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ABSTRACT

The spectrum interpolation synthesis model has recently been
applied in the high quality synthesis of harmonic musical
sounds. In this work we investigate the performance of
the model in the compression of music signals. Efficient
methods for the automatic analysis, parameter extraction
and synthesis of musical signals are presented. The system
is tested on several examples of segments from wind and
bowed string instruments. It is found that typically a per-
ceived quality matching the original is obtained even when
large portions of the waveform are generated by interpola-
tion, implying that a high degree of compression is possi-
ble. Further, there is a graceful degradation in quality as the
extent of interpolation is increased which makes the model
well suited for use in a scalable audio coding framework.

1. INTRODUCTION

There are several musical instruments that generate nearly
harmonic sound spectra. Such sounds can be characterized
by a sequence of pitch cycle waveforms with shapes that
evolve slowly over time. This is true even of single instru-
ment notes where, during the sustain portion, the pitch is
generally steady but amplitude spectra change with time due
to the fact that the player exercises continuous control over
the course of the note. A suitable model for the compres-
sion of such musical signals should exploit the harmonicity
of the signal while allowing the efficient description of its
slowly time-varying spectrum. Analysis-synthesis based on
spectrum interpolation synthesis [1] offers such a model. In
the context of an audio coding scheme, a desired sound can
be analyzed, data reduced and streamed as a set of parame-
ters of the sound model.

Spectrum interpolation synthesis (SIS) belongs to the
class of wavetable synthesis methods. It uses a model based
on the interpolation of available amplitude spectra to repro-
duce short-time spectral variations. The ”wavetable” ampli-
tude spectra can be extracted by analysis of real instrument
sounds. While additive synthesis is more general, SIS pro-
vides an accurate representation of quasi-periodic sounds

which are naturally described in terms of pitch-cycle wave-
forms. The time varying controls exercised by the player
influence the instrument’s pitch cycle waveform shape [2].
The evolution of the waveform is represented by the ampli-
tudes of the spectral harmonics which may vary from period
to period.

In this paper we investigate the application of SIS for the
compression of harmonic musical signals. We describe the
implementation of analysis and synthesis algorithms based
on [1] and propose effective methods for automatic pitch ex-
traction, spectrum estimation and synthesis of musical sig-
nals generated by harmonic instruments. A new error cri-
terion is proposed for the selection of spectra for synthesis.
The musical signals we consider are generated by instru-
ments with discrete pitches. Since it is expected that fun-
damental frequency typically varies much less rapidly with
time than do the spectral amplitudes, interpolation of spec-
tral amplitudes can lead to considerable data reduction in
the signal representation. The system is tested on several
examples of music segments from wind and bowed string
instruments. It is found that the sound reconstructed from
the estimated fundamental frequency and harmonic ampli-
tudes for selected pitch periods matches the original even at
relatively high degrees of interpolation. Further, there is a
graceful degradation in quality as the proportion of selected
frames is decreased to achieve even higher compression.

The remainder of this paper is organized as follows. In
the next section an overview of the technique used for analy-
sis/synthesis for SIS is presented. In Section 3 pitch contour
extraction is explained. Analysis and synthesis using linear
spectral interpolation is described in Section 4. In Section
5 the performance of SIS in a scalable coding framework
is discussed. Finally conclusions and directions for future
work are presented.

2. OVERVIEW

Fig. 1 gives an overview of the steps involved for the au-
tomatic analysis/synthesis of harmonic signals using SIS.
Our input signals are 16-bit PCM signals at a sampling fre-
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quency of 16 kHz. The first step is to detect whether an
input frame of samples is harmonic, inharmonic or silence.
For harmonic frames, a pitch value is estimated for each
frame using a frequency-domain approach. Next a smooth
pitch contour for the signal is obtained using post-processing.
Based on the pitch value the signal is divided into constant-
pitch segments. The SIS technique is then applied sepa-
rately to each segment. Within a segment, the amplitude
spectrum for each pitch period is estimated using pitch-synchronous
DFT. From the set of DFT spectra a few are chosen based
on an error criterion. At the synthesizer linear interpolation
is used to reconstruct the remaining spectra. The synthesis
is done on a period-by-period basis by adding the outputs of
sinusoidal generators driven by the harmonic amplitudes.

Harmonic/inharmonic/si

Pitch estimation for 

Signal

lence detection

harmonic frames

Pitch contour smoothing
and segmentation

Compute amplitude 
spectrum of each pitch 
period

Select amplitude spectra

Synthesis from linear
interpolation of the 
selected spectra

based on error criterion

Figure 1: Steps in the analysis and synthesis of harmonic
signals with SIS.

3. PITCH CONTOUR EXTRACTION

Automatic extraction of fundamental frequency is a diffi-
cult problem and various techniques have been proposed in
the literature. These techniques can be broadly categorized
into - time-domain analysis, frequency-domain analysis and
hybrid which uses both time- and frequency- domain anal-
ysis. A study by Rabiner [4] concludes that although every
algorithm had it’s advantages and disadvantages, no algo-
rithm had distinctive lead over others. We have used a pitch-
adaptive frequency-domain approach for pitch estimation.

Before doing pitch detection for a frame harmonic/inha
rmonic/silence detection is done using autocorrelation of
the windowed signal (Eq. 1).

�(k) =

N�k�1X

n=0

x(n)x(n+ k) (1)

In the above equation k represents the kth lag and N is the
total number of samples in the windowed signal. If �(0) is
very small (close to 0) then silence is detected. If the ratio of
first peak (after �(0)) to �(0) is less than 0.4 then the frame
is declared as inharmonic, else it is declared as harmonic.
For the frames declared as inharmonic or silence a pitch
value of zero is assigned. For the frames declared as har-
monic the pitch is detected using the procedure explained
next.

3.1. Frequency-Domain Based Pitch Estimation

Frequency-domain techniques for pitch detection make use
of the fact that the spectra of periodic signals exhibit quasi-
harmonic spectral structures manifested by regularly spaced
peaks in the magnitude spectrum. We have used an adaptive
Hamming window for getting optimum time-frequency res-
olution. For the first frame, Hamming window of length
four times the pitch period corresponding to the minimum
frequency expected is chosen. For subsequent frames the
window size is adapted to four times the pitch period es-
timated for the previous frame. Four times is chosen for
resolving the peaks reliably in the spectra of the signal. The
estimate for frequency is obtained for every 100 samples
(6.25 ms at 16 kHz sampling rate). For the windowed sig-
nal 4096 point FFT is used for obtaining the spectra. At
sampling frequency of 16 kHz it corresponds to a frequency
resolution of 3.9 Hz. In the magnitude spectra peaks and
their corresponding bin numbers are obtained. The peaks
which are very weak relative to the highest peak value are
removed. The highest peak in the spectrum either corre-
sponds to the fundamental or to the harmonic of the under-
lying signal. If the ratio of bin number corresponding to the
highest peak(binhp) to the smallest bin number correspond-
ing to a peak(binsm) is within 0.2 of an integer then binsm
is chosen for the pitch candidate. The ratio for binhp with
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binsm+1 and binsm�1 is also obtained. Out of these three
ratios the one which is closest to an integer gives the bin
number corresponding to the fundamental of the windowed
signal. Thus an estimate of pitch is obtained for each input
frame.

3.2. Pitch Contour Smoothing

Once pitch period is estimated for all the frames, post pro-
cessing is carried to obtain a smooth pitch contour. Smooth-
ing is required to eliminate the pitch errors which generally
occur during the attack or release of a note or at the note
transition boundary. The pitch value of a frame is compared
with the previous and next frame pitch values. If the pitch
value is equal to that of one of the neighbouring frames then
it is retained otherwise it is set equal to that of the neigh-
bouring frame pitch value closest to it. This eliminates any
abrupt changes in the pitch contour which have occurred
for just one frame. After this first level of smoothing we
determine the number of consecutive frames having same
pitch value to obtain the distinct pitch segments in the given
signal. As we know both, the number of samples in each
frame and the pitch period, we can compute the number of
periods associated with a pitch value. In general for a har-
monic signal we obtain a set of distinct pitch values given
by ff1; f2; f3; ::::g and a set of number of periods associ-
ated with each pitch value given by fN1; N2; N3; ::::g. This
representation is useful in applying SIS technique to a har-
monic signal comprising of several notes. For additional
smoothing of the pitch contour we compare each of these
pitch values, say fk, to the neighbouring pitch values fk�1
and fk+1. If fk is greater than 100 Hz from both fk�1 and
fk+1 and the number of periods Nk associated with that fk
is also small, then fk is replaced by either of fk�1 and fk+1
whichever is closer. This is done to eliminate any spurious
pitch detected for a few frames which generally happens
during note transition. Fig. 2 shows the pitch contour of
a trumpet signal (an excerpt from Haydn trumpet concerto)
[2] both before and after smoothing.

4. SPECTRAL ANALYSIS AND SYNTHESIS

The spectral analysis of each constant-pitch segment is car-
ried out by pitch-synchronous DFTs. A pitch-synchronous
DFT over one pitch period provides the amplitude and phase
of each harmonic. The DFT of the ith period of the discrete
signal x(n) is defined by Eq. 2

X
(i)
h =

Pk�1X

n=0

x(iPk + n) exp�j2�hn=Pk (2)

0 � h � Pk � 1; 0 � i � Nk

Where Pk is the length of the period in number of samples
and Nk is the total number of periods in the k th segment of
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Figure 2: Pitch contour for a trumpet signal before and after
smoothing.

the signal. The pitch period can have a non-integer number
of samples, while we can take DFT of an integer number
of samples only. So we have taken the DFT of rounded-off
number of samples in one pitch period. By experimenting
with the synthetic signals with known spectral values, we
observed that the difference in actual spectral values and
those computed by this method is less than 0.5 db for the
significant harmonics. We calculate H harmonics, H �
(Pk � 1)=2, ignoring some higher harmonics. We evaluate
the sum given in Eq. 2 directly for each harmonic h, 1 �
h � H . The DFT’s result in a vector of amplitudes for each
pitch period of the segment.

S(i) = [a1(i); a2(i); ::::::; aH(i)] (3)

Where ah(i) = jX
(i)
h j. S(i) is called as spectrum measured

at ith period. The set of DFT spectra with their time indices,

f(n0; S
(0)); (n1; S

(1)); ::::; (nNk�1; S
(nNk�1))

, is called the spectral envelope of the tone. Where n i is the
starting time sample index of the ith period.

Once the spectra for all the periods in a segment are
available the successive spectra are sent to the synthesis
block. Since we are doing synthesis on a period-by-period
basis and the pitch period can have non-integer number of
samples, we have to keep track of the phases to ensure con-
tinuity in the synthesized signal [5]. For each distinct con-
stant pitch segment, say kth, the jth period of total Nk peri-
ods is synthesized using the Eq. 4. One period of the wave-
form is obtained by adding H sine waves, each scaled by
corresponding amplitude and the index m runs from stper
to endperj chosen in such a way that the period starts with
a non-negative sample and ends with a non-positive sample.
This can be ensured because the component sine waves go
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to zero both at the beginning and end of the period from the
same direction. Synthesis in this fashion also ensures the
continuity of the signal even when the change in amplitudes
is drastic.

x(m) =
H�1X

h=0

ahsin(
2�hm

Pk
+ �) (4)

For first period stper is equal to 0, while for the jth pe-
riod it is equal to endperj�1 + 1. The Eq. 4 is repeated
until all the Nk periods are synthesized. Since we cannot
exactly locate the pitch change position at the note transi-
tion boundary, we can not use the DFT values reliably for
synthesizing the transition part of the signal. So whenever
a note change is detected the last five periods for a segment
and first five periods of next segment are synthesized using
the amplitude values obtained by linear extrapolation from
neighbouring periods, instead of actual values. This ensures
smooth transition from one note to the other. From the index
of last sample for the kth segment the phase difference, cre-
ated from the synthesis of kth segment, is calculated using
Eq. 5.

�k = 2�(
1 + endperNk

� Pk �Nk

Pk
) (5)

The phase difference obtained for the kth segment is added
to the earlier phases to obtain the total phase (�) to be used
for the synthesis of next (k + 1th) segment. This whole
process is repeated till all the segments (that is the complete
waveform) are synthesized.

5. PERFORMANCE OF SIS

For the k th segment of the signal we have a list of Nk spec-
tra. To achieve compression we choose to transmitQk spec-
tra out of Nk based on an error criterion. At the synthesizer
the missing spectra are computed from the transmitted Qk

spectra using suitable interpolation. The interpolation be-
tween two spectra S(i) and S(j) (successive in the synthe-
sis) can be expressed in terms of their individual harmonics.

a
(ij)
h (n) = c(n)a

(i)
h + d(n)a

(j)
h (6)

ni � n < nj ; 1 � h � H

Since we have used linear interpolation from S (i) to S(j),
the effective spectrum at sample n is given by Eq. 7

S(ij)(n) = [1� sp(n)]S(i) + sp(n)S(j) (7)

Where sp(n) = n�ni
nj�ni

and ni � n < nj .
If the interpolated spectrum on period l is denoted by

S(ij)(l) = S(ij)(nl), where nl = lPk and i � l < j. Then
Eq. 7 can be rewritten in the form

a
(ij)
h (l) = a

(i)
h +

nl � ni
nj � ni

(a
(j)
h � a

(i)
h ) (8)

Comparing the amplitudes of the harmonics of the actual
spectrum S(l) with values given by Eq. 8 produces an error
E
(ij)
l . The error criterion given in [1] is sensitive to scal-

ing of spectral amplitudes. From Table 1 we can see that
for the same threshold error value (Emax) different number
of spectra are chosen for different scaling of spectral ampli-
tudes, implying a lack of robustness to changes in overall
sound level. This causes difficulty in choosing the value of
threshold error. To overcome this we have used a normal-
ized error criterion given in Eq. 9. Table 1 shows that for
the normalized error criterion the number of chosen spectra
is unaffected by the scaling of amplitudes for a fixed Emax

value.

E
(ij)
l =

PH
h=1(a

(ij)
h (l)� a

(l)
h )2

PH
h=1(a

(l)
h )2

(9)

The global error E (ij) within the spectral ramp S (ij) is de-
fined as

E(ij) =

j�1X

l=i+1

E
(ij)
l (10)

Name ASF N Emax Q Emax Q
(Non- (Norm.)
norm.)

flute1 1 872 0.5 56 0.05 68
flute2 2 872 0.5 84 0.05 68
flute3 3 872 0.5 117 0.05 68

Table 1: Comparison of error criteria

If the error E (ij) is less than the tolerated threshold Emax,
we extend the spectral ramp to the next period (j + 1) and
compute E(i;j+1). Otherwise we store the data defining the
previous spectral ramp S (i;j�1) and compute the next ramp
starting at spectrum (nj�1; S

(j�1)). In this way we have
the Qk spectra required for the synthesis of the tone.

The choice of threshold error determines the amount
of data reduction and the quality of reconstructed sound.
We can trade off the quality for bit rate by varying Emax.
So this also provides for the scalable coding of the har-
monic signals. Table 2 shows the results of applying lin-
ear spectral interpolation in a low bit rate scalable coding
framework. The flute signal has seven notes and signifi-
cant spectral variations. The clarinet signal has two distinct
notes and very slow and small spectral variations. The saxo-
phone signal has three notes with increasing pitch value and
has small but rapid spectral variations. The trumpet signal
has several notes and has both slow and rapid variations in
the pitch and spectral values. In Table 2, R is the ratio of
number of selected spectra to the total spectra, Q=N , ex-
pressed in percentage. BL stands for the base layer and
EL stands for enhancement layer. The base layer contains
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the spectra chosen using a high Emax value of 0.5. This
layer can provide a basic quality of the synthesized signal.
We have chosen two enhancement layers representing de-
creasing values of Emax (only the intermediate spectra are
stored). Segmental-SNR is calculated for measuring the ob-
jective quality of the synthesized signal. It is computed w.r.t
the waveform obtained by transmitting all the spectra to the
synthesizer. A segment length of 50 ms is chosen for the
computation. From the R values we can see that a signifi-
cant amount of data reduction is obtained for all the signals.
From the segmental SNR values we can see that the syn-
thesized signal is very close to the original signal - fact that
is further confirmed by listening. Further, there is a grace-
ful degadation in quality with decreasing R. BR gives a
rough estimate of bit rate computed by assuming that each
parameter is coded using a byte. The bit rate will be mainly
governed by the number of chosen spectra. So BR is pro-
portional to the number of spectra transmitted per second,
Q=duration, multiplied by the number of harmonics. For
obtaining some rough estimates for BR we have assumed
that the average number of harmonics per spectrum is 20
for a signal sampled at 16 kHz, since we do not expect rapid
pitch variations we have assumed that there are 10 pitch val-
ues to be sent per second, also the index of each transmitted
spectra (Q=duration per sec.) is coded by a byte. So BR is
given by 20�8� Q

duration+8� Q
duration+8�10. From the table

we can see that the base layer provides a coarse quality (low
SNR) of the synthesized signal while using more layers im-
proves the quality (higher SNR) of the synthesized signal at
the cost of higher bit rate (higher BR). The test signals can
be found at http : ==www:ee:iitb:ac:in=�prao=sis:htm:

Name Layer R BR SNR
(Duration) (%) (kbps) (dB)

flute BL+EL1+EL2 10.96 16.64 28.61
(3.45 sec.) BL+EL1 7.80 11.86 24.44

BL 4.64 7.09 20.37
clarinet BL+EL1+EL2 1.98 4.37 34.14

(3.92 sec.) BL+EL1 1.46 3.25 31.39
BL 0.95 2.14 28.75

saxophone BL+EL1+EL2 6.29 6.27 29.26
(10.47 sec.) BL+EL1 4.29 4.30 25.49

BL 2.28 2.33 21.81
trumpet BL+EL1+EL2 15.64 10.43 27.59

(6.46 sec.) BL+EL1 11.00 7.36 23.96
BL 6.37 4.29 19.90

Table 2: Results of SIS performance in scalable coding

6. CONCLUSIONS

The SIS model (originally proposed for the high quality
synthesis of harmonic musical sounds) has been explored
for the low bit-rate coding application. Automatic proce-
dures for the analysis, parameter extraction and synthesis of
harmonic musical sounds are presented. A new error crite-
rion is proposed for the reduction of spectral frames. Sub-
jective listening and segmental SNR indicate that high qual-
ity is achieved even with a large reduction in the number of
spectral frames. Further, there is a graceful degradation of
quality with increasing compression, making the technique
suitable for the scalable coding of music signals. Rough es-
timates of bit rate are provided for example segments from
wind instrument music. Further work is needed to address
the issues of parameter quantisation and of the proper han-
dling of transient and other non-harmonic sounds. (See [1],
[2] and [3]).
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