown field.

Wave Flux 1,2 Real
Real and imaginary parts of the boundary flux. Here the values i= 1,2 correspond to the real
and imaginary parts of the boundary flux.

Wave Impedance 1,2 Real
This keyword may be used to define the real and imaginary parts of the quantity Z in (7.6). Here
the values i= 1, 2 correspond to the real and imaginary parts of Z.
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Electrostatics

Module name: StatElecSolve

Module subroutines: StatElecSolver

Module authors: Leila Puska, Antti Pursula, Peter Raback
Document authors: Peter Raback, Antti Pursula
Document edited: June 29th 2006

8.1 Introduction

The macroscopic electromagnetic theory is governed by the Maxwell’s equations. In Elmer it is possible to
solve the electrostatic potential in linear dielectric material and in conducting medium. The dielectric case
is described in this Chapter. For static currents, refer to Chapter 9. Based on the potential, various field
variables as well as physical parameters, such as capacitance, can be calculated.

8.2 Theory

When euc? << 1 we may assume that the Maxwell’s equations are:

V-D p (8.1)
V-B 0 (8.2)
o OB
VxE = —— (8.3)
q - 0D

For linear materials the fields and fluxes are simply related, B = /,LI;T dand D = ¢E, where the permittivity
€ = €&, 18 defined through the permittivity of vacuum ¢y and the relative permittivity of the material ¢,..
In steady-state case the electric field may be expressed with a help of an electric scalar potential ¢,

E=-V¢. (8.5)
Assuming linear material law and using equation 8.1 gives
—V eV = p. (8.6)

This is the electrostatic equation for non-conducting media.
The energy density of the field is

e =

E-D= %e(w)?. (8.7)
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Thus the total energy of the field may be computed from

E = 1/ e(Vp)2dQ. (8.8)
2 Ja

If there is only one potential difference ® present then the capacitance C' may be computed from

2F
C=%s (8.9)

8.2.1 Boundary Conditions

For electric potential either Dirichlet or Neumann boundary condition can be used. The Dirichlet boundary
condition gives the value of the potential on specified boundaries. The Neumann boundary condition is used
to give a flux condition on specified boundaries

—eVo - =g. (8.10)

The flux may be defined e.g. by the surface dharge density: g = o.

Conductors are often covered by thin oxidation layers which may contain static charges. The effect of
these charges can be taken into account by Robin type of boundary condition which combines the fixed
potential value on the conductor and the flux condition due to the static charges

€h

h
where €, and h are the permittivity and the thickness of the oxidation layer respectively, p is the static charge
density of the layer, and @ is the fixed potential on the conductor.

Note that this formulation is valid only for thin layers. For a larger layer a separate body should be added
and a source defined for that.

1
eVo-n= %d) — iph - —& on the boundary, (8.11)

8.2.2 Capacitance matrix

There is a possibility to compute the capacitance matrix. The algorithm takes use of the original matrix A
before to the initial conditions are set. Now the point charges are given by

g = Ag. (8.12)

The induced charges on a body may be computed by summing up the point charges.
If there fre n different bodies the boundary conditions are permutated n times so that body ¢ gets a
potential unity while others are set to zero potential.

Cij =Y q. (8.13)
L

The symmetry of the matrix is ensured afterwords by setting

C= %(C+CT). (8.14)

8.3 Notes on output control

The user can control which derived quantities (from the list of electric field, electric flux, electric energy,
surface charge density and capacitance matrix) are calculated.

There are also available two choises of visualization types for the derived quantities. The node values
can be calculated by taking the average of the derived values on neighbouring elements (constant weights).
This results often in visually good images. The other possible choice is to weight the average with the size of
the elements, which is more accurate and should be used when some other variable depends on these derived
values. The latter choice is also the default.
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8.4 Keywords

Constants
Permittivity Of Vacuum Real [8.8542e-12]
Solver solver id

Equation String Stat Elec Solver

Variable String Potential
This may be of any name as far as it is used consistently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the potential.

Procedure File "StatElecSolve" "StatElecSolver"
Following are listed four keywords with default values for output control.

Calculate Electric Field Logical [True]
Calculate Electric Flux Logical [True]
Calculate Electric Energy Logical [False]
Calculate Surface Charge Logical [False]
Calculate Capacitance Matrix Logical [False]

Capacitance Bodies Integer
In case of a capacitance matrix computation the number of bodies at different potential must be
given (not accounting the ground).

Capacitance Matrix Filename String
The name of the file where capacitance matrix is being saved. The default is cmatrix.dat.

Constant Weights Logical [True]
Used to turn constant weighting on for the results.

Potential Difference Real
Used to give the potential difference for which the capacitance is calculated, when capcitance
matrix calculation is not performed. This keyword gives thus the voltage between the electrodes
of a simple capacitor. The voltage has to be consistent with the potentials defined in boundary
conditions.

Material mat id
Relative Permittivity Real
Body Force bodyforce id
Charge Density Real
Boundary Condition bc id

Potential Real

Electric Flux BC Logical
Must be set to True if electric flux BC or oxidation layer BC is used.

Electric Flux Real
Neumann boundary condition.

Surface Charge Density Real
Another way to define flux condition. Identical to the previous keyword.

The following five keywords are used if a thin oxidation layer is modeled. Note that these are only
active if the Electric Flux BC keyword is set to True.
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Layer Thickness Real
Defines the thickness of the oxidation layer. This is presumed to extend on the outside the
boundary.

Layer Relative Permittivity Real
The relative permittivity of the oxidation layer.

Layer Charge Density Real
The volume charge density in the oxidation layer.

Electrode Potential Real
The potential on the conductor behind the oxidation layer.

Nominal Potential Difference Real
The potential difference of the system.

Capacitance Body Integer 1
These should number from i=1 up to Capacitance Bodies. The ground may be given
directly with zero potential or with value O for this keyword. This definition is only needed in
the computation of the capacitance matrix where the potential is permutated in a very specific
way.
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Static Current Conduction

Module name: StatCurrentSolve

Module subroutines: StatCurrentSolver

Module authors: Leila Puska, Antti Pursula, Peter Raback
Document authors: Antti Pursula

Document edited: August 2nd 2002

9.1 Introduction

The macroscopic electromagnetic theory is governed by the Maxwell’s equations. This module solves the
electrostatic potential in conducting medium allowing volume currents and electric power loss (Joule heat-
ing) to be derived.

9.2 Theory

In quasi-static approximation, when euc? << 1, the first and fourth Maxwell equation can be written as
follows

V-D = p 9.1)
. - 9D
VxH = J+4+— 9.2
X + 5 9.2)
The continuity equation for electric charges is easily derived from the above Maxwell Egs. 9.1 and 9.2
dp -
—+V.-J=0 9.3
5+ 9.3)

The Ohm’s law for conducting material gives the relationship between current density and electric field,
J=0E (9.4)
In steady-state case the electric field may be expressed with a help of an electric scalar potential ¢,
E= —Vé. 9.5)
Starting from the continuity equation 9.3 and using Eqs. 9.4 and 9.5 we get

dp
V.oVp=—. 9.6
0= 9:6)
This Poisson equation is used to solve the electric potential. The source term is often zero but in some cases
it might be necessary.
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The volume current density is now calculated by
J=—oV¢, 9.7)
and electric power loss density which is turned into heat by
h=V¢- -oVe. 9.8)
The latter is often called the Joule heating. The total heating power is found by integrating the above equation
over the conducting volume.

9.2.1 Boundary Conditions

For electric potential either Dirichlet or Neumann boundary condition can be used. The Dirichlet boundary
condition gives the value of the potential on specified boundaries. The Neumann boundary condition is used
to give a current J; on specified boundaries

Jy=0oVe-i. (9.9)

9.2.2 Power and current control

Sometimes the desired power or corrent of the system is known a priori. The control may be applied to the
system. When the electric potential has been computed the heating power may be estimated from

P:/v¢-av¢d9. (9.10)
Q

If there is a potential difference U in the system the effective resistance may also be computed from R =
U?/ P and the effective current from [ = P/U.
The control is achieved by multiplying the potential and all derived field by a suitable variable. For

power control the coefficient is
Cp=+/Py/P, 9.11)

where P, is the desired power. For current control the coefficient is
Cr=Iy/I, 9.12)

where I is the desired total current.

9.3 Note on output control

The user can control which derived quantities (i.e. volume current and Joule heating) are calculated and
additionally specify if he/she wants to output also the electric conductivity. The latter is useful when the
conductivity depends for example on temperature. This feature is available only for isotropic (scalar) con-
ductivities.

There are also available two choises of visualization types for the derived quantities. The node values
can be calculated by taking the average of the derived values on neighbouring elements (constant weights).
This results often in visually good images. The other possible choice is to weight the average with the size of
the elements, which is more accurate and should be used when some other variable depends on these derived
values. The latter choice is also the default.

9.4 Keywords

Solver solver id

Equation String Stat Current Solver
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Variable String Potential
This may be of any name as far as it is used consistently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the potential.

Procedure File "StatCurrentSolve" "StatCurrentSolver"
Following are listed three keywords with default values for output control.

Calculate Volume Current Logical [True]
Calculate Joule Heating Logical [True]

Constant Weights Logical [True]
Used to turn constant weighting on for the results.

Power Control Real
Apply power control with the desired heating power being F.

Current Control Real
Apply current control with the desired current being I.
Material mat id
Electric Conductivity Real
Body Force bodyforce id
Current Source Real

Possibility for a current source, not used often though.

Joule Heat TLogical
If this flag is active the Heat equation will automatically compute the quantity V¢ - 0V ¢ as heat
source. Then it is assumed that ¢ is named Potential. If there is no heat equation this flag
has no effect.

Boundary Condition bc id
Potential Real

Dirichlet BC for the potential.

Current Density BC Logical
Must be set to True if Neumann BC is used.

Current Density Real
Neumann boundary condition for the current.
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Magnetostatics

Module name: StatMagSolve

Module subroutines: StatMagSolver

Module authors: Juha Ruokolainen, Ville Savolainen, Jussi Heikonen, Peter Raback, Antti Pursula
Document authors: Ville Savolainen, Peter Raback, Antti Pursula

Document edited: June 29th 2006

10.1 Introduction

The Maxwell’s equations may generally be expressed with a scalar and a vector potential. The magnetic
field is then the curl of the vector potential. In some cases the scalar potential vanishes and the system is
fully described by the vector potential. These cases includes magnetostatics and time-harmonic induction at
low frequencies.

Magnetostatics describes the time-independent magnetic fields. The magnetic field may be created by
electromagnets with given current distributions or permanent ferromagnets. This solver allows the first
option, with non-homogeneous and non-linear magnetic materials.

In some cases the current density varies sinusoidally with time. If the field varies slowly and there are
no conductors in the system the problem is described with the stationary model. However, in conductors the
magnetic field results in additional currents that make the equation complex.

10.2 Theory

When there are no hard ferromagnets, the magnetostatics problems may be expressed with magnetic vector
potential A that satisfies B = V x A. It is obtained directly from the Ampere’s law, with displacement

current ignored, that
1 R
V x (V X A) =7
7!

Here p is the magnetic permeability of the material. The equation may be non-linear through the magnetic
permeability curve of a ferromagnetic material. The magnetic permeability is specified in the Material
section by the keyword Magnetic Permeability.

The equation above may be solved either in axial symmetry or in three dimensions. In 3D, a curl vector
identity is used to transform the equation into the form

1,z
—-—V?A=7
J7

which is valid when 1 is not a function of space coordinates. Also, the vector potential Aisa priori assumed
to satisfy the Coulomb gauge (V - A = 0).
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If there are conductors in the system the electric field is obtained from

L 94
E—Ua,

where o is the electric conductivity. In time-harmonic case the current density is sinusoidal 7 = 7pe’?,
where w = 27 f is the angular frequency. Using a trial A = Age®™* we obtain an equation for the amplitude

1 S S
V x (V X AO> + iwog Ay = Jo-
7]

If the geometry is axisymmetric, then the magnetic flux density B has only r- and z-components, and
the current density 7'and the vector potential A only ¢-components, and

1
V x (V X A¢€¢> + in’A¢5¢ = jy€p- (10.1)
7

The current density is given as a body force with the keyword Current Density. The vector potential
satisfies now automatically the Coulomb gauge.

In stady state case Ay is real and there is only one unknown. In the harmonic case the equation has two
unknowns — the in-phase and the out-of-phase component of the vector potential. After solution the heat
generation in the conductors may be computed from

h= 1Uu)2|ff0|2.
2

The magnetic flux density is calculated as a post-processing step from the vector potential. Both the vec-
tor potential and the magnetic flux density components are written in the result and ElmerPost files. The vari-
able names in the result file are magnetic vector potential and magnetic flux density
1, 2 and 3.

By definition, magnetostatics deals with steady-state problems. However, the problem may be solved
nominally time-dependent. This merely means that it is solved for a set of given current densities.

10.2.1 Boundary Conditions

For the magnetostatics equation one can apply either Dirichlet or natural boundary conditions. In both cases,
one must check that the computational domain is extended far enough to avoid numerical errors.
The Dirichlet boundary condition for A is

Ay = AL, (10.2)

In practice, when Dirichlet condition is used, usually Ag) = 0. The keyword for the Dirichlet boundary
condition is Magnetic Vector Potential. If Dirichlet condition is not specified, natural boundary
condition is used.

10.3 Keywords

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere.

Equation String [Static Magnetic Field]
The name of the equation.

Variable String [Magnetic Vector Potential]
The name of the variable.
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Procedure File ["StatMagSolve" "StatMagSolver"]
The name of the file and subroutine.

Calculate Magnetic Flux Logical [True]
In large computations the automatic computation of the magnetic flux may be turned off by this
keyword. The default is True.

Calculate Joule Heating Logical [True]
In large computations the automatic computation of the Joule heating may be turned off by this
keyword. The default is True. The keyword is only applicable for the harmonic case. The
computation results to two additional variables. Joule Heating gives the absolute heating
and Joule Field the field that gives the heating when multiplied by the electric conductivity.
This may be needed if the electric conductivity is discontinuous making also the heating power
discontinuous.

Desired Heating Power Real
A constant that gives the desired total heating power in Watts. If the keyword is active the the
Joule Heatingand Joule Field are multiplied by the ratio of the desired and computed
heating powers.

Nonlinear System Convergence Tolerance Real
This keyword gives a criterion to terminate the nonlinear iteration after the relative change of the
norm of the field variable between two consecutive iterations k is small enough

k—
145 — A~ || < ellAgll,

where € is the value given with this keyword.

Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations the solver is allowed to do. If neither the material
parameters nor the boundary conditions are functions of the solution the problem is linear, this
should be set to 1.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the nonlinear equation solver. Using a factor
below unity is sometimes required to achive convergence of the nonlinear system. A factor above
unity might speed up the convergence. Relaxed variable is defined as follows:

L k k—1
Ay =Mg+(1 —)\)A¢ ,
where ) is the factor given with this keyword. The default value for the relaxation factor is unity.

Equation eqg id
The equation section is used to define a set of equations for a body or set of bodies:

Static Magnetic Field Logical
If set to True, solve the magnetostatics equation.

Body Force bf id
The body force section may be used to give additional force terms for the equations.

Current Density Real
Specifies the azimuthal component of the current density. May be a positive or negative constant
or a function of a given variable.

Current Phase Angle Real
Specifies the phase angle of the current density in degrees. The default phase angle is zero.
Applies only to the time-harmonic case.

Joule Heat Logical
If this flag is active the Heat equation will automatically include the computed Joule heating as
a heat source. Then it is assumed that Joule heating field is named ¢ is named Joule field.
If there is no heat equation this flag has no effect.

© CSC - IT Center for Science



10. Magnetostatics 59

Initial Condition ic id
The initial condition section may be used to set initial values for the field variables. The following
variable is active:

Magnetic Vector Potential Real
The azimuthal component of the magnetic vector potential.

Material mat id
The material section is used to give the material parameter values. Material parameter available for
the magnetostatics equation are.

Magnetic Permeability Real
The magnetic permeability y is set with this keyword, defining the material relation B = uﬁ .
The magnetic permeability may be a constant (default is 4710~7) or a function of a given vari-
able, typically given by the relation y = (| B|). The value of the magnetic flux density |B| is
available by the variable named. Absolute Magnetic Flux.

Electric Conductivity Real
The electric conductivity defines the relation 7 = oFE. Only isotropic case is possible. The
parameter is needed only in the time-harmonic case.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary condition may be set for the vector potential. The one related to the the axisym-
metric magnetostatics problem is

Magnetic Vector Potential Real
The azimuthal component of the magnetic vector potential.
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Magnetic Induction Equation

Module name: included in solver / MagneticSolve as external procedure
Module subroutines: MagneticSolver

Module authors: Juha Ruokolainen

Document authors: Ville Savolainen, Antti Pursula

Document edited: May 24th 2005

11.1 Introduction

The magnetic induction equation describes interaction of a conducting liquid or gas with applied and induced
magnetic fields in the low-frequency domain. The induction equation for the magnetic flux density is always
coupled to the Navier-Stokes equation for the movement of the fluid. The magnetic field, in turn, causes the
Lorentz force in the Navier-Stokes equation. The fluid is typically hot, and the Navier-Stokes equation is
often coupled also to the heat equation.

The induction equation solver can also be used in a body without a moving fluid, i.e., when ¢ = 0 and the
Navier-Stokes equation is not solved. In this case, the problem belongs to the field of magneto-quasistatics.

11.2 Theory

The magnetic induction equation may be derived from the Maxwell’s equations, with the displacement
current in Ampere’s law neglected, and the Ohm’s law for conducting fluids, 7’ = U(E + U X E) This
approximation for the behavior of electromagnetic fields in conducting, moving fluids is called magnetohy-
drodynamics.
The magnetic induction equation is given by
a—BJrivaxé—Vx(Uxé):o, (11.1)
at  op
where o is the electric conductivity and p the magnetic permeability of the material. These must be specified
inthe Material section by the keywords Electric ConductivityandMagnetic Permeability.
The force term induced by the magnetic field for the flow momentum equations is given by

fin = 7x B, (11.2)

and the Joule heating in the heat equation by
L o
o, = — , 11.3
=~ 1] (113)

where 7'is the current density, calculated from the Ampere’s law 7= V x H. These body forces are specified
by the keywords Lorentz Force and Joule Heat.
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The magnetic field can also be divided into external, or applied, and induced field, B = B¢ + B, The
external magnetic field B¢ is created by permanent magnets or currents outside the fluid. The external field
may be given to the induction equation solver either from a restart file, e.g., as calculated by the magnetostatic
solver, or defined via the sif file’s keywords Applied Magnetic Field 1, 2 and 3. If the restart file
is used, the components of B¢ are read from the variables named magnetic flux density 1,2 and
3. If both methods are used, the two applied fields are summed together. It is assumed that the sources of the
external field are outside the flow region, i.e., V x Be = 0, and that the time derivative of the external field
can be ignored. The time derivative dB° /Ot can, however, be specified directly by the keywords Magnetic
Bodyforce 1,2 and 3. The induction equation solver gives the components of the induced magnetic field
B*.

Both transient and steady-state solvers for the magnetohydrodynamical system (induction, Navier-Stokes
and heat equations) are available. The magnetostatic and time-harmonic solvers for the external magnetic
field are described elsewhere in the Models Manual. In some cases it is also possible that the velocity is a
priori known, for example when studying induction in a rotating body. Then a user defined velocity can be
used instead of computing the velocity from Navier-Stokes equations.

Currently the induction equation can be solved in a cylindrically symmetric or a general three-dimensional
formulation.

11.2.1 Boundary Conditions

For the induction equation one can apply either Dirichlet or natural boundary conditions. In both cases, one
must check that the computational domain is extended far enough to avoid numerical errors. For this reason,
it is possible to solve the magneto-quasistatics problem in an adjacent body.

The Dirichlet boundary condition for a component of the induced magnetic field B; (we have dropped
now the superscript ¢ that marked the induced field) is

Bi— B (11.4)

B! can be a constant or a function of time, position or other variables. The keywords for the Dirichlet
boundary conditions are Magnetic Field 1,2 and 3.

In the cylindrically symmetric case, the Dirichlet boundary condition for the azimuthal component B,
is in the same units as for the other two components, i.e., in T, and not for a contravariant component. On
the symmetry axis one has to set B, = 0 and By = 0, and 0B, /dr = 0 is applied implicitly.

If no Dirichlet condition is specified, natural boundary condition is applied.

11.3 Keywords

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere.

Equation String [Magnetic Induction]
The name of the equation. It is also possible to use this solver as external procedure. Then the
name of the equation must not be the above (use e.g. Magnetic Field Solver). Also the
following four keywords have to be added with the values give here.

Procedure File "MagneticSolve" "MagneticSolver"
Variable String Magnetic Field
Variable DOFs Integer 3

Exported Variable 1 = -dofs 3 electric current
The above four keywords are to be given only when using the solver as an external procedure.
Nonlinear System Convergence Tolerance Real
This keyword gives a criterion to terminate the nonlinear iteration after the relative change of the
norm of the field variable between two consecutive iterations & is small enough

|1B* — BM|| < el B,
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where e is the value given with this keyword.

Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations the solver is allowed to do. If neither the material
parameters nor the boundary conditions are functions of the solution, the problem is linear, and
this should be set to 1.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the nonlinear equation solver. Using a factor
below unity is sometimes required to achive convergence of the nonlinear system. A factor above
unity might speed up the convergence. Relaxed variable is defined as follows:

B = B*+(1-NB"",

where ) is the factor given with this keyword. The default value for the relaxation factor is unity.

Steady State Convergence Tolerance Real
With this keyword a equation specific steady state or coupled system convergence tolerance is
given. All the active equation solvers must meet their own tolerances for their variable u, before
the whole system is deemed converged. The tolerance criterion is:

s = wia || < elluill,
where ¢ is the value given with this keyword.

Equation eg id
The equation section is used to define a set of equations for a body or set of bodies:

Magnetic Induction Logical
If set to True, solve the magnetic induction equation.

User Defined Velocity Logical
Controls whether the velocity is given by the user or computed by another solver. Default value
is False, which means that velocity solution of Navier-Stokes equations is used.

Navier—-Stokes Logical
If set to True, solve also the Navier-Stokes equations. For magnetohydrodynamics, this is done,
except when the computational region for the magnetic field is extended beyond the fluid.

Heat Equation Logical
If set to True, solve also the heat equation.

Body Force bf id
The body force section may be used to give additional force terms for the equations.

Lorentz Force Logical
If set true, triggers the magnetic field force for the flow momentum equations.

Joule Heat Logical
If set true, the Joule heating is added in the heat equation.

Magnetic Bodyforce i Real
This keyword can be used to specify explicitly the time dependence of the external field, i.e., the
term —9B° /Ot. This is especially useful for time-harmonic fields, where the time derivative can
be calculated and expressed easily.

Initial Condition ic id
The initial condition section may be used to set initial values for the field variables. The following

variables are active:

Magnetic Field i Real
For each magnetic flux density component i= 1,2, 3.
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Material mat id
The material section is used to give the material parameter values. The following material parameters
may be set for the induction equation. They can be a constant or a function of a given variable.

Magnetic Permeability Real
The magnetic permeability is set with this keyword. For most fluids, the vacuum value for pg
can be used, and the keyword setto 1 .25664e—6.

Electric Conductivity Real
The value of the electric conductivity is set with the keyword. For example, for polythermal
flows the conductivity could be a function of the temperature.

Applied Magnetic Field i Real
This keyword can be used to specify the external field, or a part of it, and its contribution to the
term V x (¥ x B¢). The field may be a function of, e.g., time or position.

MHD Velocity i Real
The user defined velocity can be given with these keywords with i=1, 2, 3.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The ones related to
induction equation are

Magnetic Field i Real
Dirichlet boundary condition for each magnetic flux density component i= 1,2, 3.
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12.1 Introduction

If dealing with electrolytic fluids constrained to small volumes, surface forces caused by electric surface
charges in combination with externally applied electrostatic fields are sufficient strong to affect the fluid
volume. If these effects are utilized to attenuate the fluid volume, we talk of Electrokinetics. The term
Electroosmotic Flow (EOF) is used in connection with the attenuation of a net charge inside a originally
neutral electrolyte caused by separation induced by a surface charge of a wall.

In most applications utilizing EOF, externally applied fields are sufficient small in order to justify ne-
glecting electric heating (Joule heating) inside the fluid volume. Nevertheless, certain applications, such as
High Voltage Capillary Electrophoresis (HV-CE), demand the consideration of this effect [2].

12.2 Theory

Chemical reactions between the contents of a liquid and the wall material may lead to a net charge of the
containment at the wall-liquid interface. If the liquid is an electrolyte (i.e., it contains free ions), ions of
opposite charge align along the wall creating the Stern layer. Adjacent to the Stern layer, a charge separation
- called the diffuse layer of the initially neutral electrolyte takes place. Due to the two layer structure the
whole are area of charge separation in the vicinity of a wall is called the Electric Double layer (EDL).

12.2.1 Electroosmotic slip velocity

Considering a symmetric electrolyte — i.e., the bulk ion density of ions with opposite valence numbers £z
are equal ng = ny = no — at a certain temperature, 7', the typical width-scale of the EDL is given by the

Debye length [1]
1/2
ereo kp 1o
Ap = ———= . 12.1
b ( 2ng 22 €2 ) (12.1)
Here e stands for the unit charge and &}, denotes the Boltzmann constant. The relative permittivity of the
electrolyte and the permittivity of vacuum are given by ¢; and €, respectively.

The potential, ® and the volume charge density, p., within the EDL are tightly coupled to each other by
the Poisson-Boltzmann equation (13.4) (see chapter 13). In order to exactly resolve the dynamics close to the
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my

electrolyte

Figure 12.1: Structure of the EDL. The value of the induced potential, ® at the Stern layer usually is referred
to as the zeta-potential, ¢
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walls, (13.4) should be solved and the resulting specific electric force then be considered in the equation of
motion. Nevertheless, provided the typical length scales of the flow perpendicular to the containment walls,
H, strongly exceed those of the EDL — in other words, we obtain very small values for the non-dimensional
group £ = A\p/H < 1 — the dynamics of the electrolyte inside the EDL does not have to be resolved at
all. In this case simple considerations of a force balance between shear stress and electric force lead to a slip
condition for the fluid [3]. At the boundary, the tangential velocity is set to the Helmholtz-Smoluchowski
velocity

E an,
Trang, = s = LmI0C (122)

Mt
with u¢ standing for the local fluid viscosity. The zeta potential, ( — a property depending on the electric
properties of the wall material as well as the electrolyte — usually is determined experimentally. From a
physical point of view it can be interpreted as the value of the solution obtained by (13.4) at the Stern layer.
The tangential component, E_’atang,, of the external electric field, E, is evaluated from the outward pointing
surface normal 77, applying the following relation

Brang. = E — (E : ﬁ) 7t (12.3)

Alternatively, the resulting slip velocity may be related to the tangential field using the Electroosmotic Mo-

bility, pigor -
UH-s = EO Etang.- (12.4)

A combination of (12.2) and (12.4) leads to the following identity

(12.5)

12.2.2 Joule Heating

Due to the small volume in microfluidic applications the additional heat produced by the external electric
field needs to be considered. With the local electric conductivity, o, and the local volume density, p, of the
electrolyte the specific heat contribution by Joule heating from an external electric field, F, is given by

h=0cE-E/p. (12.6)

The expression above can be added as body force to the heat transfer equation (1.1).

12.3 Limitations

e The Helmholtz-Smoluchowski velocity should not be applied if the non-dimensional group £ defined
in 12.2.1 is of unity order or larger. Then the potential- and charge density distribution as well as the
dynamics of the electrolyte inside the EDL has to be resolved.

o In a strict sense, the Helmholtz-Smoluchowski theory applies only to configurations where the normal-
component of the external field, F - 7, is small. If dealing with electric insulating wall materials — as
it is usually the case in microfluidic applications — this condition is implicitly complied with.

o The assumption of a Newtonian fluid underlies the derivation of the Helmholtz-Smoluchowski veloc-
ity.

e The function helmholtz_smoluchowski can only be applied on boundaries of two-dimensional
domains, where the tangential direction is uniquely defined.

e The functions helmholtz_smoluchowski{1, 2, 3} cannotbe applied with a number larger than
the dimension of the domain.
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124 Keywords

Keywords for helmholtz_smoluchowski

Constants

Permittivity Of Vacuum Real [8.8542e-12 C?/Nm?]
permittivity of vacuum, only needed if Helmholtz-Smoluchowski velocity is defined using ex-
pression (12.2)

Equation equation id

Electric Field String [computed, constant]
the option for how to evaluate the electric field should be set to one of these values.
If set to computed, the function will search for Electric Field {1,2,3} in the list
of solver variables. If set to constant, the function will search for Electric Field
{1,2,3} inthe sectionMaterial material id, wherematerial idistheid-number
associated with the material parameter list of the electrolyte

Material material id
If the Helmholtz-Smoluchowski velocity is defined using expression (12.2), then the following key-
words have to be provided in this section

Viscosity Real
viscosity of the electrolyte

Density Real
volumetric density of the electrolyte

Relative Permittivity Real
relative permittivity of the electrolyte

Boundary Condition bc id
In two-dimensional configurations the Helmholtz-Smoluchowski velocity directly can be assigned to
the tangential component of the velocity field

Normal Tangential Velocity Logical True

Velocity 2 = Variable Dummyargument
Real Procedure "Electrokinetics" "helmholtz_smoluchowski"
Sets tangential EO slip velocity

The argument Dummyargument can be any existing variable, since it is not used to evaluate the
velocity.

In three-dimensional configurations (and as an alternative also in two-dimensional), the velocity has
to be defined for each component

Normal Tangential Velocity Logical False

Velocity 1 = Variable Dummyargument

Real Procedure "Electrokinetics" "helmholtz_smoluchowskil"
Velocity 2 = Variable Dummyargument

Real Procedure "Electrokinetics" "helmholtz_smoluchowski2"
Velocity 3 = Variable Dummyargument

Real Procedure "Electrokinetics" "helmholtz_smoluchowski3"

The argument Dummyargument can be any existing variable, since it is not used to evaluate the
velocity.

If the Helmholtz-Smoluchowski velocity is defined using expression (12.2), then the zeta potential, ¢,
for the specific boundary region has to be defined
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Zeta Potential Real
Sets the zeta-potential for this boundary

Alternatively, the user can declare the EO-mobility, as explained in (12.5)

EO Mobility Real
Sets EO mobility for this boundary

Keywords for getJouleHeat
Equation equation id

Electric Field String [computed, constant]
the option for how to evaluate the electric field should be set to one of these values.
If set to computed, the function will search for Electric Field {1,2, 3} in the list
of solver variables. If set to constant, the function will search for Electric Field
{1,2,3}inthesection Material material id, wherematerial id istheid-number
associated with the material parameter list of the electrolyte

Material material id

Electric Conductivity Real
electric conductivity of the electrolyte

Density Real
volumetric density of the electrolyte

Body Force bodyforce id

Heat Source = Variable Dummyargument
Real Procedure "Electrokinetics" "getJouleHeat"
adds specific heat source for Heat Solve. The argument Dummyargument can be any exist-
ing variable, since it is not used to evaluate the Joule heating
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13.1 Introduction

The macroscopic electromagnetic theory is governed by the Maxwell’s equations. In steady state the electric
field may usually be solved from a simple Poisson equation. However, if there are free charges in the domain
that are affected by the electric field the equation is no longer valid. Also the contribution of the free charges
need to be taken into consideration. If the electrostatic force is the only force affecting the distribution of
the electric charges then the potential in the steady-state is given by the Poisson-Boltzmann equation [1].
This equation may find its use in microfluidics and electrochemical applications. Note that if the charge
distribution is affected by the flow distribution of the carrier fluid this equation is no longer valid.

13.2 Theory

The electrostatic equation for the electric potential ¢ yields,
-V -eVep =p, (13.1)

where ¢ is the permittivity of the medium and p is the charge density. Assuming that there is a fixed charge
density and both positive or negative moving ions the charge may be written as

p=npo+te(zn +ztnh) (13.2)

where py is interior charge distribution of fixed positions of all solute charges, and e is the unit charge of a
electron, and z is the charge number of the positive or negative ions, and n is the corresponding ion density.

The electrochemical potential 4 of the ions is defined by 1 = ez¢ + kT Inn, where the first term is the
electrostatic contribution and the second term comes from the entropy of the ions at the weak solution limit.
In equilibrium g, is constant over the whole domain and thus the ion density obeys a Boltzmann distribution,

n = nge ¢*¢/ksT (13.3)

where kg is the Boltzmann constant. Inserting this to the Poisson equation we obtain the Poisson-Boltzmann
equation that determines the potential field self-consistently,

-V .-eVop=py+ ez_nae_ezf‘i’/kBT + ez*nare_ez+¢/kBT. (13.4)
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A special case of the equation is obtained if the charge numbers and the concentrations are equal, z =
—2~ =zt and ng = ny = ng . Then the equation simplifies to

—V eV = pg — 2ezng sinh(ezgp/kpT). (13.5)

The Poisson-Boltzmann equation is obviously nonlinear. We will show the iterative procedure only for this
case, the generic case is dealt similarly.

13.2.1 TIteration scheme

Defining o = 2ezng and 3 = ez/kpT the Poisson-Boltzmann equation for a symmetric electrolyte may be
written as

-V eV = py — asinh(B¢). (13.6)
The straight-forward iterative procedure treats only the left-hand-side of the equation in an implicit manner,
—V - eVt = py — asinh(Bo™). (13.7)

The convergence of this scheme is, however, quite poor for many cases of practical interest. An improved
strategy should linearize also the right-hand-side.
Making a Taylor’s expansion we may approximate

sinh(G¢!" V) ~ sinh(8¢™) + 8 cosh(8¢™) (6T — o) (13.8)
which results to the Newton iteration scheme
—V - eV + afcosh(Bo™) | ¢ Y
= po — asinh(8¢™) 4+ af cosh(Bo™)p™. (13.9)

This scheme has good convergence properties and is usually the method of choice.

13.2.2 Boundary conditions

For electric potential either Dirichlet or Neumann boundary condition can be used. The Dirichlet boundary
condition gives the value of the potential on specified boundaries. The Neumann boundary condition is used
to give a flux condition on specified boundaries

o= eV, (13.10)

where o is the surface charge density.

13.2.3 Derived quanties
When the potential has been solved the electric field may be obtained as a postprocessing step from
E=-vs. (13.11)
Charge density may be obtained as the right-hand-side of the Poisson equation,
p=po+ ez*nae*”_‘z’/kBT + ez*na'efeer‘i’/kBT. (13.12)

which in symmetric case yields,

p = po — 2ezng sinh(ez¢/kpT). (13.13)
The energy density of the field ay be computed from
12 = 1
e= 5E -D = 5e(w)?. (13.14)

However, in a more generic treatment also the connribution of the concentration should be included in the
expression of the energy.
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13.3 Notes on output control

The user can control which derived quantities (i.e. electric field and electric energy) are calculated.

There are also available two choices of visualization types for the derived quantities. The node values
can be calculated by taking the average of the derived values on neighboring elements (constant weights).
This results often in visually good images. The other possible choice is to weight the average with the size of
the elements, which is more accurate and should be used when some other variable depends on these derived
values. The latter choice is also the default.

13.4 Keywords

Constants

Permittivity Of Vacuum Real [8.8542e-12 C2/Nm?]
Boltzmann Constant Real [1.3807e-23 J/K]
Unit Charge Real [1.602e-19 C]

Equation equation id

Calculate Electric Energy Logical [False]
Controls whether the electric energy density is written in results files (default False).

Solver solver id

Equation String Poisson Boltzmann Solver

Variable String Potential
This may be of any name as far as it is used consistently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the potential.

Procedure File PoissonBoltzmannSolve PoissonBoltzmannSolve
Following are listed three keywords with default values for output control.

Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations.

Nonlinear System Convergence Tolerance Real
The relative error after which the iteration is terminated.

Nonlinear System Newton After Iterations Integer
The number of iterations after which Newton iteraration is turned on. The default is zero which
should usually be optimal.

Nonlinear System Newton After Tolerance Real
Optional parameter which gives the tolerance in error after which Newton iteraration is turned
on.

Calculate Electric Field Logical [True]
Calculate Electric Flux Logical [True]
Constant Weights Logical [True]
Used to turn constant weighting on for the results.
Material mat id
Relative Permittivity Real
The total permittivity is the product of the relative permittivity and the permittivity of vacuum.

Reference Temperature Real
This keyword is used to give the temperature occuring in the Boltzmann factor.
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Charge Number Integer
For symmetric cases the charge number. For unsymmetric cases one may give separately Positive
Charge Number and Negative Charge Number.

Ion Density Integer
For symmetric cases the original density of ions. For unsymmtric cases one may give separately
Positive Ion Densityand Negative Ion Density.

An alternative set of parameters are also possible which are particularly suitable for testing purposes.
These are limited to the symmetric case where the potential normalized with the Zeta potential is
solved. Then the permittivities should be set to unity and only two variables are needed to define the
case.

Poisson Boltzmann Beta Real

This keyword gives the ratio of parameter 3 to the the Zeta potential.
Poisson Boltzmann Alpha Real

This keyword gives the parameter «

Body Force bodyforce id

Charge Density Real
The fixed charge distribution that is not affected by the electric field.

Boundary Condition bc id

Potential Real

Electric Flux BC Logical
Must be set to True if flux BC is used.

Surface Charge Real
Gives the surface charge for the Neumann boundary condition.
Bibliography
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14.1 Introduction

The flow of fluids is in the continuum level usually described by the Navier-Stokes equations. For narrow
channels this approach is an overkill and usually not even necessary. Neglecting the inertial forces and
assuming fully developed laminar velocity profiles the flow equations may be reduced in dimension resulting
to the Reynolds equation.

The current implementation of the Reynolds equation is suitable for incompressible and weakly com-
pressible liquids as well as for isothermal and adiabatic ideal gases. The nonlinear terms for the compressible
fluids are accounted for. The fluid is assumed to be newtonian i.e. there is a direct connection between the
strain rate and stress. The equation may be solved either in steady state or in a transient mode.

There is an additional solver for postprocessing purposes that computes the local heat generation field
using the Galerkin method. It also computes the integrals over the force and heating fields over the whole
area.

14.2 Theory

The underlying assumption of the Reynolds equation is that the flow in the channel is fully developed and
has thus the Hagen-Poiseuille parabolic velocity profile. Accounting also for the movement of the planes
and leakage trough perforation holes the pressure may be solved from the equation

ph? 1 . dp
V- | =—=—Vp|—Ypp==V-(phty) + h— + pv,, 14.1
(1277 p> PP 2 (pht) ot Pon ( )

where p is the density, 7 is the viscosity, p is the pressure and h is the gap height, v, is the tangential velocity,
and v, is the velocity in direction of the surface normal [1, 5]. Holes may be homogenized using the flow
admittance Y which gives the ratio between pressure drop and mean flow velocity through the hole.

The exact form of the Reynolds equation depends on the material law for density, p(p). The absolute
value of density does not play any role and therefore we may study just the functional forms. For gases we
solve for the pressure variation from the reference pressure P rather than for the absolute pressure. The
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different functional forms for some idealized material laws are the following:

px  (Po+p) isothermal ideal gas
pox (Py4p)Y/7 adiabatic ideal gas
p X 1 incompressible

p X er/P weakly compressible.

Here v = C},/Cy is the specific heat ratio and 3 the bulk modulus. In discretization of the equations it is
also useful to derive the functional dependencies of the density derivatives in respect to pressure,

Pp X 1 isothermal ideal gas
pp o< (1/7)(Po+p)'/7~1  adiabatic ideal gas
Pp X 0 incompressible

Pp X p/B weakly compressible.

In order to improve convergence of the iteration of the nonlinear system some terms including differen-
tials of density may be expressed implicitly using pressure. This way equation (14.1) may be written in the
following form:

PPN Yop— o L pe gy L ;
\Y (1277Vp> Y pp pphat zpphvt vp_va (hty) + pop. (14.2)

The surface velocity ' may also be given in normal cartesian coordinate system. Then the normal and
tangential components may easily be obtained from
UV, = U-7
Uy = U—upd.
The normal velocity and gap height are naturally related by
__0Oh
ot

In transient case the user should make sure that this relationship is honored.

(14.3)

Un

14.2.1 Flow admittances of simple geometries

The flow admittance, Y, occurring in the Reynolds equation may sometimes be solved analytically for
simple hole geometries from the steady-state Stokes equation. Generally Y depends on the history but
here we assume that it is presents the steady-state situation of the flow [2, 5]. This means that inertial and
compressibility effects are not accounted for. For cylindrical holes the admittance then yields,

D2

= 14.4
320’ (14.4)

where D is the diameter of the holes and b is the length of the hole. In case of a narrow slot with width W
the admittance is given by
W2
~ 120

(14.5)

14.2.2 Gas rarefaction effects

Generally the Reynolds equation could also be used to model nonnewtonian material laws. The current
implementation is limited to the special case of rarefied gases. The goodness of the continuum assumption
1 depends on the Knudsen number, K,,, which is defined by

A

K, =72, 14.
W (14.6)
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where ) is the mean free path of the molecules and £ is the characteristic scale (here the gap height). In this
solver only the dependence with pressure is taken into account from the formula

1
1 +p / Py
When the Knudsen number is very small (/;,, < 1) the gas may be considered as a continuous medium.
When the Knudsen number is in the transition regime (K,, ~ 1) we may take the gas rarefaction effect
into account by an effective viscosity. This accounts for the slip conditions of the flow in the channel by
decreasing the viscosity value. An approximation given by Veijola [4] is

_ Mo
1+ 9.638K1-159°

It s relative accuracy is 5 % in the interval 0 < K,, < 880.

A Ao- (14.7)

n (14.8)

14.2.3 Boundary conditions for the Reynolds equation

The Reynolds equation may have different boundary conditions. The natural boundary condition that is

obtained by default is 5
P
2=, (14.9)
This condition may be used at symmetry and closed boundaries.

If the aspect ratio of the resonator is large then the pressure variation at the open sides is small compared
to the values far from boundaries. Then may set Dirichlet boundary conditions (p = 0) for the pressure.
However, if the aspect ratio is relatively small the open side effects should be taken into account. The
pressure variation at the side is not exactly zero while also the open space has a flow resistance. The pressure
derivative at the boundary is approximated by

o _p

on L’
where L is the effective added length of the open sides [3]. If gas rarefaction is not accounted for then
L = 0.8488h, otherwise

(14.10)

L = 0.8488(1.0 + 2.6 76 K2-5%) h. (14.11)

14.2.4 Postprocessing

When the equation has been solved the solution may be used to compute some data for postprocessing
purposes. The local volume flux in the lateral direction may be obtained from

h3
q=—~-Vp+ hvy. (14.12)
127
The total force acting on the surface is
ja :/ (pﬁ+ ﬁﬁt) dA, (14.13)
A h

where the first term is due to pressure driven flow and the second one due to sliding driven flow. Also the
heating effect may be computed. It consist of two parts: pressure driven flow and sliding flow. The local
form of this is

3
=2
h=—IVp]® + <5 14.14
121 Vpl* + h|“t‘ ( )
Therefore the total heating power of the system is
Q:/ qdA. (14.15)
A

It should be noted that if the velocity field ¥ is constant then the integral quantities should fulfill the condition
Q=F-7

Note that the above implementation does not take into account the leakage through perforation holes nor
the compressibility effects of the fluids.
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14.3 Keywords

The module includes two different solvers. ReynoldsSolver solves the differential equation (14.2) while
ReynoldsHeatingSolver solves the equation (14.14) and computes the integrals. The second solver
only makes sense when the pressure field has already been computed with the first one. The second solver
uses the same material parameters as the first one.

Keywords for ReynoldsSolver
Solver solver id

Equation String ReynoldsSolver
A describing name for the solver. This can be changes as long as it is used consistently.

Variable String FilmPressure
The name of the variable may be freely chosen as far as it is used consistently also elsewhere.

Variable DOFs Integer I
Degrees of freedom for the pressure. This should be 1 which is also the default value.

Procedure File "ReynoldsSolver" "ReynoldsSolver"
The name of the module and procedure. These are fixed.

Nonlinear System Convergence Tolerance Real
The transient equation is nonlinear if the relative displacement or pressure deviation is high.
The iteration is continued till the relative change in the norm falls under the value given by this
keyword.

Nonlinear System Max Iterations Integer
This parameter gives the maximum number of nonlinear iterations required in the solution. This
may be set higher than the typical number of iterations required as the iteration procedure should
rather be controlled by the convergence tolerance.

Material mat id

Gap Height Real
Height of the gap where the fluid is trapped. If the case is transient the user should herself make
sure that also this variable has the correct dependence on time.

Surface Velocity 1 Real
The velocity of the moving body may be given in either cartesian coordinates, or in ones that are
already separated to normal and tangential directions. In the first case the velocity components
are given with this keyword with i=1, 2, 3.

Tangent Velocity i Real
For setting the tangential velocity (i.e. sliding velocity) use this keyword with i=1, 2, 3.

Normal Velocity Real
Normal velocity is the velocity in the direction of the surface normal. Typically a negative value
means contraction.

Viscosity Real
Viscosity of the gas.

Viscosity Model String
The choices are newtonian and rarefied. The first one is also the default.

Compressibility Model String

The choices are incompressible,weakly compressible,isothermal ideal gas,

and adiabatic ideal gas.

Reference Pressure Real
Reference pressure is required only for the ideal gas laws.
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Specific Heat Ratio Real
This parameter is only required for adiabatic processes. For ideal monoatomic gases the ratio is
5/3. Only required for the adiabatic compressibility model.

Bulk Modulus Real
The parameter 3 in the weakly compressible material model.

Mean Free Path Real
If the viscosity model assumes rarefied gases the mean free path of the gas molecules in the
reference pressure must be given.

Flow Admittance Real
The steady-state flow admittance resulting from perforation, for example.

Boundary Condition bc id

FilmPressure Real
Sets the boundary conditions for the pressure. Usually the deviation from reference pressure is
zero at the boundaries.

Open Side Logical
The open end effect may be taken into account by setting this keyword True.

Keywords for ReynoldsFluxSolver

This solver uses largely the same keywords that are already defined above. Only the Solver section has its
own keyword settings. This solvers should be active in the same bodies than the ReynoldsSolver.

Solver solver id
Equation String ReynoldsFluxSolver
A describing name for the solver. This can be changes as long as it is used consistently.

Reynolds Pressure Variable Name String
The name of the field that is assumed to provide the pressure field. The defaultis FilmPressure.

Keywords for ReynoldsHeatingSolver

This solver uses largely the same keywords that are already defined above. Only the Solver section has its
own keyword settings. This solvers should be active in the same bodies than the ReynoldsSolver.

Solver solver id
Equation String ReynoldsHeatingSolver
A describing name for the solver. This can be changes as long as it is used consistently.

Variable String FilmHeating
The name of the variable may be freely chosen as far as it is used consistently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the pressure. This should be 1 which is also the default value.

Procedure File "ReynoldsSolver" "ReynoldsHeatingSolver"
The name of the module and procedure. These are fixed.

Reynolds Pressure Variable Name String
The name of the field that is assumed to provide the pressure field. The defaultis FilmPressure.
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Model 15

BEM Solver for Poisson Equation

Module name: PoissonBEM

Module subroutines: PoissonBEMSolver
Module authors: Juha Ruokolainen
Document authors: Juha Ruokolainen
Document edited: May 27th 2003

15.1 Introduction

This module solves the Laplace equation by boundary element method (BEM), where the differential equa-
tion is transformed to integral equation along the boundaries. On the boundaries either potential or normal
flux may be defined. A source term may be included (Poisson equation), but the source term remains a
volume integral.

15.2 Theory

The Poisson equation is mathematically described as
—A® — f=0, in (15.1)
where f is the given source.

In BEM we transform this equation to integral equation over boundaries. We start by multiplying the
equation by a weight function and integrating over the volume, and integrating by parts

—/A(I)wsz/V(I%deQ—/a—@wdF. (15.2)
Q Q r on

Similarily we may write an equation reversing the roles of ® and w

7/ Awd dQ) = / Vw- Vb de/a—ch) dr. (15.3)
Q JQ T on
Substracting the two equations we have
—/Aq>wd9:—/chde—/a—q>wdr+/a—wcbdr (15.4)
Q O T on r on
Next we choose the weight w as follows:
—Aw = 6,(r'), (15.5)
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so that
—/ Awd dQ = &(r), (15.6)
Q
The weight w chosen this way is the Green’s function for the Laplace operator, i.e.
1 -7 1
wlr, ') = %ﬂ” in2d ,w(r,r’) = e LS (15.7)
Finally we add the source term, and we have the equation
0P
d(r) — 8—w dal’ + —<I> dl’ — fw dQ = 0. (15.8)
n

Only the source term is now integrated over the volume. This equation may now be discretized by standard
methods.

15.2.1 Boundary Conditions

Boundary conditions may be set for either potential

®=0ronl, (15.9)

or normal flux 50
—— =gonl. (15.10)

on

15.3 Keywords

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere. Note also that the BEM discretization results to a full
linear system in contrast to FEM discretizations and the ILU preconditioning settings are not available.

Equation String [PoissonBEM]
The name of the equation.

Procedure File ["PoissonBEM" "PoissonBEMSolver"]
This keyword is used to give the Elmer solver the place where to search for the equation solver.

Variable String [Potential]
Give a name to the field variable.

Variable DOFs Integer [1]
This keyword must be present, and must be set to the value 1.

Exported Variable 1 String Flux
If this keyword is given, the output will include the normal flux at boundaries, the name must be
exactly as given.

Exported Variable 1 DOFs Integer [1]
This keyword must be present if Flux values are to be computed, and must be set to the value 1.

Equation eqg id
The equation section is used to define a set of equations for a body or set of bodies:

PoissonBEM Logical
if set to True, solve the Poisson equation, the name of this parameter must match the Equat ion
setting in the Solver section.
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If the mesh has any volume elements with a body id that corresponds to a body where to the Poisson
equation is activated, the value of the potential is computed for these elements as a postprocessing
step. Note that the computation of potential is not a trivial task, so large number of volume elements
may result to long execution time.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to Poisson
(BEM) equation are

Body Id Integer
Give body identification number for this boundary, used to reference body definitions in .sif
file. This parameter must be set so that the ElmerSolver knows at which boundaries to solve the
corresponding equation.

Potential Real
Known potential value at boundary.

Flux Real
Known normal flux at boundary.

Normal Target Body Integer
The direction of boundary normals are important for the success of the computation. They
should point consistently outward from the boundaries. This is accomplished either if the mesh
generator automatically orients the boundary elements consistently, or including in the mesh
the parent (volume) elements of the boundaries and using this keyword. The value -1 of this
parameter points to the side where there are no volume elements. If the parameter gets the value
of the body id of the volume elements, the normal will point to that direction.

Body Force bf id
The source term for the Poisson equation may be given here. The volume integral is computed on a
body with a volume mesh and the PoissonBEM equation set to true.

Source Real
The source term for the Poisson equation.

© CSC - IT Center for Science



Model 16

BEM Solver for Helmholtz Equation

Module name: HelmholtzBEM

Module subroutines: HelmholtzBEMSolver
Module authors: Juha Ruokolainen
Document authors: Juha Ruokolainen
Document edited: May 27th 2003

16.1 Introduction

This module solves the Helmholtz equation by boundary element method (BEM), where the differential
equation is transformed to integral equation along the boundaries. On the boundaries either pressure or
normal flux may be defined.

16.2 Theory

The Helmholtz equation is mathematically described as
(k> 4+ A)® =0, in Q. (16.1)

In BEM we transform this equation to integral equation over boundaries. We start by multiplying the
equation by a weight function and integrating over the volume, and integrating by parts

0P
/ (K> + A®)w dQ = / k2w®dQ — / Vo - Vw dQ + / —wdl. (16.2)
Q Q Q r on
Similarily we may write an equation reversing the roles of ® and w
/(k2 + A)wd d) = / k*wddS) — / Vw - Vo d +/ a—“’@ dr. (16.3)
Q Q Q r On

Substracting the two equations we have

d
/(k2+A)<I>w dQ:/(k2+A)w<I> dQ—/g—w dTl" + 94 ar (16.4)
Q Q r on T on

Next we choose the weight w as follows:

(K + M)w = 5,(r), (16.5)
so that
/ (k% + A)wd dQ = d(r), (16.6)
Q
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The weight w chosen this way is the Green’s function for the Helmholtz operator, i.e.
/ 1 NN e / 1 —ik(r—r')
w(r,r') = ﬁHo(k(r—r))m 2d ,w(r,r’) = 1 &P in3d, (16.7)
where Hj is the Hankel function.
Finally we have the equation
0P ow
&(r)— | ——wdl —®dl'=0. 16.8
(T) T 87’7/ v + T (97”& ( )
16.2.1 Boundary Conditions
Boundary conditions may be set for either pressure
®=%ronT, (16.9)
or normal flux 55
—— =gonl. (16.10)
on

16.3 Keywords

Simulation

Angular Frequency Real
Give the value of the angular frequency for the simulation.

Solver solver id

Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere. Note also that the BEM discretization results to a full
linear system in contrast to FEM discretizations and the ILU preconditioning settings are not available.

Equation String [HelmholtzBEM]
The name of the equation.

Procedure File ["HelmholtzBEM" "HelmholtzBEMSolver"]
This keyword is used to give the Elmer solver the place where to search for the equation solver.

Variable String [Pressure]
Give a name to the field variable.

Variable DOFs Integer [2]
This keyword must be present, and must be set to the value 2.

Exported Variable 1 String Flux
If this keyword is given, the output will include the normal flux at boundaries, the name must be
exactly as given.

Exported Variable 1 DOFs Integer [2]
This keyword must be present if Flux values are to be computed, and must be set to the value 2.

Equation eg id

The equation section is used to define a set of equations for a body or set of bodies:

HelmholtzBEM Logical
if set to True, solve the Helmholtz equation, the name of this parameter must match the
Equation setting in the Solver section.
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If the mesh has any volume elements with a body id that corresponds to a body where to the Helmholtz
equation is activated, the value of the pressure is computed for these elements as a postprocessing step.
Note that the computation of potential is not a trivial task, so large number of volume elements may
result to long execution time.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to
Helmbholtz (BEM) equation are

Body Id Integer
Give body identification number for this boundary, used to reference body definitions in .sif
file. This parameter must be set so that the ElmerSolver knows at which boundaries to solve the
corresponding equation.

Pressure 1 Real
Known real part of pressure at boundary.

Pressure 2 Real
Known imaginary part of pressure at boundary.

Flux 1 Real
Known real part of normal flux at boundary.

Flux 2 Real
Known real part of normal flux at boundary.

Normal Target Body Integer
The direction of boundary normals are important for the success of the computation. They
should point consistently outward from the boundaries. This is accomplished either if the mesh
generator automatically orients the boundary elements consistently, or including in the mesh
the parent (volume) elements of the boundaries and using this keyword. The value -1 of this
parameter points to the side where there are no volume elements. If the parameter gets the value
of the body id of the volume elements, the normal will point to that direction.
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Model 17

Free Surface with Constant Flux

Module name: FreeSurfaceReduced
Module subroutines: FreeSurfaceReduced
Module authors: Peter Riback

Document authors: Peter Riback
Document edited: August 5th 2002

17.1 Introduction

The determination of free surface is often an essential part of solving a fluid dynamics problem. Usually the
surface is found by solving a free surface equation resulting from force balance, or by finding the free surface
from zero flux condition. In some extreme cases both of these methods were found to fail and therefore an
alternative approach was taken. The method can only be applied to stationary 2D or axisymmetric flows
where the total flux is conserved. This is the case, for example, in many coating and drawing processes.

17.2 Theory

The determination of the free surface takes use of the conservation of mass. If the flow is stationary the mass
flux through all planes cutting the flow must be same. In the following we concentrate on the axisymmetric
case which has more applications than the 2D case.

In the axisymmetric case the mass flux is obtained from

R
(R, =) :/ (i - ) rds. (17.1)

Ro

The free surface is set by finding a surface profile R(z) such that the integral is constant for all nodes on the
surface, or
f(R,z;) = f(R1,z1) Vjel,M]. 17.2)

Note that the factor 27 has been consistently omitted since it has no bearing to the shape of the free surface.

The subroutine uses simple heuristics to determine the direction of the flow on the free surface. The first
upwind node z; on the free surface is assumed to be fixed and the corresponding flux is f;. The new radius
is set approximately by assuming that the added or removed flow has the same velocity as the velocity on
the surface. Then the corrected radius is found from

UnR(m) dR™ — f(R(m),Z) — f(Ry,21) (17.3)

or
F(R™, 2) *f(Rth).

Rim+1) — p(m)
+ Up R(M)

(17.4)
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After the new profile is being found the element nodes are moved to the new positions. The nodes that are
not on the surface may be mapped in many different ways. The straight-forward strategy is to use linear 1D
mapping. Also more generic 2D mapping may be used.

The free surface and the fluid flow must be consistent and therefore the system must be solved iteratively.
When convergence of the coupled system has been obtained the suggested d R vanishes and the free surface
solver does not affect the solution.

Sometimes the free surface solver overshoots and therefore it may be necessary to use relaxation to
suppress the large changes of the solution.

Note that the free surface solver is simple based on mass conservation. No forces are applied on the free
surface. If surface tension needs to be taken into account it may be done while solving the Navier-Stoke
equation.

17.3 Applicable cases and limitations

The method has some limitations which are inherent of the method:

e Limited to steady-state simulations.

e Limited to 2D and axisymmetric cases.

o If there is back-flow within the free surface flow the correctness of the solution is not guaranteed.
Some limitations result from the current implementation:

o The free surface must be oriented so that the flow is on its negative side.

o There may be several free surfaces of this type but they must be directed the same way.

e The line integral from Ry to R may cause some difficulties in unstructured meshes. Therefore struc-
tured meshes are favored.

o At the moment density is assumed to be constant and therefore only incompressible fluids may be
considered.

17.4 Keywords

Solver solver id

Equation String "Free Surface Reduced"

Variable String dx
The change in the free surface coordinate. This may be of any name as far as it is used consis-
tently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the free surface coordinate.

Procedure File "FreeSurfaceReduced" "FreeSurfaceReduced"
The following four keywords are used for output control.

Perform Mapping Logical
If this keyword is True the coordinate mapping is done locally by using linear 1D mapping.
This is also the default. Also 2D mapping is possible by using a separate mesh update solver.
Then the keyword should be set to False.

Nonlinear System Relaxation Factor Real
The changes in the free surface may be relaxed. The default is no relaxation or value 1.0
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Nonlinear System Convergence Tolerance Real
This keyword gives a criterion to terminate the nonlinear iteration after the maximum change in
the free surface coordinate is small enough

max ||[dR/(R — Ry)|| < €
where € is the value given with this keyword.
Boundary Condition bc id

Free Surface Reduced Logical
Must be set to True for the free surface when the solver is used. The boundary must be simply
continuous.

Free Surface Number Integer
If more than one free surface of the reduced type is present simultaneously they must somehow
be separated. This keyword is for that purpose. The surfaces should be ordered from 1 to the
number or free surfaces. Value 1 is also the default if the surface is active. Note that free surfaces
with different numbers should be aligned the same way and should not touch each other.

Free Surface Bottom Logical
If this flag is free it sets the lower boundaries of integration when solving for the free surface.
Note that this surface should not touch any of the free surfaces. A free surface is automatically a
lower boundary for another free surface.

If mapping is not performed within the solver also boundary conditions for the mapping are required.
Surface tension may be taken into account while solving the Navier-Stokes equation. The proper
keywords for activating the surface tension are explained in the manual of the Navier-Stokes solver.
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Model 18

Kinematic Free Surface Equation with
Limiters

Module name: FreeSurfaceSolver

Module subroutines: FreeSurfaceSolver

Module authors: Thomas Zwinger, Peter Raback, Juha Ruokolainen, Mikko Lyly
Document authors: Thomas Zwinger

Document edited: March 4th 2008

18.1 Introduction

Flows with a free surface are to be found in geophysical as well as technical applications. On large scale
flows the free surface usually is governed by a kinematic boundary condition given as a partial differential
equation. This equation then is solved on the specific boundary in combination with the (Navier)-Stokes
equation and the mesh update solver.

18.2 Theory

The implicit equation describing the free surface is given by
F(fvt) :Z_h(xvyat)a (18.1)

with the explicit position of the free surface h(z,y,t). Mass conservation implies that, with respect to the
velocity of the surface, i, F' has to define a substantial surface, i.e.,

oF
The net volume flux through the free surface then is given by the projection of the difference between the

fluid velocity at the free surface, @ and the velocity of the free surface with respect to the surface normal
a) = (ty — @) - 7. (18.3)

In Geophysical context (e.g., Glaciology), a  often is referred to as the net accumulation. With the surface
unit normal defined as UF

7 (18.4)
IVE]

ﬁ:

this leads to
or
aJruVF:—HVFHaL. (18.5)
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Using the definition in (18.1), (18.5) can be rewritten in its explicit form

1/2
oh\?  /0hn\?
1*(3.@) +(ay>] 0l (18.6)

with the components of fluid velocity vector at the free surface given as @ = (u, v, w)T. The variational

formulation of (18.6) reads as
1/2
oh  Oh  Bh ' om\:  on\?]"
EJFU%JH}@T/ pdV = w+ |1+ e + Ty a; ppdV, (18.7)
Q Q

where the occurrence of & in the right hand side is inserted from the previous time-step/non-linear iteration,
hence linearizing the equation.

oh oh oh
Ve— —w =

ot Yo TV

18.2.1 Limiters

In certain cases the free surface is constrained by an upper hpax (2, y, t) and/or a lower Ay (z,y,t) limit.
For instance, the free surface of a fluid contained in a vessel cannot penetrate the vessel’s walls. This adds
the constraint

hmin S h S hmax (188)

to (18.7) converting the variational formulation into a variational inequality. In order to obtain a with (18.8)
consistent solution a method using Dirichlet constraints within the domain is applied. The exact procedure
is the following:

1. construct the linear system: Ah = f, with the system matrix A and the solution vector h on the
left-hand side and the force vector f on the right hand side

2. set nodes as active if (18.8) is violated

3. for active nodes the matrix and force vector are manipulated such that effectively a Dirichlet condition
h = hmax/min 18 applied

-

4. the manipulated system is solved: Ah = f

5. aresidual is obtained from the un-manipulated system: R=Ah— f
6. an active node is reset if the residual is R < 0 (for lower limit) and R > 0 (for upper limit)

The whole algorithm is iterated (within the non-linear iteration loop) until the limit given in Nonlinear
System Convergence Tolerance is reached. In the converged solution the residual represents the
needed accumulation/volume flux (on matrix level, hence not in physical units) needed in order to obtain the
limited solution. Consequently, the system not necessarily is volume conserving if the Dirichlet method is
applied.

18.3 Constraints

The code only works in Cartesian coordinates and — by the nature of the differential equation — effectively
converges only in a transient simulation. Although, technically, it also can be run in steady state simulations.

18.4 Keywords

Solver solver id

Equation String "Free Surface Limited"
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Variable String Varname
The change in the free surface coordinate. This may be of any name as far as it is used consis-
tently also elsewhere, as Varname is used as a preceding keyword for the exported variable of
the residual, as well as for the accumulation

Variable DOFs Integer 1
Degrees of freedom for the free surface coordinate.

Procedure File "FreeSurfaceSolver" "FreeSurfaceSolver"
The following four keywords are used for output control.

Velocity Implicitness Real
Determines the level of implicitness in the velocity field. Values shall be in the interval ¢, €
[0,1]. The velocity is interpolated between the current and the previous time level such that
u=(1-c,)u""* + ¢, u™. Thus, unity corresponds to complete implicitness (default).

Maximum Displacement Real
This limits the maximal local displacement in a time-step. If exceeded, relaxation automatically
is applied in order to limit the displacement.

Apply Dirichlet TLogical
Takes the variational inequality method (here referred to as Dirichlet method) into use. The user
should be aware that if the method is applied (value True) this implies setting the Nonlinear
Max Iterations to a value large enough for the method to converge.

Relaxation Factor Real
The changes in the free surface may be relaxed. The default is no relaxation or value 1.0

Stabilization Method String
Sets stabilization method. Either Stabilized or Bubbles can be set.

Nonlinear System Convergence Tolerance Real
This keyword gives a criterion to terminate the nonlinear iteration after the maximum change in
the free surface coordinate is small enough

max ||dR/(R — Ry)|| < €

where ¢ is the value given with this keyword.

Exported Variable 1 String
The residual, which is the essential property in solving the variational inequality has to be given
as an exported variable. The name is fixed by the variable name Varname given in the Solver
section plus Residual. For instance, if the variable is named FreeSurf, the exported vari-
able is expected to be FreeSurf Residual.

Exported Variable 1 DOFs Integer
As the free surface is a scalar, the value has to be set to 1.

Equation eg id

Convection String
The type of convection to be used: None (default), Computed, Constant. In the last case,
the keyword Convection Velocity is expected to be found in the Material section.

Body Force bf id

Varname Accumulation Real
sets the value for the normal accumulation/volume flux, a ; for the variable name varname. If
this keyword is set, the following keyword Varname Accumulation Flux isignored (as
those are excluding)

Varname Accumulation Flux i Real
sets the accumulation flux in Cartesian components (i = 1,2,3 in 3-dimensional problem). The
resulting vertical flux then is evaluated using the surface normal.
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Initial Condition ic id

Varname Real
Initiation of the free surface variable (sets initial shape of surface)

Boundary Condition bc id

Body ID Integer
usually, the solver is run on a lower dimensional boundary of the model. Then a separate body-
id has to be defined and all component of the solver (Equation, Body Force, Equation,
Initial Condition and Material) defined accordingly.

Varname Real
Dirichlet condition of the free surface variable (makes really sense only on dimension - 2 bound-
aries, e.g. lines in case of a three dimensional run)

Mesh Update i Real
usually, the free surface evolution should have a feedback on the domain’s geometry. This usually
is achieved by running the MeshUpdate Solver and linking the variable of the free surface with
the corresponding component of the Mesh Update (i=1,2,3). For instance, in a 3-dimensional
case with the variable name FreeSurf this could read as: Mesh Update 3 = Equals
FreeSurf
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Phase Change Solver

Module name: PhaseChangeSolve

Module subroutines: PhaseChangeSolve

Module authors: Peter Riback, Jussi Heikonen, Juha Ruokolainen
Document authors: Peter Riback

Document created: 22.10.2004

Document edited: 28.4.2006

19.1 Introduction

The boundary which separates a liquid and solid phase of a material is called a phase change or Stefan
boundary. This subroutine defines the position of the phase change boundary. The phase change problem
may occur for example in crystal growth and casting processes.

Phase change problems may be modeled using a fixed grid or alternatively distorting the grid so that the
phase change boundary surface is exactly described by the computational mesh. Elmer has an internal fixed
grid phase change model where the phase change is modelled by modifying the definition of heat capacity.
This method is not limited by topological constraints but its accuracy may be questionable. If the phase
change occurs within very sharp temperature interval the current method where the phase change surface is
set exactly should be preferred,

The current methodology is limited into two dimensional cases where the phase change surface is nearly
aligned with either of the coordinate axis.

19.2 Theory

The phase change from solid to liquid occurs at the melting point 7;,,. At the boundary the temperatures of
the liquid and solid are therefore equal to that. The phase change results to a change in the internal energy
known as the latent heat L.
The latent heat makes the diffusive heat flux over the boundary discontinuous and results to the so called
Stefan condition
Lot i = (ks VTs — k) V) - 7, (19.1)

where 77 is the normal of the phase change boundary, ¥ is the velocity of the phase change boundary, p is
the density of the solid and Ts and 7} are the temperatures of the solid and liquid phases, and « and x; are
the thermal conductivities, respectively. In steady state the velocity of the phase change boundary should be
equal to pull velocity, v = 1% (bulk velocity of the solid phase).
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19.2.1 Steady state algorithm

In steady state case the basic algorithm is based mainly on geometrical ideas. First the heat equation for
temperature 7" is solved by using a flux condition for the interface

q=LpVy. (19.2)

Thereafter the next approximation for the phase change surface may be found by going trough each element
and creating a list of line segments F; on the isosurface. This is basically the zero level-set of the field
T — T,,. Each line segment is defined by two coordinate &;; and &;>. The surface is then updated by
mapping the current phase change surface to the line segments. For the moment a N2 algorithm is used for
the mapping. For larger cases a more robust search algorithm might be implemented.

For example, if a free surface is almost aligned along the x-axis, then for a node (z;, y;) on the boundary
the proposed change of the point 7 in the y-direction is

sy = (yj1 — vi) + (@i — xj,l)M (19.3)
Tjo2 —Tj1
assuming that z; € [x; 1,z 2] while s, = 0.

In many cases the simple geometrical search algorithm converges very slowly. The reason is the ex-
plicit character of the algorithm that fails to account for the change in the temperature field caused by the
moving phase change boundary. This limitation may be partially overcome using suitable under- or over-
relaxation. This relaxation parameter may also be tuned during the iteration using lumped quantities such as
the proposed change in the volume of the phases that may be expressed as

U:/ 5.7 dA. (19.4)
A

The proposed volume changes form a series, voO g o ym-1 gm), Assuming that the series is
a geometric one we may estimate the required relaxation factor that would give the correct phase change
boundary at just one iteration,

U(mfl)
Um-1) _j(m)’
In numerical tests this formula was found occasionally to overshoot and therefore a less aggressive version
is used instead,

M = (m=1) (19.5)

(m-1) 1 Ulm=1 4 y(m
2 m-1) _[y(m)"

The use of the lumped model requires that the temperature field is described accurately enough. To ensure
numerical stability the factor ¢ should have a upper and lower limits. After the factor has been defined the
suggested displacements are simply scaled with it, §¥ = cs.

It is also possible to accelerate the solution locally using a Newton kind of iteration. If the basic algorithm
has already been applied at least twice we may estimate the sensitivity of the local temperature to the moving
interface and using this information to estimate a new change,

m)

M = ¢ (19.6)

T =T nen)

m) _ _Am =T
5T Tm) —pm—1°

(19.7)

This algorithm might be a better option if the phase change surface is such that there is not much correlation
between the displacements at the extreme ends. However, the algorithm may be singular if the isotherms of
consecutive iterations cross. Any point ¢ where Ti(m_l) ~ T(™) leads to problems that may be difficult to
manage. This handicap may rarely limit the usability of the otherwise robust and effective scheme.

19.2.2 Transient algorithm

In transient case the interface is set to be at the melting point when solving the heat equation. From the
solution a heat flux is then obtained from

q= ksVTs — ki VT]. (19.8)
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Now this heat flux is assumed to be used for the melting of the solid phase into liquid phase. Assuming again
that the phase change boundary is mapped to the new position moving it only in the y-direction we get from
equation (19.1) the velocity in the y-direction,

pLny(vy — D,V?v,) = - 7. (19.9)

Here an artificial diffusion D,, has been added since the algorithm otherwise is prone to numerical oscilla-
tions. In order for the diffusion not to affect the results significantly it must fulfil the condition D, << h?
where h is the size of the 1D elements.

The corresponding displacement is easily obtained from multiplication u,, = v, dt, where dt is the
timestep. However, in the current formulation this is also done using the Galerkin method since the possi-
bility of an additional diffusion factor is included. Therefore the equation is of the form,

=L — D, V?u, = v,. (19.10)

In continuous processes the triple point may be used to define the pull velocity so that at the point the
solution of the equation vanishes. In case the pull occurs in the y-direction this means that V, = v,,.

The transient algorithm is ideally suited for relatively small time-steps where the change in the position
is small compared to the other dimensions of the problem. Otherwise the transient algorithm may result to
spurious oscillations. However, often the timestep size is most severely limited by the flow computations.
Therefore it may be possible to boost the convergence towards the true operation regime by multiplying the
suggested change by a constant factor.

19.3 Applicable cases and limitations

The method has some limitations which are described below
e Limited to 2D and axisymmetric cases.

e Phase change surface must be nearly aligned with either of the main axis. To be more precise the
boundary must in all instances be such that for each coordinate there is only one point on the boundary.

e Melting point is assumed to be constant

e It should be noted that the solver only gives the position of the phase change boundary. In order to
modify the whole geometry a mesh update solver must be applied.

19.4 Keywords

Solver solver id

Equation String "Phase Change"

Procedure File "PhaseChangeSolve" "PhaseChangeSolve"
The subroutine that performs the phase change analysis.

Variable String PhaseSurface
The variable for the PhaseSurface coordinate. This may be of any name as far as it is used
consistently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the free surface coordinate, the default.

Phase Change Variable String
By default the phase change analysis uses Temperature as the active variable. The analysis
may be performed also to any other scalar variable given by this keyword
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Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the phase change solver. Using a factor
below unity may sometimes be required to achieve convergence. Relaxed phase change variable
is defined as follows: )
U; = Us + A1,

where ) is the factor given with this keyword. The default value for the relaxation factor is unity.
If using the lumped model to accelerate the solution the final relaxation factor will the product
of the two.

Steady Transition Timestep Real
By default the transient algorhitm is applied in time-dependent cases. However, if the timestep
given by this flag is smaller than the current timestep the steady state algorhitm is used even in
the transient case.

Averaging Transition Timestep Real
This keyword defines the timescale for the steady-state algorhitm in the transient case. If the
timestep is smaller than given by this flag averaging is applied to the temperature field used to
determine the isolines.

Some variables have a function only in steady state while others relate to the transient case. Below are
the steady-state parameters for the Solver section.

Nonlinear System Newton After Iterations Integer
The local Newton type of iteration may be set active after a number of iterations given by this
keyword.

Nonlinear System Newton After Tolerance Real
The Newton type of iteration may also be activated after a sufficiently small change in the norm.
This keyword gives the limit after which Newton iteration is triggered on.

Lumped Newton After Iterations Logical
The phase change solver may be accelerated pointwise, or by using a lumped model to determine
an optimal relaxation factor for the whole solution. This keyword activates the lumped model
procedure.

Lumped Newton Limit Real
The lumped approach sometimes gives too high or too small relaxation factors. This may happen
particularly at the very vicinity of the solution where the approximation errors have a greater
effect.

Triple Point Fixed Logical
This keyword enforces the triple point to be fixed. Depending on the type of algorithm this may
mean different things. For the steady algorithm this means that the temperature used for finding
the isotherm is set to be the temperature of the triple point. Hence the isoterm will travel through
the triple point. In the transient algorithm this means that the interface velocity is tuned so that
the velocity at the triple point is zero.

Use Absolute Norm for Convergence Logical
The steady-state solver returns the maximum phase change update as the norm and therefore this
flag should be set True. The transient solver gives the norm of the finite element solution in the
usual manner.

The following keywords may be defined in the transient algorithm.

Pull Rate Control TLogical
In transiet case the pull rate may be set so that the triple point remains at a fixed position. The
feature is activated setting this keyword True.

Velocity Relaxation Factor Real
The relaxation factor for the crysrallization velocity field.
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Velocity Smoothing Factor Real
The velocity diffusion factor of the interface, D,,.

Transient Speedup Real
The factor at which the change in the boundary position is changed in the transient case. This
may be used to speedup the transient convergence.

Nonlinear System Max Iterations Integer
In case the pull-rate control is used the phase change algorithm may have to be solved several
times in order to define the consistent pull-rate. This keyword gives the maximum number of
iterations. The steady state algorithm is solved by just one sweep.

Nonlinear System Convergence Tolerance Real
The tolerance for terminating the transient algorithm.
Stabilize Logical
The transient algorithm may require stabilization which decreases the oscillations of the solution.

Body body id

Solid Logical

Liguid Logical
The solver requires information on which of the materials in the system is solid and which is
liquid. Currently the solver assumes that both the liquid and solid is uniquely defined.

Material mat id

Melting Point Real
The melting point is the temperature at which the transition form solid to liquid occurs. The
melting point is assumed to be constant.

Heat Conductivity Real
In a transient case the heat conductivities of the both materials must be given.

Density Real
Density may be needed in the computation of the surface normals. By default, the normals point
out from the denser of the two materials.

Pull Velocity i Real
For the transient algorithm the pull velocity of the boundary may be given with this keyword.

Latent Heat Real
The latent heat is the specific internal energy related to the phase change. The latent heat may
also be a variable.

Boundary Condition bc id

Body Id Integer
The phase change solver operates usually on a boundary of a two-dimensional domain. Techni-
cally the equation on the boundary is treated in a normal finite element manner and therefore the
boundary must be defined to be the body where the equation is to be solved. Usually this would
be the next free integer in the list of bodies.

The module also includes subroutines Pul1Rate and PullPosition that may be used to give
boundary conditions for the mesh update solver. These subroutines relate to transient case. The
syntax of the subroutines is as the following,

Mesh Update 2 = Variable Coordinate 1
Real Procedure "PhaseChangeSolve" "PullPosition"

and
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Convection Velocity 2 = Variable Coordinate 1
Real Procedure "PhaseChangeSolve" "PullRate"

For the steady state case the heat equation often requires the heat flux as a boundary condition. For this

there is also a precompiled subroutine that may be activated by the following lines in the command
file,

Heat Flux BC = Logical True
Heat Flux = Variable Coordinate 1
Real Procedure "PhaseChangeSolver" "MeltingHeat"
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20.1 Introduction

There are a number of problems involving free surfaces in continuum mechanics. There are two main strate-
gies to solve them using the finite element method: Lagrangian and Eulerian approach. In the Lagrangian
approach the free surface is solved exactly so that it is also an interface between the individual elements. This
requires that the computational mesh is distorted in a way that this is possible. However, often the changes
in geometry may be too drastic or even the whole topology may change and the Lagrangian approach is no
longer feasible. The Eulerian approach describes the interface in a fixed mesh using some additional variable
to describe the position of the interface. One possible Eulerian technique is the level-set method (LSM).

In the level-set method the free surface is given as a zero level-set of a higher dimensional variable. E.g.
for 2D surfaces the level-set function is defined in 3D space. The level-set function is usually defined to
be a signed distance so that inside the domain it obtains a positive value and outside a negative value. The
changes in the value of the level-set function mean also that the interface changes the position.

This module includes several different subroutines that may be used when applying the level-set method.
Currently there is no reinitialization strategy for 3D problems. Also some other procedures are not fully
optimized for the best performance. Therefore the current implementation is best applied to quite simple 2D
problems.

20.2 Theory

The interface is defined by a marker function ¢ so that at the interface ¢ = 0, inside the fluid of interest
¢ > 0 and elsewhere ¢ < 0. The interface is update by solving the equation

0

£+ﬁ~v¢:a (20.1)
where « is the convection field and « is the normal flux on the interface. It is quite challenging to solve
the differential equation above without diffusion effects playing a significant role. It is advisable to use 2nd
order time-discretization schemes and short timesteps. More precisely, the Courant number C' = |u|dt/h
should be below unity.
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It is desirable that the absolute value of function equals the shortest distance to the zero level-set. How-
ever, as the level-set function is advected this property may be gradually lost. Therefore a process called
reinitialization may be evoked. In 2D the reinitialization may be easily done by geometric procedure. First
the zero level-set is formed by going through all the elements and finding the line segments that make the
zero level-set. Then the minimum distance of all the nodes is computed by a brute-force search. Assuming
there are N nodes and M line segments the search algorithm is N x M which is quite acceptable complexity
for small cases but may become computationally costly in large cases.

The line segments may be assumed to go with the flow and thereby they form an on-the-fly Lagrangian
mesh. Therefore it is also possible to advect the line segments when the velocity field is given since for
any node 77 = 7+ u dt. After the advection the shortest distance is computed. In the case of no advection
the sign of the distance is inherited from the original level-set function. However, when the level-set is also
convected the sign must be deduced from the geometric information as well. In the current implementation
each line segment is given a flag telling on which side of the element the fluid of interest is located. This
directional information is then used in giving the correct sign for the distance.

The volume of the fluid of interest in the level-set method may be computed over an integral that obtains
a value one inside the fluid and value zero outside the fluid. The Heaviside function H (¢) has this desired
property. However, as the interface does not follow the element division the numerical integration would
result into spurious fluctuations depending on the position of the interface within the elements. To obtain a
smooth behavior the Heaviside function must be regularized.

0, T < -
Hy(z) =1 fla/z) |z|<a (20.2)
1, T > «,
where the followin has been implemented
1 . us
fit)y== (1 + sin (tf)) (20.3)
2 2
while one could also use 5 1
ft) = 1 (t—t3/3) + 3 (20.4)

Here « is the interface bandwidth which equals typically the size of a few elements. Now the volume (area
in 2D) is obtained by the integral

V= /Q H, (¢)dSQ. (20.5)
After the same regularization the area (length in 2D) may be obtained from the integral
A= /Q 00 ()| V| d (20.6)
where the delta function is
0
() = {;a cos (27) li - (207

The information obtained by the above integrals may be used to improve the volume conservation of the
level-set advection. If the initial volume V) is known the level-set function may be given a small correction
by

dop = Wo-V,
A
This correction has no physical basis but it may be argued that a consistently small update of the level-set
function has a minor effect in overall results. It is more important that the volume is conserved since the
history information of the shape of a bubble is gradually lost while the errors in volume are never forgotten.
However, if the fluid of interest is divided into several parts this kind of overall correction does not have any
justification since it could ruin the volume balance between the different domains.

(20.8)
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The problems in accuracy may be partially resolved by using an optimal timestepping strategy. This
may be achieved by looking at the velocity field around the active boundary. The normal velocity may be
obtained by u,, = u - V¢. Registering the maximum velocity at band the timestep may be limited so that
the Courant number is bound. If ds is the maximum allowed change in the position of the zero level-set the
corresponding time-step is dt = ds/ max |uy,|.

In the Eulerian approach to the free surface problems the surface tension force must be smeared out to a
volume force within a narrow band from the interface. The transformation is achieved by using a regularized
delta function,

/ okdl = / ok (P)VdSd, (20.9)
r Q
where o is the surface tension coefficient and ~ the curvature of the interface given by
Vo
k=V- ) (20.10)
Vol

In the finite element approach the force cannot be estimated directly since it involves three derivatives of the
level-set function. Therefore we must solve an additional equation for the curvature x,

k— V2K =V -Vo. (20.11)

Here ¢, is an ad’hoc diffusion coefficient that may be used to smooth the resulting curvature field. Otherwise
the sharp corners may result to very large peak values of the curvature. The weak formulation of the above
equation introduces surface fluxes which are evaluated from the normal derivatives of the level-set function.
Once the level-set function and the corresponding curvature have been computed the surface tension may be
applied as a volume force in the flow equations.

20.3 Keywords

LevelSetSolver

This subroutine uses the finite element method to solve the equation (20.1). The implementation is valid in
2D, 3D and axisymmetric problems.

Solver solver id

Equation String "Level Set Solver"
Procedure File "LevelSet" "LevelSetSolver"

The subroutine for advecting the level-set function.

Variable String "Surface"
The name of the level-set function. This may be chosen freely as long as it is used consistently
elsewhere.

Stabilize Logical
Either stabilization or bubbles are used to solve the convection problem. This flag enforces the
stabilization on.

Material mat id

LevelSet Velocity i Real
The velocity field that advects the level-set function. In 2D i=1, 2 and in 3D i=1, 2, 3. This
may be a constant field or also something computed with the Navier-Stokes solver.

Body Force bodyforce id

LevelSet Flux Real
The flux (i.e. the normal velocity) of the level-set function.
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LevelSetDistance

This solver uses the geometric information to compute the signed distance and, if desired, to advect the
zero level-set at the same time. This solver does not solve an equation and hence it does not need to have a
variable of its own. The solver is limited to 2D and axisymmetric cases.

Solver solver id

Equation String "Level Set Distance"

Procedure File "LevelSet" "LevelSetDistance"
The subroutine for renormalizing (and advecting) the level-set function.

LevelSet Variable String "Surface"
This keyword should refer to the name of the level-set variable that is used to advect the field.
The default is Surface.

Exported Variable 1 String "Surface"
In case the level-set variable does not exist it must be introduced. This may be the case if this
subroutine is also used for advecting the level-set function.

LevelSet Convect Logical
Whether to also convect the level-set function. Default is False.

Extract Interval Integer
When this function is used to extract the zero level-set function the user may choose the interval
how often this is done. The default is one. Just extracting the level-set may be useful if one just
wants to save the zero level-set without activating reinitialization.

Reinitialize Interval Integer
When this function is used to reinitialize the level-set function the user may choose the interval
how often this is done. The default is one but often this results to excessive smoothening of the
level-set field. If reinitialization is asked the zero level-set will also be automatically extracted.
Reinitialize Passive Logical
If this keyword is set True the reinitialization is not applied to the level-set field. The field is
only used to extract the zero level-set and compute the corresponding signed distance but this
information is not used to change the original field.

Narrow Band Real
In case that also the convecting is done by this solver there is the possibility to introduce a
narrow band which gives the distance at within the level-set function is recomputed. Default
is oo. Typically this should be larger that the level-set bandwidth « used to evaluate surface
integrals.

Filename File
The zero level-set may also be saved. It consists of a number of line segments that are defined
elementwise. The results from the file may be used for visualization, for example, in MatLab. If
no filename is given the zero level-set is not saved.

File Append Logical
If the above is given this flag enforces the results to be appended on the same file rather than
writing over the old results.

Material mat id

LevelSet Velocity 1 Real

LevelSet Velocity 2 Real
If also convection is accounted in this solver the convection field is given by the above expres-
sions. Currently it is not possible to give the desired surface flux as it is not uniquely defined for
the line segments having different normals even at the same point.
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LevelSetIntegrate

This subroutine computes the integrals (20.5) and (20.6). In addition of computing volume and surface
integrals this subroutine may also be used to set the absolute level of the level-set function so that volume is
conserved using equation (20.8). The implementation is valid in 2D, 3D and axisymmetric problems.

Solver solver id

Equation String Level Set Integrate

Procedure File "LevelSet" "LevelSetIntegrate"
The subroutine for computing the integrals.

LevelSet Variable String "Surface"
This keyword gives the name of the level-set function used for computing the integrals. The
defaultis Surface.

LevelSet Bandwidth Real
When computing the values over the domain the interface is treated a with smooth functions.
How smooth the functions are depends on the value of this keyword. Typically the bandwidth
should be such that the interface is extended over a few elements.

Conserve Volume Logical
The volume in the level-set formulation is not conserved by construction. To that end the level
of the level-set function may be tuned so that conservation is enforced. The defaultis False.

Conserve Volume Relaxation Real
If conservation is enforced it may be done only partially as there are inaccuracies in the avalution
of the volume integrals. The default is one.

Initial Volume Real
If conservation is enforced the target volume is given by this keyword. Otherwise the volume
from the first timestep is used as the target value.

LevelSetCurvature

This solver computes the value of the curvature give the level-set function using equation (20.11).

Solver solver id

Equation String Level Set Curvature

Procedure File "LevelSet" "LevelSetCurvature"
The subroutine for computing the curvature.

Variable String "Curvature"
The name of the curvature variable.

LevelSet Variable String "Surface"
This keyword gives the name of the level-set function used for computing the integrals. The
default is Surface.

Curvature Diffusion Real
Artificial diffusion may be used to control the singularities of the curvature field around sharp
corners. The default is zero.

Curvature Coefficient Real
A constant that is used to multiply the curvature field before the solver is exited. This may be
used for example to change the sign of the curvature if the material of interest is on the outside
and not an the inside.

LevelSet Bandwidth Real
The delta function for the volume force may be applied to the curvature field also within this
solver directly. This has the disadvantage that the evaluation is done at nodal points rather than
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at the integration points. However, if the flow solver used may not be modified this may be the
best alternative. If this keyword does not exist, no delta function is used to filter the curvature
field.

Boundary Condition bc id

Levelset Curvature BC Logical
The weak formulation of the curvature computation results to boundary integrals that should be
set at all surfaces where the curvature is computed.

LevelSetTimestep

The solution of the level-set function is accurate only if the timestep is limited so that the local Courant
number along the zero level-set is in the order of one or smaller. A tailored function for setting the timestep
is given in this module. This solver assumes that the level-set variable is named Surface and that this
variable is related to some solver. The velocity needed for setting the timestep should be given by the
keywords LevelSet Velocity i, where i=1, 2, 3.

Simulation
The function call and the needed parameters reside in the Simulation block of the command file.

Timestep Function
Real Procedure "LevelSet" "LevelSetTimestep"

LevelSet Courant Number Real
This keyword gives the desired Courant number of for the level-set solvers. The default for the
desired Courant number is one.

LevelSet Timestep Directional Logical
If the timestep limit is active this option may be used to account only the normal direction of the
interface velocity rather that the absolute direction. Default is False.

Other solvers

Basically the user may give user defined material parameters where the values are computed as a function of
the levelset function. Unfortunately this approach generally uses nodal points for the smearing whereas it is
optimal to use the Gaussian integration points for doing this. There is one exception to this model that has
been implemented for the MaterialModels module, namely the viscosity may be computed at Gaussian
integration points.

Material mat id
Viscosity Model String levelset
This uses the levelset methodolohy to smear out the viscosity between inside and outside values.

Viscosity Real
The value of the viscosity outside the domain (negative levelset function values).

Viscosity Difference Real
The difference between the inside and outside viscosity values.

Levelset bandwidth Real
The bandwidth at which the viscosity is smeared out between the extreme values.
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21.1 Introduction

This is an instructional text for using Elmer solvers I created for DFT calculations during the year 2006 while
preparing my Master’s Thesis [7]. These Solvers are rather experimental and I would not recommend their
use for highly complicated problems. Nevertheless they provide nice backbone for creating own DFT-solvers
with finite element method.

21.2 Theory

In DFT, Kohn-Sham equations [1, 2] play central role. They are set of highly nonlinear equations which
define uniquely the exact ground state charge density. From charge density the total energy of the system in
ground state can be calculated, which is unfortunately not implemented in present code.

The Kohn-Sham equations have a form

(= 38+ Visa () + Velp(r)] + Vac o) )on(r) = extin(r)
pr) = pli )P

where KS-orbitals 1, (r) are normalized, [ ¢y (r)?dr = 1, foreack k = 1,2,..., N . Vi is the external
potential caused by the nuclei, V,, is the non-interacting Coulomb potential and V. is the exchange corre-
lation potential that includes all the complicated many body effects, at least approximates. Nice explanation
from the widely used Local Density Approximatio can be found from [3]. Nonlinearity occurs in eigenvalue
problem, where the operator depends on the solution of the eigen problem.

@21.1)

Self-Consistent iteration

The equations (21.1) are solved with self-consistent iteration (fixed point iteration). In this iteration Coulomb
and external potentials are solved from Poisson equation. The iteration steps are as follows:

1. Begin with previous or initial guess for charge density p’
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2. Solve new electric potential from Poisson equation,

M
—AVIT (r) = £p7(r) = > Zid(r—1i) (21.2)
i=1
where 9 refes to Dirac’s delta distribution (point load).
3. Solve eigenvalue problem,
(= 38+ VI ) + VIE () )un(r) = eptin(r) (21.3)

where V7! is calculated via some function W from point values of charge density p/. Vit (r) =
W(p’(r))).

4. Sum new charge density,
N
P ) = wei(r)? 21.4)
k=1

where the weight coefficients w; depend on the numbers of electrons in orbitals. Extensive overview
of calculation of molecular orbitals can be found from [4, 5].

The point load at the nuclei location requires, that exactly at each nuclei there has to be a node in the
mesh. For the functionality of the solvers no other requirements exists for the mesh or domain.

Unfortunately convergence of this iteration procedure is not guaranteed. For simple atoms (Z = 1,2,3,4)
code converges within any tolerance limits but for more complicated molecules or atoms usually not. Sensi-
ble tolerances were found to between 1076 or 1074,

Boundary Conditions

In theory the zero level of the potential can be set arbitrarily and often in practice one uses condition V (r) —
0, when |r| — oo. Of course in real calculations the domain €2 is finite and we set, V (r) = 0if » € 9. One
also assumes ) to be large enough, so that charge density vanishes on the boundary, p(r) = 0 if r € 99, so
we set i (r) = 0if » € 9Q.

In Kohn-Sham -equations in order to obtain positive definite coefficient matrix on the left hand side of
eigenvalue problem (21.1), one sets V(r) — C, when |r| — oco. The constant C' has to be large enough, so
the eigenvalues are shifted positive. But too large value slowers the convergence of the eigenvalue solver.

21.3 Keywords

From the structure of the self-consistent iteration it was natural to divide the solution procedure for three
solvers, Poisson solver, eigensolver and charge density summation. For each solver some keywords to
control the solution procedure were added.

Poisson Solver

Poisson Solver demands knowledge about the locations of the nuclei and their atomic numbers. There has to
be nodes in the mesh at the nuclei locations, or else error will occur. Following example demonstrates how
nuclei of the water molecule with two atoms of atomic numbers Z = 1 (Hydrogen) and single with Z = 8
(Oxygen) are set to the coordinates (0.0,0.0,0.0) (Oxygen) and (—1.43,1.11,0.0) and (1.43,1.11,0.0)
(Hydrogens). The rows beginning with ! are comments.

I NOFnuclei is the number of nuclei in the structure.
I
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NOFnuclei = Integer 3

! NucleiTable is an array of the form

! NucleiTable( NOFnuclei, 4 ) where each row
! includes the information of one nucleus.

! The colums are from left to right

! atomic number, x-coordinate, y-coordinate and z-coordinate.

I
byl
()
Q
=

NucleiTable (3, 4)

The self-consistent iteration requires heavy (under) relaxation to avoid divergence. Relaxation means
linear mixing of present solution with previous one(s). It is possible to use Guaranteed Reduction Pulay -
method [6, 7] where the mixing constants are calculated every time as a solution of a minimization problem,
it’s sensible to begin GR Pulay after some steps of linear mixing.

In following example the exponential relaxation scheme is changed to GR Pulay after 5 steps or if the
mixing parameter exceeds value 0.5 . Use of constant mixing parameter instead of increasing one can be
easily done by commenting out the first four uncommented lines and removing the comment sign ! from
following two lines.

! Select the relaxation method used, possibilities are
! constant mixing parameter a(k) = A or varying parameter
! with scheme a(k) = C + 1- A x Exp( B * k)

Relaxation Method = String "Exponential mixing"
Relaxation Parameter A = Real 1.0

Relaxation Parameter B Real 0.05

Relaxation Parameter C = Real 0.005

! Relaxation Method = String "Constant mixing"
! Relaxation Parameter A = Real 0.01

Start GRPulay after iterations = Integer 5
Start GRPulay if relaxation factor is more than = Real 0.5

Eigenproblem Solver

Eigenproblem solver demands knowledge about the type of exchange correlation approximation used. Namely
the expression of W in third self-consistent iteration step. In module xc . £90 there are several different for-
mulae for LDA approximations. Some of them include spin directions and are to be used with different
solver composition where KS-orbitals for up- and down-spins are calculated separately.

! Choose the type of the XC Potential, possible choises are:
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! "None"

! "Perdew-Zunger"

! "Von Barth-Hedin"

! "Gunnarsson-Lundgvist"
) "Perdew-Wang"

I

XC Potential type = String "Perdew-Zunger"

Charge Density Solver

Charge density solver demands knowledge about the number of KS-orbitals to be summed and the weights
of each orbital. These are the N and wy’s in fourth self-consistent iteration step. In following example one
sets N =5and wy = 2,forallk=1,...,5.

! Define the number of eigenmodes included on the
! calculation of charge density. Set weights for the
! eigen states. By default they are all 1.

Number of Eigenmodes Included = Integer 5
Weights of Eigen States(5,1) = Real 2.0 2.0 2.0 2.0 2.0

Weights of the Eigen States table has to be size (IV, 1). Naturally IV has to be equal or less
for the number of eigenstates to be solved in eigenvalue solver.
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Model 22

System Reduction for Displacement
Solvers

Module name: RigidBodyReduction
Module subroutines: RigidBody
Module authors: Antti Pursula
Document authors: Antti Pursula
Document edited: August 27th 2003

22.1 Introduction

This module is used to reduce and simplify the computation of a displacement solver when the problem
includes rigid blocks. In such a case, it is often difficult for iterative solvers to find a solution for the full
system, and direct solvers become obsolite when the system is large enough. The convergence and also the
speed of the solution can be substantially improved when the degrees of freedom corresponding to the nodes
belonging in the rigid blocks are reduced onto the 6 DOFs (3 in 2D) of the corresponding rigid body. In the
module, the reduction is achieved via a projection matrix.

Additionally, the routine automatically eliminates the degrees of freedom corresponding to the Dirichlet
boundary conditions. It is also possible to request the elastic regions to be extended into the rigid blocks.
There is also possibility to reorder the reduced matrix elements to decrease its bandwidth.

22.2 Theory

The module starts with normally constructed matrix equation for the unknown displacements x, Ax = b.
Let us assume that the nodes are ordered in such a way that the first n elements of the vectors correspond to
the elastic parts of the structure and the remaining m elements correspond to the rigid parts of the structure.
The goal is to reduce the (n + m) x (n + m) matrix A to a (n + ak) X (n + ak) matrix B, where k is 3
for 2D and 6 for 3D problems and « is the number of rigid blocks present. Reductions are made also for the
vectors so that finally the matrix equation reads Bu = f.
The relation between the unknowns is
r = Pu, (22.1)

where the projection matrix P ties the nodes in the rigid bodies to the same displacements in coordinate
directions and the same rotations about the coordinate axis. The rotations are defined with a coordinate
system whose origin is at the center of each rigid body. For the right hand sides we can write

[ =Qb, (22.2)
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where the matrix () sums the forces and torques present at the nodes in rigid bodies for a resultant force and
torque of the center point of the corresponding rigid body. In both mappings, the rotations are linearized so
the module is valid only for cases where the rotations are small.
Using these definitions, we have
Ar = APu=1»% (22.3)

and
Bu = f =Qb. (22.4)

Combining the equations gives Bu = QA Pu and thus
B =QAP. (22.5)
With a suitable order of the rotations one can write
Q=P'=C, (22.6)

and
B=CACT. (22.7)

The matrix C' has a identity matrix block of size n x n which keeps the elastic nodes intact, and a projection
block of size ak x m.
The reduced order solution w is transformed back to the original nodes by the same mapping

z=CTu. (22.8)

22.3 Applicable cases and limitations
The module works for
e Linear steady-state problems

e Linear transient problems

Eigen analysis

Quadratic eigenproblems
There are following limitations:
e Rigid blocks should not have common nodes (there should be elastic nodes in between rigid blocks)

e If a Dirichlet bc is given on a node of a rigid block then the entire rigid block is assumed to be fixed
in all directions

22.4 Keywords
Body body id

Rigid Body Logical
Value True defines the rigid body.

Solver solver id
The module does not need a separate solver but a call in the stress analysis, or the elasticity solver in
the linear mode.
Equation String Stress Analysis

Variable String Displacement
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Variable DOFs Integer
It is important to give the DOFs right, either 2 or 3 depending on the dimension.

Before Linsolve File "RigidBodyReduction”" "RigidBody"
The model order reduction is performed after the matrix has been assembled but before the
matrix equation has been solver. The matrix equation is modified to a smaller equation and the
new equation is solved within the subroutine.

Eigen Analysis Logical
It is possible to use the model order reduction with modal analysis, as well as with static and
transient cases.

Eigen System Values Integer
The number of eigen values to be computed.

Eigen System Damped Logical

Eigen System Use Identity Logical [True]
The reduction is possible also with quadratic (damped) eigenproblems.

Optimize Matrix Structure Logical
If true, the matrix structure is optimized. This feature is recommended since the reduced ma-
trix has often very scattered structure. The optimization is performed with the Cutholl-McKee
algorithm.

Reverse Ordering Logical
This flag can be used to reverse the matrix ordering if the matrix structure is optimized, resulting
in reverse Cuthill-McKee ordering.

Extend Elastic Region Logical
If true, the elastic regions of the geometry are extended into the rigid block. This feature allows
taking into account the bending in the joints between elastic and rigid parts.

Extend Elastic Layers Integer
Defines the number of element layers that the elastic regions are extended.

Output Node Types Logical
Writes in the ElmerPost output file a variable describing the status of each node in the geometry.
The variable has value O for elastic nodes, -1 for rigid blocks that are fixed due to a Dirichlet
boundary condition, and a positive integer for separate rigid blocks. The variable may be used
to check that the reduction is performed on the right blocks, and to check how many layers the
elastic regions should be extended, for example.

Additional Info Logical
If true, additional information is written about the performed tasks during the simulation.

22.5 Examples
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Figure 22.1: The cpu time required for the matrix reduction operations depends linearly on the degrees of
freedom in the system.
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Model 23

Electrostatics of Moving Rigid Bodies

Module name: MovingElstatSolver
Module subroutines: MovingElstatSolver
Module authors: Peter Raback
Document authors: Peter Riback
Document created: 26.1.2006

Document edited: 17.5.2006

23.1 Introduction

This solver is tailored for solving electrostatic problems that occur in the movement of rigid bodies in respect
to one another. Here the movement is assumed to be a combination of rotations and translations. We are
mostly interested in lumped quantities. The most important quantity is the capacitance of the moving body
at different positions. In addition the sensitivity of the capacitance and the moment of the electric force may
be computed. The information is saved in a generic tabulated form and also as a lumped circuit model of
Aplac.

For a more generic cases of the electrostatics and mesh adaptation the user is encouraged to use the
existing separate solvers.

23.2 Electrostatics

Assuming a constant permittivity €, absence of free charges, and non-conducting media the equation for the
electrostatic potential ¢ yields,
-V -V¢p=0. (23.1)

Obviously the constant multiplier may be dropped for convenience.
The energy of the electric field may be computed from

1
E = 75/ |V ¢|2dQ. (23.2)
2 Ja
If there is only one potential difference ® present then the capacitance C' may be computed from
2F

The electric force is calculated by integrating the electrostatic Maxwell stress tensor over the specified
surface. Using the stress tensor T the total force on the surface S can be expressed as

F= / T-7dsS. (23.4)
S
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The components of the Maxwell stress tensor for linear medium are
1. = =
Tij = —DiE; + §6ijD - E, (23.5)

where electric field E and electric displacement field D are obtained from
E=-V¢, (23.6)

and .
D= -eve. (23.7)

The moment around a given point 77 is given by,

F= [T -iix(F—)ds. (23.8)
S

One may get an secondary estimation for the capacitance from the integral of the surface charges.
1 1 N =
C'=— [ D-ndS. (23.9)
@ Js

This estimate of capacitance has a much bigger numerical error than the one defined by the volume integral.
However the estimate may be usufull in evaluating the accuracy of the capacitance. The volume integral
approaches the exact capacitance from above while the surface integral approaches it from below.

23.3 Mesh movement

The generic mesh movement of Elmer is based on a linear elasticity model. This is often an overkill since
this makes the solution of the mesh movement computationally much more expensive than the solution of
the potential equation. Therefore in the mesh movement it is assumed that the displacements of the main
direction u;, ¢ = 1,2, 3 are independent. Then the displacement of each directions is given by the Laplace
equation

-V - Vu; =0. (23.10)

The obvious boundary conditions for the displacements would be to fix the displacements at all walls.
However, for large movement this would distort the mesh unnecessaryly. Therefore the displacements are
fixed only in the direction of the surface normal. Thus, if the normal is the main direction, the other two
components are free to slide. This approach is unfortunately feasible only for rectangular geometries. Also
the displacements of the mesh points at the outer boundaries will be fixed. An outer boundary is assumed to
be moving if it is somewhere attached to the moving body, otherwise it is assumed to be at rest.

For the moving rigid body the displacements are given by three translational U; and three rotational ®;
degrees of freedom. Then the displacement at the moving wall yields

i=U+R(F—), (23.11)
where
0 o, -9,
R = -®, 0 -9, (23.12)
o, @, 0

It should be noted that if the movement of the frame is pure translational then there may be no need
to solve the displacements in all directions since the Laplace has a non-zero solution only if some of the
boundary conditions is non-zero.

© CSC - IT Center for Science



23. Electrostatics of Moving Rigid Bodies 114

23.4 Implimentation issues

For simple equations, such as the Laplace equation, a large part of the computational effort goes into the
assembly of the linear equation. In this special case the same matrix may be assemblied only once and used
repetitively to solve the mesh adaption problem varying just the boundary conditions. Unfortunately, the
potential equation must every time be reassembled as the coordinates change.

The purpose of the simulation is to get detailed information of the capacitance in respect with the rigid
body movement. However, as there are six degrees of freedom making just 10 observations in each direction
would result to 10°, that is a million, simulations. Therefore it is advisable to make the observations only to
some predefined directions. For this purpose the user may give up to six basis 7; to define these directions.
By default n;; = d;;.

For each basis 77; the user may also give the interval of the amplitude [a;, b;] and the number of observa-
tion points N;. Then the rigid body coordinates are

6

= b’Li 7 —

7=3 <ai+(ni D+ al) 7. (23.13)
i=1 v

23.5 Keywords

Constants
Permittivity Of Vacuum Real [8.8542e-12]
Solver solver id

Equation String MovingElstatSolver

Variable String Potential
This may be of any name as far as it is used consistently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the potential.

Procedure File "MovingElstatSolver" "MovingElstatSolver"
Following are listed four keywords with default values for output control.

Moment About i Real
The center of coordinate system (i = 1, 2, 3) for the rigid body movement and for computing the
moments.

Lumping Basis j(6) Real
The basis 77;, j = 1,2,...,6.
Lumping Points j Integer
Number of observations for basis j.

Lumping Interval j(2) Real
The interval of amplitude for basis j.

Length Scale Real
The Aplac export assumes certain unit system. Therefore if the length unit of the mesh is not
given in metres this value may be given to recsale the results appropriately.

Calculate Force Logical [True]
Whether to calculate and save the force lumped force.

Calculate Moment Logical [True]
Whether to calculate and save the force lumped moments..

Save Displacements Logical True
Whether to save the displacement field in the ElmerPost format.
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Filename File
All the results are saved in the file given by this keyword. Additionally a suffix . info is given
to file that explains what is being saved. Finally, if Aplac model is created, it is given the suffix
.aplac.

Boundary Condition bc id

Potential Real

Moving Boundary Logical
If this is true then displacements are fixed using the rigid body movement and potential is given
value one.

Fixed Boundary Logical
If this is true then displacements are fixed to zero in normal direction and potential is given value
Zero.

Periodic BC Potential Logical
Periodic boundary conditions for the potential is activated by this keyword. Note that this affects
only the potential solution. The displacements at the symmetric boundaries are fixed internally
to zero.

Periodic BC Integer
The periodic counterpart of the current Boundary Conditions.

Periodic BC Translate(3) Real
This keyword is required for the older versions of Elmer code to give the translational vector of
the periodicity.
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Model 24

Artificial Compressibility for FSI

Module name: ArtificialCompressibility
Module subroutines: CompressibilityScale
Module authors: Peter Raback

Document authors: Peter Riback
Document created: 16.2.2002

Document edited: 8.2.2006

24.1 Introduction

When fluid-structure interaction (FSI) problems are solved with a loosely coupled iteration strategy there is
a risk of applying unphysical boundary conditions that lead to severe convergence problems. The reason for
this is that initially the fluid domain is unaware of the constraint of the structural domain, and vice versa. If
the iteration converges this discrepancy will be settled, but sometimes the initial phase is so ill posed that
convergence is practically impossible to obtain [4, 3].

The problem may be approached by applying the method of artificial compressibility to the fluid-
structure interaction. Previously artificial compressibility has mainly been used as a trick to eliminate the
pressure from the Navier-Stokes equations or to improve the convergence of the solution procedure [2, 6, 1].
Here the compressibility is defined so that it makes the fluid imitate the elastic response of the structure.

The method is best suited for cases where there is a direct correspondence between the pressure and the
volume. Inertial forces and traction forces should be of lesser importance. The method might, for example,
boost up the modeling of human arteries.

24.2 Theory

24.2.1 Fluid-structure interaction

The theoretical model with some results is thouroughly presented in
We look at the time-dependent fluid-structure interaction of elastic structures and incompressible fluid.
The equations of momentum in the structural domain is

0%

pﬁzv-r+fin Q,, (24.1)

where p is the density, « is the displacement, f the applied body force and 7 = 7() the stress tensor that
for elastic materials may be locally linearized with . For the fluid fluid domain the equation is

ov N
p(aj+a-v5):v-a+fin9f7 (24.2)
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where ¥ the fluid velocity and o the stress tensor. For Newtonian incompressible fluids the stress is
o =2ue(v) — pl, (24.3)

where p is the viscosity, £(¥) the strain rate tensor and p the pressure. In addition the fluid has to follow the
equation of continuity that for incompressible fluid simplifies to

V-7 =0in Q. (24.4)
For later use we, however, recall the general form of the continuity equation,
0
a—i’+v(pﬁ):0m Q. (24.5)

The fluid-structure interface, I' ¢, must meet two different boundary conditions. At the interface the fluid
and structure velocity should be the same,

F(7,t) = d(F,t), 7e Ty, (24.6)

On the other hand, the surface force acting on the structure, g, should be opposite to the force acting on the
fluid, Gy, thus
Gs(r 1) = =gr(r,t), 7€ Ly, (24.7)

A widely used iteration scheme in FSI is the following: First, assume a constant geometry and solve the
Navier-Stokes equation for the fluid domain with fixed boundary conditions for the velocity. Then calculate
the surface forces acting on the structure. Using these forces solve the structural problem. Using the resulting
displacement velocities as fixed boundary conditions resolve the fluid domain. Continue the procedure until
the solution has converged.

The above described iteration usually works quite well. However, in some cases the boundary condi-
tions (24.6) and (24.7) lead to problems. The elasticity solver is not aware of the divergence free constraint
of the velocity field. Therefore the suggested displacement velocities used as boundary conditions may well
be such that there is no solution for the continuity equation. A proper coupling method makes the solution
possible even if the velocity boundary conditions aren’t exactly correct. Further, if the Navier-Stokes equa-
tion is solved without taking into account the elasticity of the walls, the forces in equation (24.7) will be
exaggerated. The pathological case is one where all the boundaries have fixed velocities. Then even an in-
finitely small net flux leads to infinite pressure values. A proper coupling method should therefore also give
realistic pressure values even with inaccurate boundary conditions. The method of artificial compressibility
meets both these requirements.

24.2.2 Artificial compressibility

When a surface load is applied to an elastic container it results to a change in the volume. In many cases of
practical interest the change in volume is mainly due to a pressure variation from the equilibrium pressure
that leads to zero displacements. If the structural domain is described by linear equations the change in
volume dV has a direct dependence on the change in the pressure, d P, or

av

< = cdP. (24.8)

This assumption limits the use of the model in highly nonlinear cases.

The change in the volume should be the same as the net volume flux into the domain. As this cannot be
guaranteed during the iteration, some other way to enable the material conservation must be used. A natural
choice is to let the density of the fluid vary so that is has the same pressure response as the elastic walls,

d
Y _ cap, (24.9)
P

where c is the artificial compressibility. This is interpreted locally and inserted to the continuity equa-
tion (24.5) while neglecting the space derivative of the density, thus
dp

- U= 24.1
cdtJrV v =0, (24.10)
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where dp is the local pressure change. Here the time derivative of pressure must be understood as an iteration
trick. A more precise expression is

c

= (p<m> _ p(m%)) LV ™ =, (24.11)

where m is the current iteration step related to fluid-structure coupling. When the iteration converges p(™) —
p(™=1) and therefore the modified equation is consistent with the original one. The weak form of the
equation for finite element method (FEM) may easily be written,

1
/ (v . 17(7”))@p dQ + — / c (p(’m) _ p('rn—l)) ©p d) = 0, (24.12)
oy At Jo,

where ¢, is the test function.

The artificial compressibility may be calculated analytically in simple geometries. For example, for a
thin cylinder with thickness h and radius R the compressibility is ¢ = 2R/ Eh [5], where E is the Young’s
modulus, and correspondingly for a sphere ¢ = 3R/ Eh.

In most practical cases the elastic response of the structure cannot be calculated analytically. Then the
compressibility may also be computed from equation (24.8) by applying a pressure change d P to the system,

1dVv
==—. 24.1
“Tvap @413
The change in volume may be calculated by comparing it to initial volume, thus
V—-¥1
= —. 24.14
TV ap G419

For small deformations ds = # - 7i, where 7 is the surface normal. Therefore we may use an alternative
form convenient for numerical computations,

o, @@ dA [ dA
Jo, @V [y, dpdA’

(24.15)
This way c has a constant value over the domain.

24.2.3 Scaling artificial compressibility

If the artificial compressibility distribution is a priori defined we may use the above equations to scale the
compressibility appropriately. For example, the compressibility could be given only within a limited distance
from the elastic wall. and the functional behavior of ¢(7*) would be user defined. Computing compressibility
becomes then just a matter of scaling,

e Jo, (@ i)dA [ dA
e(7) = co(F = .
0 fﬂf co(F)dV fI‘fs dpdA

scaling factor

(24.16)

A suitable test load for computing compressibility is the current pressure load on the structure. However,
for the first step the compressibility must be predefined. It is safer to over-estimate it since that leads to too
small a pressure increase. Too large a pressure increase might ruin the solution of the elasticity solver and
by that also the computational mesh used by the flow solver would be corrupted. Therefore some sort of
exaggeration factor exceeding unity might be used to ensure convergence.
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24.2.4 Elementwise artificial compressibility

If the displacement field is extended smoothly throughout the whole geometry it may be possible to define
the artificial compressibility separately for each element or node. This is particularly usefull for geometries
where the elastic response changes significantly. The equation is now similar to (24.14),
Ve—-Vy 1
_ — 24.17

¢ Ve dP’ (24.17)
where the superscript e refers to the volume of an element. This may also be solved using finite element
strategies to get nodal values for c.

24.3 Keywords

Keywords of FlowSolve

Material mat id
In the material section the compressibility model and the initial artificial compressibility field is given.

Compressibility Model String [Artificial Compressible]
Set the meterial model of the fluid.

Artificial Compressibility Real
The initial value of artificial compressibility. This may also be a distributed function that is then
scaled by the solver.

Keywords of solver CompressibilityScale

If the artificial compressibility is tuned so that it best imitates the elastic response, a additional solver must
be used to rescale the above mentioned compressibility. The solver computes the total compressibility and
the force acting on the surface. The compressibility is integrated over all volumes that are solved with the
navier-stokes equation.

Solver solver id

Equation String CompressibilityScale
The name of the solver.

Procedure File "ArtificialCompressibility"
"CompressibilityScale"
The subroutine in the dynamically linked file.

Steady State Convergence Tolerance Real
How much the relative value of the compressibility may change between iterations, abs(c; —
Cifl)/ci < €.

Nonlinear System Relaxation Factor Real
Relaxation scheme ¢, = A¢; + (1 — X)¢;—1 for the compressibility. By dafault is A = 1.

Boundary Condition bc id
Force BC Logical
The elastic response is calculated over the surface(s) which has this definition as True.

Keywords of solver CompressibilitySolver

When the compressibility is solved elementwise using this solver there has to usually be a isobaric steady-
state test phase where the compressibility is defined. For this solver all the normal Linear System
keywords also apply.
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Solver solver id

Equation String CompressibilitySolver
Procedure File "ArtificialCompressibility"
"CompressibilitySolver"

Variable String ac
The name of the artificial compressibility field variable.

Displacement Variable Name String "Mesh Update"

The name of the displacement field variable that is used to compute the the volume change.
Displaced Shape Logical True

Flag that defines whether the current shape is the displaced or original shape.
Reference Pressure Real

The value of pressure used for the test loading.

The computed field should then be given as the value in the material section.
Material mat id
Artificial Compressibility Equals ac

The initial value of artificial compressibility given by the solver.

24.3.1 Examples

The examples show a 2D square and a 3D cube being gradually filled. The fluid comes in from one wall and
the opposing elastic wall makes room for the fluid so that the continuity equation is satisfied. Here the value
of artificial compressibility is scaled every timestep to account for the nonlinear elasticity.
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Figure 24.1: Snapshots of an elastic square being gradually filled by incompressible fluid.

Bibliography

[1] F. D. Carter and A. J. Baker. Accuracy and stability of a finite element pseudo-compressibility cfd
algorithm for incompressible thermal flows. Num. Heat Transfer, Part B, 20:1-23, 1991.

© CSC - IT Center for Science




BIBLIOGRAPHY 121

Figure 24.2: Snapshots of an elastic cube being gradually filled by incompressible fluid.

[2] A.]J. Chorin. A numerical method for solving incompressible viscous flow problems. J. Comput. Phys.,
135:118-125, 1997.

[3] L. Formaggia, J. F. Gerbeau, F. Nobile, and A. Quarteroni. Numerical treatment of defective boundary
conditions for the navier-stokes equations. EPFL-DMA Analyse et Analyse Numerique, 20, 2000.

[4] E. Jarvinen, M. Lyly, J. Ruokolainen, and P. Raback. Three dimensional fluid-structure interaction
modeling of blood flow in elastic arteries. In Eccomas Computational Fluid Dynamics Conference,
September 2001.

[5] Kris Riemslagh, Jan Vierendeels, and Erik Dick. An efficient coupling procedure for flexible wall fluid-
sructure interaction. In Eccomas Congress on Comp. Meth. in Appl. Sci. and Eng, September 2000.

[6] S. E. Rogers, D. Kwak, and U. Kaul. On the accuracy of the pseudocompressibility method in solving
the incompressible navier-stokes equations. Appl. Math. Modelling, 11:35-44, 1987.

© CSC - IT Center for Science



Model 25

Block Preconditioned Stokes Equation

Module name: Stokes

Module subroutines: StokesSolver
Module authors: Mika Malinen
Document authors: Mika Malinen
Document edited: Feb 20th 2006

25.1 Introduction

The discretization of flow equations leads usually to large linear systems. Since the direct solution of large
linear systems is often too expensive in computation time and computer memory requirements, such linear
systems are customarily solved with iterative algorithms, in combination with preconditioning.

The general preconditioning strategy used in Elmer is based on the computation of incomplete factor-
izations. The performance of these preconditioners is case-dependent and may not always be satisfactory.
More efficient solution algorithms for a particular problem can often be developed by exploiting the block
structure of the linear system. This strategy has been used to develop an alternative solution method for the
linear systems which result from the discretization of the Stokes equations. In the following a description of
this solution method will be given.

It should be noted that in Elmer the Stokes equations can be solved with the solver for the Navier-Stokes
equations. The alternative solution method described here can however be applied only in connection with a
special solver for the Stokes equations. This special solver is still under development and a lot of additional
features accessible through the Navier-Stokes solver are not available currently. Suggestions concerning the
further development of this special solver are welcome.

25.2 Theory

The solver described here can be used to solve numerically the Stokes equations. In the evolutionary case
the field equations are given by

I
-
p—t — pAU+ Vp =

V-

(25.1)

0.
The velocity boundary conditions of Dirichlet type or homogeneous natural boundary conditions can be

imposed on the boundary. It is noted that the uniqueness of the pressure solution is assumed to be ensured
by imposing the normal natural boundary condition

—p+ p(Va)i - i =0 (25.2)

on a nontrivial part of the boundary.
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When a boundary can be represented as a coordinate plane, slip boundary conditions may also given.
In the case of slip boundary condition it is assumed that the normal velocity is prescribed to vanish (u,, =
i - 7 = 0) and the tangential surface force s; is related to the tangential velocity us by

o P _ o (25.3)
on

Here the subscript s refers to the tangential direction and C,, is the slip coefficient for the boundary (the
subscript n refers to the normal direction).

If the alternative solution strategy is applied, the finite element discretization of (25.1) is assumed to be
based on the lowest equal order approximation for the velocity and pressure. Such discretization of (25.1)
leads to a linear system

Ky=5b 25.4)

T
K:(l‘;‘, %) (25.5)

Here A is the coefficient matrix which results from the discretization of —u A or the spatial and backward
Euler time discretization of p(0@/0t) — pAd. In addition, C' is a stabilization matrix which results from
adding a stabilization operator suggested in [2].

The iterative solution methods considered here are based on applying a Krylov subspace method to (25.4)
in combination with a block-preconditioner

P(PA BT> (25.6)

where K has the block-structure

0 Pg

where P4 and Pg approximate A and the Schur complement of A in K. In practice, the application of the

preconditioner requires that the actions of the inverses Pgl and Pg ! are approximated. These tasks can

often be done efficiently by applying iterative methods to systems of type Psz4 = r4 and Pszg = rg.
The action of the inverse of Pg is constructed in such a way that one has in the stationary case [3]

1
Pg'rs ~—(LM)7'rs (25.7)
and in the evolutionary case [1]
ot 1
P§17’5 ~ (;D)71TS — (;M)717"S (25.8)

where g is a vector in the pressure space, dt is the size of time step, and M and D are finite element approx-
imations of the identity and Laplace operators. It is noted that the Laplace operator in (25.8) is associated
with the homogeneous Dirichlet boundary condition on the part of the boundary where the boundary condi-
tion (25.2) is given, while the homogeneous Neumann boundary condition is used on the remaining part of
the boundary.

It is noted that the actions of the approximate inverses of the scaled pressure mass matrices in (25.7) and
(25.8) are always computed with the BICGSTAB method. The user can choose a method for approximating
the action of the inverse of the pressure Laplacian operator in (25.8). Several options such as applying an
algebraic multigrid V-cycle are available for this computation.

In the stationary case each action of the preconditioner depends upon an approximate solution of a
Poisson equation for each of the velocity components. The user can choose a method for this computation.
In the evolutionary case the action of the inverse of P4 is always computed with the BICGSTAB method.

The outer iterative method which is applied to (25.4) is based on either BICGSTAB method or a nested
GCR algorithm. The nested GCR algorithm is based on the idea of solving the new search direction of the
outer GCR iteration from the residual equation which characterizes the error in the current approximate so-
lution. The residual equation is solved approximately by taking at most m steps of the block-preconditioned
GCR algorithm where m can be controlled by the user.

It is mentioned that the method based on BICGSTAB has the benefit of requiring only a small, fixed
amount of computer memory. A drawback is that the performance may deteriorate when more inaccurate
solutions of preconditioning systems are allowed. The nested GCR algorithm has been found to perform
robustly with respect to inaccuracies in preconditioning, but as compared with BICGSTAB more solution
vectors may need to be saved during the iteration.
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25.3 Keywords

Material material-id

Density Real
This keyword is used to define the density p.

Viscosity Real
This keyword is used to define the viscosity .

Solver solver—id

Equation String
This keyword declares the name of the equation.

Procedure File "Stokes” "StokesSolver”
The name of the file and procedure.

Variable String ”Stokes”
This keyword declares the name of the solution.

Variable DOFs Integer
The value of this keyword defines the number of unknown scalar fields and must hence equal
to d 4+ 1 where d is the spatial dimensionality of the computational domain. It is noted that the
unknown scalar fields are always numbered in such a way that the highest running number is
associated with the pressure solution.

Stabilize Logical
By default this keyword is given the value ” True” so that the equal order approximation for the
velocity and pressure may be used.

Block Preconditioning Logical
If the block preconditioning is used, the value of this keyword must be “ True”.

Outer Iteration Method String
This keyword is used to define the outer iterative method. The default method is the nested GCR
algorithm. In order to use the method based on BICGSTAB the value “"BICGSTAB” should be
given for this keyword.

Max Outer Iterations Integer
When the outer iterative method is based on BICGSTAB, the value of this keyword defines the
maximum number of outer iterations allowed, i.e. the maximum number of the block precon-
ditioned iterations. When the outer iterative method is the nested GCR algorithm, this keyword
is used to control restarting so that the outer GCR algorithm is restarted after each m iteration
steps where m is the value of this keyword.

Max Outer GCR Cycles Integer
When the outer iterative method is the nested GCR algorithm, the value of this keyword defines
the maximum number of restarts allowed in the outer GCR iteration. The default value is the
unity which corresponds to allowing only one GCR cycle.

Use Truncation Logical
When the outer iterative method is the nested GCR algorithm, a truncation strategy may be used
in combination with restarting. If the value " True” is given for this keyword, after restarting
the orthogonalization of the new search direction vector is done with respect to m previously
used search direction vectors where m is the value of Max Outer Iterations keyword.

Max Inner GCR Iterations Integer
When the outer iterative method is the nested GCR algorithm, the value of this keyword de-
fines the maximum number of inner GCR iterations (it is noted that restarting cannot be used in
connection with inner GCR iterations)

© CSC - IT Center for Science



25. Block Preconditioned Stokes Equation 125

Linear System Convergence Tolerance Real
When the block preconditioning is used, the value of this keyword defines the convergence tol-
erance used in connection with the solution of preconditioning systems. Ideally, one should try
to use a rather large value so that the cost of preconditioning is not excessive.

Linear System Max Iterations Integer
When the block preconditioning is used, this keyword is used to define the maximum number of
iterations allowed in the solution of preconditioning systems of type P4z4 = 74 and Pgzg =
rs.

Ratio of Convergence Tolerances Real
This keyword is used to define the convergence tolerance T'OL for outer iterations. The value
of this keyword defines the ratio of TOL to the convergence tolerance used in connection with
the solution of preconditioning systems. Here the convergence tolerance for the solution of pre-
conditioning systems is defined using the Linear System Convergence Tolerance
keyword.

Residual Reduction Ratio Real
When the outer iterative method is the nested GCR algorithm, this keyword may be used to define
a stopping criterion for the inner GCR iterations (cf. the use of Max Inner GCR Iterations
keyword). The inner GCR iteration is stopped when the new search vector so obtained is guar-
anteed to reduce the norm of the outer iteration residual by a ratio € where ¢ is the value of this
keyword. The default value of this keyword is 0.1.

ILU Order for Schur Complement Integer
In the stationary case the value of this keyword defines the fill level for the incomplete LU factor-
ization preconditioner that is used in the iterative solution of the linear systems involving Ps. In
the evolutionary case this keyword may be used to define an incomplete factorization precondi-
tioner for the pressure mass matrix M in (25.8). It should be noted that in the evolutionary case
the usual linear solver keywords can be used to define an iterative method for the solution of the
pressure Laplacian system in (25.8). It is also noted that if the value of this keyword is not given,
then the Jacobi preconditioning will be used instead of incomplete factorization preconditioning.

ILU Order for Velocities Integer
In the evolutionary case this keyword may be used to define an incomplete factorization precon-
ditioner which is used in conjuction with the approximation of the action of Pgl. If the value
of this keyword is not given, then the Jacobi preconditioning will be used instead of incomplete
factorization preconditioning. It should be noted that in the stationary case the usual linear solver
keywords can be used to define an iterative method for the solution of the systems involving Py.

Body Force bf-id

Body Force 1 Real
This keyword is used to define the i’s component of the body force vector b.

Boundary Condition bc-id

Outflow boundary Logical
If the value " True” is given for this keyword, then the outflow boundary condition (25.2) will
be used.

Slip Boundary Logical
If the slip boundary condition is defined, then the value ” True” must be given for this keyword.
Slip Coefficient 1 Real

The value of the slip coefficient in (25.3). Here ¢ refers to the coordinate direction which is
parallel to the normal direction of the boundary.
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Computation time

O(n*log(n))

© Nested GCR with AMG

o BICGSTAB with ILU(0) preconditioning
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Figure 25.1: A comparison of the nested GCR algorithm with the ILU(0) preconditioned BICGSTAB method
in the case of a three-dimensional test problem. In the nested GCR algorithm the algebraic multigrid (AMG)

solver was used to compute the action of Pgl.
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Linear Constraints

Module name: included in solver (SolverUtils)
Module subroutines: SolveWithLinearRestriction
Module authors: Mika Juntunen

Document authors: Mika Juntunen

Document edited: August Sth 2003

26.1 Introduction

This subroutine allows user to solve problems with linear constraints. Here constraints are forced with
Lagrange multipliers. This method, however, does not always lead to a well-posed problem. Conditions
that ensure a (unique) solution are excluded here, but the conditions are found in many books (check for
example [1]).

26.2 Theory

The problem at hand is
min 27 Az — 27 f (26.1)

x
Let’s assume that we can solve this. Now we also want that the solution solves the system Bx = g. This
gives constraints to our solution. The rank of B should be less or equal to the rank of A. Loosely speaking,
the number of rows in B should be less or equal to the number of rows in A. The method of Lagrange
multipliers fixes these two equations together and gives a new functional to minimize.

min 27 Az — 27 f + AT (Bz — g) (26.2)
If A is symmetric, then simple variational approach leads to solving  out of system
A BT\ [z f
5 %)0-6) 53

Symmetry of A is not always needed, but then more powerful methods have to be used to get to the above
system.

26.3 Limitations

e General usage of the subroutine
This subroutine can not be used by just adding keywords to solver input file. You must somehow
create the constraint matrix and then call for SolveWithLinearRestriction in your own subroutine or
function. The reader is encouraged to check for details in ElmerTutorials.
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o EMatrix-field
The EMatrix-field of the solved system matrix is used passing constraint matrix to SolveWithLinear-
Restriction. This will be a problem if some other function or subroutine tries to use the EMatrix-field.
EMatrix-field of the constraint-matrix is internally used by SolveWithLinearRestriction and should
therefor be left alone.

e Exported Multipliers
The length of the vector that holds the multipliers is limited to be a multiply of the number of nodes
in mesh. This means that the vector usually has extra entries. These entries are set to zero. This leads
to problems in extracting the correct values from the result file. Also post processing with ElmerPost
is at least tricky.

e Parallel solving is not yet implemented.

26.4 Keywords

Solver solver—id

Export Lagrange Multiplier Logical
If the multiplier has some physical meaning, you can save it to result file and to post file. This
feature has certain drawbacks, check subsection Limitations. Default is False.

Lagrange Multiplier Name String
The name you want to call the exported multipliers. This keyword has no meaning if the previous
keyword is set to False. Default name is LagrangeMultiplier.
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Outlet Boundary Condition for Arterial
Flow Simulations

Module name: ArteryOutlet

Module subroutines: OutletCompute, OutletInit, OutletPres, OutletdX, OutletdY
Module authors: Esko Jirvinen, Mikko Lyly, Peter Raback

Document authors: Esko Jirvinen

Document created: April 28th 2006

Document edited: April 28th 2006

27.1 Introduction

Arterial elasticity is a fundamental determinant of blood flow dynamics in arteries, such as the aorta and
its daughter vessel, that face the largest displacements and which takes care of the cushioning of the stroke
volume. Simulation of such a phenomenon requires simultaneous solving of the equations governing both
the fluid flow and wall elasticity. To be able to perform accurate fluid-strucrure interaction (FSI) simulations,
only a segment of the circulatory system can be studied at a time. For these artificially truncated segments,
which are naturally unbounded domains and in interaction with the rest of the circulation domain, one should
construct in the numerical models boundary conditions which do not exhibit any unphysical behaviour,
which operates transparently, and are also capable to transport a sufficient amount of information over the
boundary.

A natural boundary condition at the outlet of a numerical FSI flow model of an artery is not a proper
choice because it does not exhibit enough correct physiological behavior of the flow, and from the point of
view of numerical approximation, it causes non-physiological reflections of the wave at the boundary. If
measured data of both the pressure (or velocity) and the wall displacement at the outlet boundary are not
available, the only way to get the outlet boundary of a higher order, 2D or 3D model sufficiently specified is
to combine the model with some lower order model, such as a 1D or lumped model.

In order to get the outlet of the arterial FSI model to behave transparently in such cases when only
forward travelling waves are considered, a simple characteristic equation of the of the one dimensional FSI
model can be combined with the higher order model.

27.2 Theory

The conservation equations for a flow in an elastic artery in one dimension may be expressed as

O0A 0Q __
94 L 99 _
2 27.1)
9Q | 0,Q°\ , Adp _
ataECGr)+ o5 =0,
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where () is the volume flow, A the cross section area of the artery, p is the pressure and « is the axial
coordinate [3]. In order to get the system (27.1) close, an equation relating the area A to the pressure
p = p(A) is derived applying the theory of thin shell structures. Assuming a cylindrical shell, and neglecting
the rotation on the shell cut plane, and the movements of the structure in the axial and circumferential
directions, as well as applying the Kirchhoff-Love assumption, the energy balance equations is reduced to

ER? Eh 1
AR N CO R
20— " T a2 g2
where R,, is the radius to the midplane of the wall, F, v and dp are the Youngs modulus, the Poisson

ratio and the radial displacement of wall, respectively. Assuming that the first term on the left side in the
equation (27.2) is much smaller than the second term, we can give the pressure-area relation in the form

dr =, (27.2)

p:pewt'i‘ﬁ(\/z_\/A»O)v ﬁ:LhQE (273)
(1—v2)Ao
The pressure is scaled to be equal to external pressure p.,; with corresponding reference artery cross
sections area Ag.
The equations (27.1) and (27.3) form a closed system for the simulations of flow in an elastic tubes. The
equations may be written in conservative form which is strictly hyperbolic with two distinct real eigenvalues

A2 = @ =+ ¢, where & = Q/A is the average axial velocity, ¢ = /(A/ps)(Op/0A) = \/BVA/(2py) is
the speed of sound, and p; is the density of blood. The system can be further decomposed into a set of the
equations for the characteristic variables W;, which are the components of the vector W = T~'U (%—Vg =

T-Y,U = [A,Q]T [2]. These equations are

oW, oW,
o i =0, (27.4)

2
W172:Q:|:2 fﬁ*ﬁ\/A
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When considering a pulse propagation in a straight, infinitely long homogeneous conduit, without any
bifurcations or other objects which might cause reflections of the pulse, i.e. any backward travelling waves
does not exists, the computations can be done using only the first of equations in (27.4), i.e.

and the characteristic variables are

oW (U) () oW (U)

ot ox
This equation is solved in this Elmer outlet bondary condition for arterial flow simulations solver. The
connection of the one dimensional model to the test models at the their outlets is done applying the following
coupling [1]

=0.

dR™ =dR*

oc” =pt
Wl = gl(A_7Q_7p_)a

where dR and o are radial displacement of the artery wall and fluid traction, respectively. The superscript
"~ denotes the values in the higher order models, and superscript *+’ to the values in the 1D model.

27.3 Keywords

Keywords of FlowSolve

Initial Condition 1ic id
For making the initial guess for the characteristic variable Wy
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Wnodal Variable Coordinate
Real Procedure "ArteryOutlet" "OutletInit"

Material mat id
Material properties for the one dimensional section.

Density Real
Density of blood
Artery Wall Youngs Modulus Real
Young’s modulus of the artery
Artery Radius Real
Radius of the artery to the midplane of the artery wall
Artery Wall Thickness Real
Wall thichness of the artery
Artery Poisson Ratio Real
Poisson ration of the artery

Solver solver id
Keywords for the one dimensional solver. Note that all the keywords related to linear solver (starting
with Linear System) may be used in this solver as well. They are defined elsewhere.

Equation String [Artery Outlet Solver]

Variable [Wnodal]
The variable which is solved

Variable DOFs [1]

Procedure File "ArteryOutlet" "OutletCompute"
The name of the file and the subroutine

Equation eg id
The equation section is used to define a set of equations for a body or set of bodies

Artery Outlet Solver Logical [True]
If set True, the solver is used. The name of the solver must match with the name in the Solver
section

Boundary Condition boundary id
The pressure of the given coordinate direction i at the artery outlet of the higher order model is set to
correspond the value given by the 1D model.

Pressure i Variable Time
Real Procedure "ArteryOutlet" "OutletPres"

The diameter of the artery in the appropriate direction at the outlet of the higher order model is set to
correspond the value given by the outlet boundary codition solver. The subroutines Out letdX and
Outletdy are located in the module ArteryOutlet

Displacement i Variable Time
Real Procedure "./ArteryOutlet" "OutletdX"

This is the inlet boundary of the one dimensional section which is coupled with both, the fluid and the
solid outlet boundary of the higher order model

Fluid Coupling With Boundary Integer
Structure Coupling With Boundary Integer
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Figure 27.1: An example of the model results: pressure pulse prapagation in a 2D axisymmetric model
combined with an 1D model.
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Streamlines

Module name: StreamSolver
Module subroutines: StreamSolver
Module authors: Mika Juntunen
Document authors: Mika Juntunen
Document edited: July 30th 2003

28.1 Introduction

Streamline is a line in flow whose tangent is parallel to velocity field  of the flow in every point Z. It should
be noted that the path of material is generally not the same as streamlines. There is also third set of closely
related lines, namely streak lines. On certain streak line lie all those flow elements that at some earlier instant
passed through certain point in domain. Of course, the streak lines are generally different than streamlines
but when the flow is steady all three set of lines coincide.

Streamlines are mainly used in providing a picture of the flow field. Drawing streamlines so that neigh-
bouring streamlines differ by the same amount, gives a picture where direction and magnitude change of
flow are clearly prescribed.

28.2 Theory

We are restricted here to the incompressible, steady flow in 2D geometry. The geometry may be 3D, but it
must effectively be 2D as in axis symmetric geometry.
In 2D cartesian geometry stream function %) is defined

_W W
oy’ oz

u

(28.1)

Here the geometry is (z,y) and the corresponding flow is @ = (u, v). Let £ be the domain of the flow and
¥ a test function for the flow. Definition (28.1) leads to finite element approximation

/vw-ﬁdﬂz/a'l-ﬁcm (28.2)
Q Q

In axis symmetric geometry the mass conservation calculated in a diffenrent way. This leads to following
definition for stream function.
1oy 1oy

=i VT Tras @83

where the cylinderical coordinates are (z, 7, ¢), velocity components are (u,v,w) and axis of symmetry is
z i.e. r = (. This function is sometimes called the Stokes stream function and it is not as informative as the
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stream function in cartesian case. Of course the finite element approximation is a bit different.

Vi - 7dQ = / at - ordQ (28.4)

Q Q

Here the ¢ component of the flow is excluded.
From definitions (28.1) and (28.3) it is apparent that stream function is constant along the streamlines.
So drawing the contours of stream function gives the streamlines.

28.3 Limitations

Some limitations of the current implementation:

The flow field is asumed to be incompressible.

There is no dependency on time. Solver can be used in transient cases, but it only produces the
streamlines of the current flow field as if it was steady.

Only 2D cartesian and axis symetric coordinate systems are implemented.

Solver gets the velocity field from user defined variable. In cartesian case it assumes that first degree
of freedom is the z-component and the second is the y-component of the velocity. In axis symmetric
case it assumes that the first degree of freedom is the r-component and the second is the z-component
of the velocity field.

User can define the node whose value is first set to zero. This shouldn’t have affect on results if the
normal stream function is used in cartesian coordinates and Stokes stream function in axis symmetric
coordinates. However, if used stream function is forced to something else, the position of the first node
usually has a large effect on results. This is because the mass conservation is calculated differently.

28.4 Keywords

Simulation

Coordinate System String
The coordinate system should be set to be one of the following options: Cartesian 2D or Axi
Symmetric.

Solver solver—id

All the keywords beginning Linear System can be used. They are explained elsewhere.

Equation String
The name you want to give to the solver, for example St reamSolver.

Procedure File "StreamSolver" "StreamSolver"
The name of the file and subroutine.

Variable String
The name you want to call the solution, for example St reamFunction.

Variable DOFs Integer 1
The degree of freedom of the variable. Stream function is scalar so this must be set to 1.

Stream Function Velocity Variable String
The name of the velocity field variable. FlowSolvers solution is called Flow Solution and
this is also the default value.

Stream Function First Node Integer
Number of the node that is first set to zero. Non-positive values are set to 1 and too large values
are set to largest possible i.e. ’the last node’. Default is 1.
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Stream Function Shifting Logical
Shift the smallest value to zero. Default is True.

Stream Function Scaling Logical
Scale largest absolut value to 1. Default is False.

Stokes Stream Function Logical
This keyword forces the stream function type regardles of the coordinate system. If the coordi-
nate system is axis symmetric, then the default is True, else the defaultis False.
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Flux Computation

Module name: FluxSolver

Module subroutines: FluxSolver

Module authors: Juha Ruokolainen, Peter Raback
Document authors: Peter Riback

Document edited: 21.6.2007

29.1 Introduction

This module is used to calculate the fluxes resulting usually from poisson kind of equations. These include,
for example, the heat equation, the electrostatic equation, and the pressure equation for Darcy’s flow. There
are also flux computation subroutines that are built in the solvers but this provides a generic approach that
should be easy to combine with most solvers.

29.2 Theory

The flux resulting from a potential field is assumed to be proportional to the gradient of the field, ¢. The
proportinality factor is here called conductivity, c. The flux may therefore be expressed as

q=—cVo. (29.1)

For heat equation the potential would this be temperature and the conductivity would be the heat conductivity.

29.3 Implementation issues

The flux may be computed in many ways. Often for visualization purposes it suffices to take some nodal
average of the element-wise computed fluxes. The most consistant method for flux computation is, however,
using the finite element method to solve the equation (31.1). The Galerkin method creates a diagonally dom-
inated matrix equation that may be computed easily with iterative methods even with poor preconditioners.

The flux computation may be done component-wise so that for each component ¢;, where ¢ = 1...dim,
is solved separately. This saves a significant amount of memory even though it slightly complicates the
implementation. In the solver it is also possible to choose just one component as could be sometimes
desirable.

The main limitation of the current version is that it does not take into account any boundary conditions.
Therefore if there is a internal boundary over which the flux is not continous the calculated value does not
make sense.
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29.4 Keywords

Solver solver id

Equation String Flux Solver
Procedure File "FluxSolver" "FluxSolver"

Variable String "-nooutput tempvar"
The variable is usually only used to allocate the corresponding matrix. Therefore output is not
required unless the solver is only used to compute one component.

Flux Result Variable String f1l
This string gives the name of the variable that is known to be at disposal for saving the results.
This variable is allocated with the following keyword.

Exported Variable 1 String "fl[Heat Flux:3]"
This command is used to allocate space for the result and at the same time the components may
be renamed to be later identified as a vector in ElmerPost. If only one component of the flux is
computed this keyword is obsolite.

Flux Variable String "Temperature"
This gives the name of the potential variable used to compute the gradient. By default the variable
is Temperature.

Flux Coefficient String "Heat Conductivity"
This gives the name of the potential variable used to compute the gradient. By default the coeffi-
cient is Heat Conductivity. If an non-existing material parameter is given the coefficient
will be assumed to be one, i.e. ¢ = 1. This way the solver may be used to compute the gradient
only.

Flux Component Integer
If only one component of the flux need to be computed it may be given by this keyword. If the
keyword is not specified the solver computes all the components of the flux.

The solver is easily solved even without preconditioning. Fox example, the following linear system
control may be applied.

Linear System Solver "Iterative"

Linear System Iterative Method "BiCGStab"

Linear System Preconditioning None

Linear System Max Iterations 500

Linear System Convergence Tolerance 1.0e-10
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Vorticity Computation

Module name: VorticitySolver
Module subroutines: VorticitySolver
Module authors: Peter Raback
Document authors: Peter Raback
Document edited: 14.2.2008

30.1 Introduction

This module is used to calculate the vorticity of vector fields. Vorticity may be of interest mainly in the
postprocessing of flow fields or electromagnetic fields.

30.2 Theory

The vorticity w of a vector field ¥ is obtained simply from the curl of the field,
W=V x 7. (30.1)

Component-wise the equations for the vorticity read

 Ov, Oy

Wy = By s (30.2)
v, Ov,

wy, = % Ox (30.3)
Ovy  Ovy

we = GLor (30.4)

Thus, all three components exist only in 3D while in 2D and axisymmetric cases only the z-component is
present

The most consist ant method for computing the vorticity in conjunction with the finite elements is to
solve the equations (30.4) using the Galerkin method. The resulting matrix is diagonally dominated and may
be computed easily with iterative methods even with poor preconditioners. In 3D the vorticity computation
may be done component-wise so that each component w;, where ¢ = 1,2, 3, is solved separately. This saves
some memory and may also save in the overall time consumption. If only one component is desired in the
3D computations then the z-component is computed.

30.3 Keywords

Solver solver id
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Equation String Vorticity Solver
Procedure File "VorticitySolver" "VorticitySolver"

Vorticity Variable String "Velocity"
This gives the name of the vector variable used to compute the vorticity. By default the variable
isVelocity.

Constant Bulk Matrix TLogical
This keyword may be used to activate the saving of the stiffness matrix if the same solver is
called repeatedly. The stiffness matrix depends only on geometric information and is hence the
same if the geometry is unaltered.

The following keywords are not usually needed as they are set by the initialization procedure of the
solver.

Variable String "-nooutput tempvar"
The variable is usually only used to allocate the corresponding matrix. Therefore output is not
required unless the solver is only used to compute one component.

Vorticity Result Variable String f1
This string gives the name of the variable that is known to be at disposal for saving the results.
This variable is allocated with the following keyword.

Exported Variable 1 String "fl[Vorticity:3]"
This command is used to allocate space for the result and at the same time the components may
be renamed to be later identified as a vector in ElmerPost. If only one component of the flux is
computed this keyword is obsolete.

The solver is easily solved even without preconditioning. Fox example, the following linear system
control may be applied.

Linear System Solver "Iterative"

Linear System Iterative Method "cg"

Linear System Preconditioning None

Linear System Max Iterations 500

Linear System Convergence Tolerance 1.0e-10
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Model 31

Scalar Potential Resulting to a Given
Flux

Module name: ScalarPotentialSolver
Module subroutines: ScalarPotentialSolver
Module authors: Peter Raback

Document authors: Peter Raback
Document edited: 15.2.2008

31.1 Introduction

This module is an auxiliary solver that may be used to compute the scalar potential that results to a given
flux. The flux is assumed to be an vector field resulting from some computation. This solver is the dual of
the FluxSolver. Computing first the flux of a given potential and thereafter resolving for the potential
that creates the flux should give approximately the original potential.

31.2 Theory

The flux resulting from a potential field is assumed to be proportional to the gradient of the field, ¢. The
proportionality factor is here called conductivity, c. The flux may therefore be expressed as

¢ = —cVo. (31.1)

For heat equation the potential would this be temperature and the conductivity would be the heat conductivity.
This solver solves the equation in the reverse form, i.e. given the flux solver for the potential. In the
weak formulation this is solved so that the test function is the gradient of the shape function. This results to
the standard discretization of the Poisson equation.
The potential is not defined uniquely unless the level is fixed at least at one point. Therefore the user
should set a Dirichlet condition at least at one node.

31.3 Keywords

Solver solver id

Equation String ScalarPotentialSolver
Procedure File "ScalarPotentialSolver" "ScalarPotentialSolver"
Variable String "Scalar Potential"

The desired name of the resulting scalar field.
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Flux Variable String
This gives the name of the flux variable used to compute the source term. Note that this must be
the name of a vector field such as Velocity.

Flux Coefficient String
This gives the name of the coefficient used in the computation of the flux. For example, in
thermal analysis it would be Heat Conductivity. If an non-existing material parameter is
given the coefficient will be assumed to be one, i.e. ¢ = 1.

The equation is a Poisson type of equation and defaults for it are set to be cg+ILUO. If these do not
suffice, other linear system options should be defined.

Boundary Condition bc id

Scalar Potential Real
The defined field variable must be set to be zero at least at one point.

Target Nodes Integer
The user may also define a target node on-the-fly at which the condition is set.
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Model 32

Fluidic Force

Module name: FluidicForce

Module subroutines: ForceCompute

Module authors: Juha Ruokolainen, Antti Pursula
Document authors: Antti Pursula

Document edited: Feb 28th 2005

32.1 Introduction

This module is used to calculate the force that a fluid flow induces on a surface. The fluidic force can
be divided into two main components: force due to pressure and viscous drag force. The fluid can be
compressible or incompressible and also non-Newtonian with the same limitations than there are in the
Elmer Navier-Stokes Equation solver. The force calculation is based on a flow solution (velocity components
and pressure) which has to present when calling the procedure. Also the torque with respect to a given point
can be requested.

32.2 Theory

The force due to fluid is calculated as a product of the stress tensor and normal vector integrated over the
surface

F= /?-ﬁds. (32.1)
s
The stress tensor is

w(V - @)1 — pl, (32.2)

where p is the viscosity, @ is the velocity, p is the pressure, T the unit tensor and Z the linearized strain rate

tensor, i.e.
1 8”1' an
== . 323
&ij 2 (6:5] + 8l‘l> ( )
The torque about a point @ is given by .
7= (F—a) x F(F), (32.4)

where 7 is the position vector.
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32.3 Additional output

There is also a feature for saving the tangential component of the surface force i.e. the shear stress elemen-
twise on the boundaries. The shear stress output is written on disk in a file which contains three columns:
1) the value of the shear stress, 2 and 3) the corresponding = and y coordinates. The shear stress is saved
on all boundaries where fluidic force computation is requested. This feature is implemented only for 1D-
boundaries of 2D-geometries.

32.4 Keywords

Solver solver id

Equation String Fluidic Force
Procedure File "FluidicForce" "ForceCompute"

Calculate Viscous Force Logical [True]
Setting this flag to false disables the viscous drag force, and only the surface integral of pressure
is calculated.

Sum Forces Logical [False]
By default the solver calculates the fluidic force by boundaries. Setting this flag to True apllies
summing of each individual boundary force in to a resultant force which is the only force vector
in output.

Shear Stress Output Logical [False]
Setting this flag to True activates writing shear stress values on disk.

Shear Stress Output File String [shearstress.dat]
Defines the name of the shear stress file.

Velocity Field Name String
The name of the velocity field variable. This keyword may be necessary if some other flow
solver than the built-in Navier-Stokes solver of Elmer is used. Normally this keyword should be
omitted.

Material mat id
Viscosity Real
Boundary Condition bc id

Calculate Fluidic Force Logical [True]
The fluidic force is calculated for the surfaces where this flag is set to true.

Moment About 1,2,3 Real
Coordinates for the point on which the torque is returned.
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Model 33

Electrostatic force

Module name: ElectricForce
Module subroutines: StatElecForce
Module authors: Antti Pursula
Document authors: Antti Pursula
Document edited: February 7th 2003

33.1 Introduction

This solver calculates the electrostatic force acting on a surface. The calculation is based on an electrostatic
potential which can be solved by the electrostatic solver (see Model 23 of this Manual).

33.2 Theory

The force is calculated by integrating the electrostatic Maxwell stress tensor [1] over the specified surface.
Using the stress tensor T the total force on the surface S can be expressed as

ﬁ:/? ds. (33.1)
S
The components of the Maxwell stress tensor for linear medium are
1 — —
Tiy; = —D:E; + §6ijD - E, (33.2)

where electric field E and electric displacement field D are obtained from the electric potential ¢
E=-V9, (33.3)

and .
D = —£pe,. VO, (33.4)

where € is the permittivity of vacuum and ¢, is the relative permittivity of the material, which can be a
tensor.

33.3 Keywords

Constants

Permittivity Of Vacuum Real [8.8542e-12]
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Solver solver id

Equation String Electric Force
The name of the equation. Not necessary.

Procedure File "ElectricForce" "StatElecForce"

Exec Solver String After Timestep
Often it is not necessary to calculate force until solution is converged.

Material mat id
Relative Permittivity Real
Boundary Condition bc id

Calculate Electric Force Logical True
This keyword marks the boundaries where force is calculated.

Bibliography

[1] J. Vanderlinde. Classical electromagnetic theory. John Wiley & Sons, 1993.
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Model 34

Save Data

Module name: SaveData

Module subroutines: SaveScalars, SaveLine, SaveMaterials, SaveBoundary Values
Module authors: Peter Raback, Ville Savolainen, Thomas Zwinger

Document authors: Peter Riback

Document created: Oct 3rd 2002

Document updated: January 8th 2008

34.1 Introduction

This module does not include any physical models per se. The module includes utilities for computing de-
rived quantities and saving scalars as well as lines in matrix format. Scalars are saved with the subroutine
SaveScalars and lines with the subroutine SaveLine, correspondingly. The results are easily then uti-
lized by MatLab, Excel or any other program that can read ASCII data. In addition to the number values
also an additional file with the suffix . name is saved. It tells what variables are at each column. In addition
there is a utility called SaveMaterials that may be used to create additional field variables from the ma-
terial parameters. A similar procedure SaveBoundaryValues stores parameters defined on boundaries
as variables for the whole mesh. This can be of help if a boundary condition that is not directly accessible
from the variables (like a normal component of a vector field) should be evaluated in the post-processing
step.

34.2 Theory

The theoretical problem in saving data comes from the fact that often the data should be saved in points or
lines that were not a priori defined.

If there are relatively few points the dummy algorithm where each element is checked for including the
node may be used. For the lines, however, this algorithm might become quite expensive as there may be
many points that constitute the line. Therefore we only look for intersections of element faces and the lines.
Each element face is divided into triangles. The triangle has points €7, €5 and €3. The line is drawn between
points 71 and 75. Therefore the line goes through the point only if

1+ a(f'g — Fl) =é1 + b(gg - 61) + C(é}, — 51) (34.1)

has a solution for which 0 < a, b, ¢ < 1. This results to a matrix equation

T2z —Tiz €1z — €2z €1z — €3z a €lz — Tix
T2y — Ty €1y — €2y €1y — €3y b = €1y — Ty (342)
T2z —T1z €1z — €22 €1z — €32 & €1z —T1z
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which may be easily solved with standard methods linear algebra. Because the face element is a triangle
there is an additional condition that b + ¢ < 1.

When saving statistical information there are two possibilities. We may use normal number statistics
where each node is given an equal weight. Then, for example the mean becomes,

ZT'L—1 f [
< f>=== (34.3)

n
The other possibility is to treat the variable as a continuous function and compute the statistical values as
averages over the domain. Now the mean is

[ fdoy

<f>:m.

(34.4)

In addition to the mean we may compute the mean deviation, < |f— < f > | >.and the variance § f =
V< 2> —< f>2

It is possible to compute energy type of lumped quantities by integrating over the domain. The energy
of the field f resulting from a diffusion equation is

1
Ediffzi/QVf-CVfdQ, (34.5)

where ¢ may a tensor or a scalar. Kinetic energy related to convection is of type

1
E(:on = */ cv - 17dQ, (346)
2 Ja
and potential type of energy
Epot = / cf dS. (34.7)
Q

Sometimes it may be interesting to compute the fluxes through surfaces. The values may be used in
evaluating the accuracy of the results — what goes in should in steady state also come out. There are two
different fluxes that may be computed. For convective field the flux is of type

Foon = / i - i dl, (34.8)
T

where 77 is the surface normal. Diffusive fluxes may be computed from

Fdiff = / CVf . ﬁdf, (349)
r
where ¢ may also be a tensor.
34.3 Keywords
Keywords of solver SaveScalars
Solver solver id
Procedure File "SaveData" "SaveScalars"

Filename String
Name of the file where results are to be saved, the defaultis scalars.dat.

Scalars Prefix String
Save constants starting with this prefix. The default is res:.
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Variable 1 String
The names of the variables to be saved. There can be up to 99 variables. In addition to field
variables there are some special variables. The scalar variables. e.g. Time, are saved as is.
There are also variables CPU Time and CPU Memory that may be used to save execution
details.

Save Points(n) Integer
Save the specified degrees of freedom in the n nodes specified.

Save Coordinates (n,DIM) Real
Save the degrees of freedom in the nodes nearest to the given n coordinates.

Exact Coordinates Logical
When this keyword is true the coordinates will be looked in an exact manner. Then the degrees
of freedom are linear combinations of the node values of the element that the point belongs to.

Moving Mesh Logical
If this parameter is True the saved points will be defined every time the subroutine is visited.
The defaultis False.

File Append Logical
If the results from consecutive rounds should be appended to the file this flag should be set to
True. The defaultis False.

Save Eigenvalues Logical
Save the eigenvalues found in any of the variables.

Save Eigenfrequencies Logical
Save the frequencies computed from the eigenvalues found in any of the variables.

Operator i String
There are different operators that may be performed on all the given variables. These include op-
erators working on the set of numbers, max, min, max abs, min abs, mean, variance
and deviation. There are also a few operators that use statistics over the volume, int mean
and int variance. The volume used by a given variable is obtained by operator volume.
If a name for the coefficient, is given for the operator, the integral is taken over the coefficient.
One can for example obtain the weight from a integral over Density.
There are also a number of similar operators that only operate on the boundary. These are invoked
by boundary sum, boundary dofs, boundary mean, boundary max, boundary
min, boundary max abs,and boundary min abs.
Three different energy type of quantities may be computed by domain integral operators di ffusive
energy, convective energy, potential energy. Finally, also boundary inte-
grals are possible using operators diffusive flux,convective flux,boundary int,
boundary int mean and area. These require that in the boundary conditions the active
boundaries are defined. Also here there may be an optional coefficient.
Some operators do not work on the solution itself but use other info related to that. Operator
dofs simply returns the length of the variable under study. Operator norm returns the last com-
puted norm of the field variable, and operators nonlinear change and steady state
change return the last computed convergence measures at the nonlinear and steady state levels.

There may be up to 99 different operators. If the variable is a vector the statistics is performed
on its length.

Coefficient 1 String

Even though only limited number of operators are given almost any energy or flux kind of quan-
tity may be computed since the coefficient ¢ may be defined by the user. The idea is that the
same data that is already used as a material parameter can be simple referred to by its name. The
coefficient may be, Heat Conductivity,Permittivity, Density, for example. Usu-
ally the coefficient is the same that was used in computing the field variable under integration.
For the diffusive energy and diffusive flux the coefficient may even be a matrix.
This parameter is optional and the default is one.
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Polyline Coordinates (n,DIM) Real
This keyword may be used to create line segments that are defined by points x1, y1, T2, and
y2. For each line different kinds of fluxes trough the elements may be computed. This makes it
possible, for example, to check the mass flux even though no boundary has a priori been defined.

Boundary Condition bc id

Save Scalars Logical
The flag activates the computation of boundary related information. The results are treated inde-
pendently for each boundary. The keyword replaces the previously used Flux Integrate.

Keywords of subroutine SaveLine

Solver solver id

Procedure File "SaveData" "SavelLine"

Filename String
Name of the file where results are to be saved, the defaultis sides.dat.

File Append Logical
If the results from consecutive rounds should be appended to the file this flag should be set to
True. The defaultis False.

Save Axis Logical
Save all the principal axis. Also keywords Save Axis i exist, where i=1,2,3 defines the axis.
Polyline Coordinates (n,DIM) Real
Save the line consisting of line segments defined by two points (n = 2). There can be more than
one set of points (n = 2,4,6,...) but as a line segment is defined by two points there must be
an even number of points.
Variable 1 String
By default SaveLine saves all the active variables. However, it is possible to save only a spec-
ified list of variables given by this keyword where tt i=1,2,3,... This may be particularly useful
if one wants to save a table of linear dependece, for example Temperature along x-direction, to
be used as a boundary condition in consecutive Elmer runs with a different mesh.

Save Flux Logical
Saves a flux resulting from a gradient of a field by the model h = —xdT'/On. This may only be
applied to existing boundaries, not lines defined by points.

Flux Variable String
The name of the field variable (default T is Temperature).

Flux Coefficient String
The diffusion constant (by default x is Heat Conductivity)

Save Mask String
a By default SaveLine saves only the values that are on boundary marked with Save Line flag.
If the user wants several instances of the SaveLine subroutine, for saving different buondaries to
different files, the mask name may be defined by this keyword. The correspondingly one should
use the same flag in the Boundary Condition and Body section.

Boundary Condition bc id

Save Line Logical
The flag activates the saving of the boundary condition as a line. The subroutine tries to save
the finite-element lines as a chain of points to enable nice preprocessing with MatLab or similar
tools. The flux may only be saved on lines defined by boundary conditions.

© CSC - IT Center for Science



34. Save Data 150

Keywords of subroutine SaveMaterials
Solver solver id

Procedure File "SaveData" "SaveMaterials"

Parameter 1 String
The user may choose a number of parameters (i=1,. ..,99) which will be save as variables. This
may be particularly handy if one wants to visualize how the parameters depend on the position
over the domain. Values in bodies with the assigned material list not containing the keyword of
the parameter are set to zero by default.

Keywords of subroutine SaveBoundaryValues

Solver solver id

Procedure File "SaveData" "SaveBoundaryValues"

Variable String —-nooutput dummyvar
a dummy variable for the solver that does not show up

Variable DOFs Integer 1

Parameter i String
The user may choose a number of parameters (i=1,...,99) which will be save as variables. These
parameters will then be stored as variables with the values assigned as they were found on the
specific boundary. Bulk values and values on boundaries with the parameter not being defined
are set to zero by default.
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Result Output for Other Postprocessors

Module name: ResultOutputSolve

Module subroutines: ResultOutputSolver

Module authors: Erik Edelmann, Mikko Lyly, Peter Rdback
Document authors: Peter Raback

Document created: 11.12.2006

Document edited: 3.8.2007

35.1 Introduction

This subroutine is intended for saving data in other than the native format of Elmer — ElmerPost. The reason
for using another postprocessing tool might be that some feature is missing in ElmerPost, or that the user
is more aquinted with some other visuzalition software. Currently supported formats include GiD, Gmsh,
VTK legacy, XML coded VTK file bearing the suffix VTU and Open DX.

35.2 Keywords

Solver solver id

Equation String "ResultOutput"
The name of the equation. This is actually not much needed since there are no degrees of freedom
associated with this solver.

Procedure File "ResultOutputSolve" "ResultOutputSolver"
The name of the file and subroutine.

Output File Name File
Specifies the name of the output file.

Output Format String
This keyword the output format of choice. The choices are gid, gsmh, vtk, vtu,and dx.

Gid Format Logical
Gmsh Format Logical
Vtk Format Logical
Vtu Format Logical

Dx Format Logical
The user may also use the above logical keywords to set which of the formats is saved. This
has more flexibility in that there may be several formats that are saved simultaneously where the
Output Format keyword may only be used to activate one solution type.
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The following keywords related only to the GiD, Vtu and Gsmh formats. In the other formats all
available degrees of freedom are saved.

Scalar Field i String
The scalar fields to be saved, for example Pressure. Note that the fields must be numbered
continously starting from one.

Vector Field i String
The vector fields to be saved, for example Velocity

Tensor Field i String
The tensor fields to be saved. The rank of tensor fields should be 3 in 2D and 6 in 3D.
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Model 36

Reload Existing Simulation Results

Module name: ReloadData

Module subroutines: ReloadSolution
Module authors: Antti Pursula
Document authors: Antti Pursula
Document created: August 9th 2007

36.1 Introduction

This subroutine is intended for repeated loading of existing results during simulation. An example of a
typical application is to use previously computed fluid flow as a convection field for the transfer of a passive
scalar variable. The module is implemented as a dummy solver which is defined in the command file just as
the *normal’ solvers.

This module offers extended features compared to the Restart File option in the Simulation
section. The module reads a new solution step from the solution file on each timestep, whereas the restart
file option reads only the initial state for a simulation.

The module reads in all the available variales from the solution file. The solution file should be in the
mesh directory. If the simulation takes more than a single steady state iteration per time step it is advicable
touse Exec Solver = Before Timestep for this module.

36.2 Keywords

Solver solver id

Equation String "Reload Data"
The name of the equation. This is actually not much needed since there are no degrees of freedom
associated with this solver.

Procedure File "ReloadData" "ReloadSolution"
The name of the file and subroutine.

Reload Solution File String "flow-data.dat"
The name of the old solution data file, eg. flow-data.dat

Reload Starting Position Integer
The index of the timestep where to start reading. If the keyword is not given the reading is started
from the first step in the file, or from the beginning of the reload range, if specified.

Reload Range Minimum Integer

Reload Range Maximum Integer
The beginning and the end of the reading range. The timesteps on the range are read in cyclically
if the current simulation has more timesteps than what there are on the range.
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Reload Reading Intervals Integer
Defines the interval for reading in old results, defaults to 1. An integer ¢ larger than 1 defines that
results are read in only on every ith timestep. However, consecutive steps are read in regardless
of the value of i.

Continuous Reading Logical True
When set to True the reload solution file is kept open also between the timesteps. However,
when reading is not started at the first solution step, or when the old solution is read in cyclically,
it is advicable to switch this feature off. Defining False will slow down reading especially
from large ASCII files.
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Runtime Control of the Input Data

Module name: ReloadIlnput

Module subroutines: ReloadInput
Module authors: Juha Ruokolainen
Document authors: Peter Raback
Document created: Februrary 5th 2003

37.1 Introduction

This subroutine is intended for cases where the user wants to have run-time control over the solution. The
control is obtained by reloading the command file (.sif-file) during the solution. This is done with on addi-
tional solver that is called similarly as any other solver during the solution process.

The most likealy usage of the solver is in cases where the user realizes during the solution process that
the some parameters were not optimally chosen. For example, the convergence critaria may have been set
too tight for optimal performance. Then the user may set looser criteria by editing the command file during
the computation. Once the new value is read the solver will apply the new criteria thereafter.

37.2 Limitations

The solver should not be used for things that need allocation. For example, the number of solvers or bound-
aries may not change. Also the computational mesh must remain the same.

37.3 Keywords

Solver solver id

Equation String "Reload"
The name of the equation. This is actually not much needed since there are no degrees of freedom
associated with this solver.

Procedure File "ReloadInput" "ReloadInput"
The name of the file and subroutine.
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Filtering Time-Series Data

Module name: FilterTimeSeries
Module subroutines: FilterTimeSeries
Module authors: Peter Raback
Document authors: Peter Riback
Document created: 13.2.2008
Document updated: 13.2.2008

38.1 Introduction

The module includes auxiliary utilities for filtering time-series data. Supported filters include various aver-
aging possibilities and Fourier series, for example. The solver does not introduce any new physics. However,
it may be useful in analyzing time-dependent data to be used in conjunction with time-harmonic models, or
in studying phenomena with different timescales (turbulence).

38.2 Theory

Mean of a function

The solver is built so that an estimate for the filtered data may be obtained at all times i.e. the normalizing
is done after each timestep. As an example let’s consider taking a simple mean over a period of time. The
starting point is the time averaged mean,

1 [T
< f>r= T/o f(t)dt. (38.1)

Its discrete counterpart assuming piecewise constant integration is
1 n
< fea= ' Z f; dt;, (38.2)
3

where T,, = Y dt;. Now this may be presented inductively as

Tnfl < f >n—1 +fndtn
<f> = 38.3
f Tn—l + dtrn ( )

T, = Th_1+dt,. (38.4)
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Weighted mean

It’s also possible to take a weighted mean with a user defined function g(¢) depending on time only. Then
similarly,

Tn—l < fg >n—1 +fngndtn

38.5
Tnfl + dtn ( )

<fg>n:

Fourier series

Using the weighted mean as starting point its possible to present the solution in terms of sine and cosine
series. In order to obtain normalized Fourier series components the function g is internally replaced by sine
and cosine functions defined as 2 sin(2wkwt) and 2 cos(2mkwt), where k is the degree of the term, and w is
the user defined frequency. After each full cycle the inner product then includes the Fourier coefficients and
the transient solution may hence be approximated by

f=~ Z s sin(2rkwt) + Z ¢k cos(2mkwt), (38.6)
k=1 k=1

where m4 and m,. are maximum degrees defined by the user.

Continuous average

Sometimes it may be useful that the new solution is given a relatively higher weight than the old solution.
This is achieved by relaxing the weight (elapsed time) related to the old solution by

Tho1 :=Tp_1exp(—dt,/T), (38.7)

where 7 is the time scale when decay to fraction 1/e is desired. If the decay time is short compared to the
overall simulation time this provides a continuous mean that represents only the recent results. The fraction
of the last timestep in solution will always be dt /.

Computing variances

It is not possible to compute the variance directly with one sweep as computing the variance from the
functional values requires the knowledge of the mean. However, computing the mean of the square of the
solution enables that the variance is computed a posteriori since the following holds for any field variable,

ol =< (f-<f>)?>=<fi> - < f>2. (38.8)
38.3 Keywords
Solver solver id
Procedure File "FilterTimeSeries" "FilterTimeSeries"

Variable i String
The names of the variables to be filtered. There can in principle be up to 99 variables. Note that
the keywords with the same i form a set which define one filtering. If the Variable is not
redefined the previously defined variable with a lower 1 is used.

Operator i String
Normally the variable is treated as its plain value. There are however different options for using
the field value in a modified manner. These include 1ength (L2 norm), abs, and square.

Start Time i Real
The start time for performing the integration. Note that for Fourier series this is used to reset the
zero time i.e. t :=t — tp.
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Stop Time 1 Real
The stop time for performing the integration.

Start Timestep 1 Integer
Sometimes its unpractical to compute the start time. For example, the start of the simulation
could include a starting strategy with a number of timesteps. Then the number of timesteps
that starts the averaging may be given by this keyword. Note that this keyword also activates
timestep-insensitive averaging.

Stop Timestep i Integer
The timestep number that ends the averaging.

Start Cycle i Real
Alternative way to give the start time for sine and cosine series. The start time is the inverse of
this.

Stop Cycle i Real
Alternative way to give the stop time for sine and cosine series.

Start Real Time Real
Start after given real wall-clock-time, rather than physical simulation time.

Start Real Time Fraction Real
Relative way of given start time when the Real Time Max keyword in Simulation block
is given.

Reset Interval i Real
The time interval at which the computation of a mean is reinitialized.

Decay Time i Real
The decay time 7 in computing continuous means.

Decay Timestep i1 Real
The number of timestep needed to perform averaging. If the timestep given is NV then the dacay of
the previous timesteps is done with exp(—1/N). Note that this keyword also activates timestep-
insensitive averaging.

Time Filter i Real

The function g(t) that may be used in computing the mean.

Sine Series i Integer
The number of terms in the sine series. Note that its possible to make a Fourier series only if the
target variable is a scalar. Its also possible to have only one sine or cosine series at a time.

Cosine Series 1 Integer
The number of terms in the cosine series.
Frequency 1 Integer
If using cosine or sine series the frequency must be given.

© CSC - IT Center for Science



Model 39

Rigid Mesh Transformation

Module name: RigidMeshMapper
Module subroutines: RigidMeshMapper
Module authors: Peter Raback
Document authors: Peter Riback
Document edited: 24.9.2009

39.1 Introduction

Sometimes there is a need to transform meshes without the need of generation a new mesh. The most
simple case is that of rigid mesh movement were some bodies move with prescribed rotations, translations
or scalings. Typically this could be a preprocessing step in a parametric study in some problem. Then this
solver may be used to perform the mesh transformation.

In addition to applying rigid transformations to bodies this solver includes also a relaxation parameter
which may be used to define which fraction of the mesh is taken from the suggested coordinates, and which
part from the original coordinates.

It should be noted that the usage of this solver is rather limited. It cannot handle cases where bodies
move in respect to one-another if there is a mesh between the bodies. Then the MeshUpdate solver should
be used instead.

39.2 Theory

Given original coordinate ¥ the solver applied first a rotation, then a translation, and finally a scaling
operator such that the suggested new coordinates yield

8

| = S(R(&y — 0) + 1) + 7, (39.1)

where t is the vector of translation, 0'is the origin, S the scaling matrix, and R is the rotation matrix. Rotation
may currently be performed only around one main axis.

39.3 Keywords

Solver solver id

Equation String [RigidMeshMapper]
The name of the equation.

Procedure File "RigidMeshMapper" "RigidMeshMapper"
The name of the procedure.
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Use Original Coordinates Logical
This keyword applied only to cases where the solver is called repeatedly. With this keyword
being true the mesh transformation is always applied to the original coordinates. Otherwise the
mesh transformation is performed recursively.

Body Force bf id
The mesh transformations are defined in this section.

Mesh Translate Real [f,l,t.]
The translational vector.

Mesh Rotate Real [a,a,0.]
The rotation around main coordinate directions.

Mesh Scale Real [s5,5,5.]
The scaling around of main directions.

Mesh Origin Real [0,0,0.]
The origin used in rotation and scaling.

Mesh Relax Real
The relaxation factor determining which amount of the coordinate transformation is taken into
account. This is a local field which may depend on coordinate values whereas the other above
keywords must be constant for each body force.
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Model 40

Internal cost function optimization

Module name: FindOptimum
Module subroutines: FindOptimum
Module authors: Peter Raback
Module status: Alpha

Document authors: Peter Raback
Document created: 18.3.2009
Document edited: 18.3.2009

40.1 Introduction

This solver is an auxiliary solver for optimization problems. As input it requires a cost function computed
with the previous parameter values, and as output it gives the new parameters for which the cost function will
be computed for. Typically the cost function depends on the solution of one or several differential equations.
Based an this solution a measure of goodness for the solution is computed.

The routine is still in its development phase but is provided as a skeleton that may be further developed.

40.2 Theory

The optimization routines must be sligthly modified from their standard form since the solver is not in a
ruling position in respect to the simulation. Therefore its difficult to plug in existing optimization packages
to this solver.

Currently the solver includes some very basic optimization routines. Of these the Simplex algorithm
(Nelder-Mead) and the differential GA (Genetic algorithm) are worth mentioning.

40.3 Keywords

Simulation

’

Simulation Type String
The natural mode used for optimization problems is scanning. If the problem is really time-
dependent the current internal solution is not probably the optimal solution.

"scanning”

Timestep Intervals Integer
The maximum number of optimization rounds is in the case of scanning defined by the timestep
intervals.

Solver solver id
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Equation String FindOptimum
A describing name for the solver.

Variable String OptPar
The name of the variable may be freely chosen as far as it is used consistently also elsewhere.

Variable DOFs Integer n
Degrees of freedom for the pressure. Here n should be equal to the number of parameters.

Variable Global I
ndicates the variable is a global one i.e. not a field variable. For global variables the number of
unknowns is the same as number of dofs.

Procedure File "FindOptimum" "FindOptimum"
The name of the module and procedure. These are fixed.

Optimization Method String
Choices are currently random, scanning, genetic, bisect and simplex.

Cost Function Name String
The name of the cost function that is a real stored in the Simulation list structure.

Optimal Restart Logical
Use the previous best set of parameters for the 1st round of cost function computation.

Optimal Finish Logical
Use the best set of parameters for the last round of cost function computation. This may be useful
as the last step is often also saved.

Best File File [best.dat]
The file were the best set of parameters is always saved.

Guess File File [best.dat]
The file were the best set of parameters is read in case of optimal restart.

Fixed Parameter i Logical
Is the i:th parameter fixed. Applies for some optimization routines.

Min Parameter i Real
Minimum value for i:th parameter. Applies for some optimization routines.

Max Parameter i Real
Maxium value for i:th parameter. Applies for some optimization routines.

Initial Parameter i Real
Initial value for i:th parameter if not given by the Optimal restart

Internal history Logical
Save the internal values within the solver.

History File File
The name of the file where the history data is saved.

Cost Function Offset Real
If the given cost function is C' use C' — () instead.

Cost Function Absolute Logical
If the given cost function is C use |C| instead.

Cost Function Opposite Logical
If the given cost function is C' use —C' instead.

The following keywords apply to the GA algorithm

Population Size Integer [5n]
Population Coefficient Real [0.7]

Population Crossover Real [0.1]
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The following keyords apply to the simplex algorithm

Simplex Relative Length Scale Real [0.01]
The relative length scale that determines the size of the 1st simplex.

Simplex Restart Interval Integer
The restart interval after which the simulation is restarted if the convergence is poor.

Simplex Restart Convergence Ratio Real
A critical value which is used to define a poor convergence ratio.

This shows just a couple of examples how the design parameters could be used in the simulation. The
variables may be referred in a similar manner as other global variables such as t ime or timestep size.

Body Force 1

Heat Source = Equals OptPar 1
End

Boundary Condition 1
Heat Flux = Equals OptPar 2
End
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accumulation, 88
AdvectionDiffusionSolver, 26
ArteryOutlet, 129
artificial compressibility, 116
Artificial Compressibility, 116

BEM, 79, 82

Boltzmann distribution, 69
boundary element method, 79, 82
boundary integral, 148
Boussinesq approximation, 19

capacitance matrix, 50
ChargeDensitySolver, 104
coating, 85
CompressibilityScale, 116
continuity equation, 117
current density, 53
curvature, 100

Darcy’s law, 20
delta function, 99
DFTSolver, 104

Dirichlet boundary condition, 10, 18, 27, 57, 61

domain integral, 148
drawing, 85

effective parameters, 42
ElectricForce, 144
Electrokinetics, 64
electrokinetics, 20
energy conservation, 9
energy method, 42
Eulerian, 98

filtering, 156
FilterTimeSeries, 156
FindOptimum, 161
FlowSolve, 17
fluid-structure interaction, 116
FluidicForce, 142
FluxSolver, 136

Fourier series, 156

free surface, 98
FreeSurfaceReduced, 85
FreeSurfaceSolver, 88

Gebhardt factors, 11, 13
Genetic algorithm, 161
GiD, 151

Gmsh, 151

Grashof convection, 18
Green’s function, 83

HeatSolve, 9

Heaviside function, 99
HelmholtzBEMSolver, 82
HelmholtzSolver, 46

induction equation, 60
integral equation, 79, 82

Joule heating, 10, 54
Knudsen number, 74

Lagrange multipliers, 127
Lagrangian, 98

latent heat, 92

level-set method, 98
LevelSet, 98
LevelSetCurvature, 98
LevelSetDistance, 98
LevelSetIntegrate, 98
LevelSetSolver, 98
LevelSetTimestep, 98
Linear Constraints, 127
Lorentz force, 18

MagneticSolver, 60
magnetohydrodynamics, 60
magnetostatics, 56

mass conservation, 85
Maxwell stress tensor, 112, 144
Maxwell’s equations, 49
melting point, 92

MeshSolver, 37
MovingElstatSolver, 112

natural convection, 18
Navier-Stokes equation, 17
Nelder-Mead, 161

Neumann boundary condition, 11
Newton iteration, 19
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Newtonian, 17 substantial surface, 88
non-Newtonian, 17 surface tension, 100
Ohm’s law, 53 variational inequality, 89
Open DX, 151 view factors, 13
Optimization, 161 VorticitySolver, 138
ortotropic, 42 VTK, 151
OutletCompute, 129 VTU, 151

perforated plate, 42 WaveFunctionSolver, 104

PhaseChangeSolve, 92

Picard iteration, 19

Poisson, 104

Poisson-Boltzmann equation, 20, 69
PoissonBEMSolver, 79
PoissonBoltzmannSolve, 69

porous media, 20

projection matrix, 108

reduced order model, 108
reinitialization, 98
ReloadData, 153
ReloadInput, 155
ReloadSolution, 153
Restart File, 153
ResultOutputSolve, 151
Reynolds equation, 73
ReynoldsHeatingSolver, 73
ReynoldsSolver, 73

rigid body movement, 112
RigidBodyReduction, 108
RigidMeshMapper, 159
run-time control, 155

SaveBoundary Values, 146
SaveData, 146

SaveLine, 146
SaveMaterials, 146
SaveScalars, 146
ScalarPotentialSolver, 140
signed distance, 98
SmitcSolver, 40
SolveWithLinearRestriction, 127
StatCurrentSolve, 53
StatCurrentSolver, 53
StatElecForce, 144
StatElecSolve, 49
StatElecSolver, 49
StatMagSolver, 56

Stefan boundary, 92
Stefan-Boltzmann constant, 11
Stokes stream function, 133
Streamlines, 133
StreamSolver, 133
StressSolve, 32
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