The MINIFP package®

Dan Luecking
2013/12/30

Abstract
This package provides minimal fixed point exact decimal arithmetic opera-
tions. ‘Minimal’ means numbers are limited to eight digits on either side of the
decimal point. ‘Exact’ means that when a number can be represented exactly
within those limits, it will be.

Contents

1 Introduction 2

2 User macros 4
2.1 Nonstack-based operations L. 5
2.2 Commands to process numbers for printing 8
2.3 Stack-based macros o 8
2.4 Errors 12

3 Implementation 12
3.1 Utility macros e 12
3.2 Processing numbers and the stack 14
3.3 The user-level operations 19
3.4 The internal computations L. 23
3.5 Commands to format for printing 35
3.6 Miscellaneous 38

4 Extras 39
4.1 Loading theextras 40
4.2 Error messages i e e e e 41
4.3 Sineand Cosine 43
4.4 Polarangle 48
4.5 Logarithms 52
4.6 Powers 55
4.7 Thesquare rooto 60
4.8 Random numbers 64

*This file has version number v0.96., last revised 2013/12/30. The code described here was
developed by Dan Luecking.

1 Introduction

In working on an application that needed to be able to automatically generate nu-
meric labels on the axes of a graph, I needed to be able to make simple calculations
with real numbers. What TEX provides is far too limited. In fact, its only native
user-level support for real numbers is as factors for dimensions. For example one
can “multiply” 3.1 x 0.2 by the following: \dimen0=0.2pt \dimen0=3.1\dimenO.

Unfortunately TEX stores dimensions as integer multiples of the “scaled points”
(sp) with sp = 270pt, and therefore .2pt is approximated by 2197 which is not

. . 40631 65536 2 . .
exact. Then mutiplying by 3.1 produces If we ask TEX to display this, it

produces 0.61998pt and not the exact valgg%(?‘()?. This is sufficiently accurate for
positioning elements on a page, but not for displaying automatically computed
axis labels if five digit accuracy is needed.

The MINIFP package was written to provide the necessary calculations with the
necessary accuracy for this application. The implementation would have been an
order of magnitude smaller and faster if only four digit accuracy were provided
(and I may eventually do that for the application under consideration), but I have
decided to clean up what I have produced and release it as is. The full MINIFP
package provides nearly the same operations as a subset of the FP package, but the
latter carries calculations to 18 decimal places, which is far more than necessary
for my purposes. I want something small and fast to embed in the MFPIC drawing
package.

I decided on eight digits on both sides of the decimal point essentially because I
wanted at least five digits and the design I chose made multiples of four the easiest
to work with.

MINIFP also provides a simple stack-based language for writing assembly
language-like programs. Originally, this was to be the native calculation method,
but it turned out to be too unwieldy for ordinary use. I left it in because it adds
only about 10% overhead to the code.

But why only eight digits? TEX only works with integers, and since the maxi-
mum integer allowed is about 2 000 000 000, the largest numbers that can be added
are limited to about 999 999 999. It is very little trouble to add numbers by adding
their fractional parts and integer parts separately as 9-digit integers. So it would
seem multiples of 9 digits would be easy to implement.

However, something we have to do repeatedly in division is multiply the integer
and fractional parts of a number by a one-digit number. For that purpose, nine
digits would be too much, but eight digits is just right. For nine digits, we would
have to inconveniently break the number into more than two parts. Limiting our
numbers to eight-digit parts drastically simplifies division.

Another simplification: multiplication has to be done by breaking the number
into parts. TEX can multiply any two 4-digit integers without overflow, but it
cannot multiply most pairs of 5-digit integers. Two 8-digit numbers conveniently
break into four 4-digit parts. To get even nine digits of accuracy would require six
parts (five, if we don’t insist on a separation occuring at the decimal point). The
complexity of the multiplication process goes up as the square of the number of
parts, so six parts would more than double the complexity.

A final simplification: TEX places a limit of nine on the number of arguments
a macro can have. Quite often the last argument is needed to clear out unused
text to be discarded. Thus, a string of eight digits can quite often be processed
with one execution of one nine-argument macro.

Addition and subtraction can be exact, multiplication and division can extend
numbers past the 8-digit limit so they might be rounded. However, when the exact
answer fits in the 8-digit limit, our code should produce it. Overflow (in the sense
that the integer part can exceed the allowed eight digits) is always possible, but is
much more likely with multiplication and division.

Multiplication is carried out internally to an exact answer, with 16 digits on
each side of the decimal point. The underflow digits (places 9 through 16 after the
decimal point) are used to round to an 8-digit result. Overflow digits (those to
the left of the lowest 8 in the integer part) are discarded, usually without warning.
Division is internally carried to nine digits after the decimal, which is then also
rounded to an 8-digit result. Overflow digits are ignored for division also.

We supply two kinds of operations in this package. There are stack-based oper-
ations, in which the operands are popped from a stack and the results pushed onto
it, and argument-based, in which the operands (and a macro to hold the result!)
are arguments of a macro. Both types load the arguments into internal macros
(think of them as “registers”), then call internal commands (think “microcode”)
which return the results in internal macros. These results are then pushed onto
the stack (stack-based operations) or stored in a supplied macro argument (think
“variable”). The difference lies entirely in where the operands come from (argu-
ments or stack) and where they go (macro or stack).

The stack is implemented as an internal macro which is redefined with each
command. The binary operations act on the last two pushed objects in the order
they were pushed. For example, the sequence “push 5, push 3, subtract” performs
5 — 3 by popping 3 and 5 into registers (thereby removing them from the stack),
subtracting them and then pushing the result (2) onto the stack.

Our implementation of the push operation first prepares the number in a stan-
dard form. Thus, stack-based operations always obtain numbers in this form. The
argument based operations will prepare the arguments in the same way. The in-
ternal commands will thus have a standard form to operate on. All results are
returned in standard form.

The standard form referred to above is an integer part (one to eight digits
with no unnecessary leading zeros nor unnecessary sign) followed by the decimal
point (always a dot, which is ASCII 46), followed by exactly eight digits, all of
this preceded by a minus sign if the number is negative. Thus, ——0.25 would be
processed and stored as “0.25000000” and —.333333 as “-0.33333300”.

1Unlike most other packages for decimal arithmetic, MINIFP puts the macro to hold the result
last. This allows the calculation to be performed before the macro is even read, and this makes
it somewhat easier for the stack- and argument-based versions to share code.

2 User macros

MINIFP provides (so far) six binary operations (that act on a pair of numbers):
addition, subtraction, multiplication, division, maximum and minimum, as well
as fourteen unary operations (that act on one number): negation, absolute value,
doubling, halving, integer part, fractional part, floor, ceiling, signum, squaring, in-
crement, decrement and inversion. With the “extra” option, the unary operations
sine, cosine, logarithm, powers, square root and random number are available, and
the binary operation angle. See section 4.
These extra operations are made available using the extra option in ETEX:

\usepackage [extral {minifp}

In plain TEX, they will be loaded if you give the macro \MFPextra a definition
(any definition) before inputting minifp.sty:
\def\MFPextra{} \input minifp.sty

The extras can also be loaded by means of the command \MFPloadextra, issued
after minifp.sty is loaded. As of version 0.95 mfpextra can be directly \input.
It will detect whether minifp.sty has been loaded and input it if not. This will
work only in plain TEX.

If the extra operations are not needed, some memory and time might be saved
by using minifp.sty alone. I have not seriously tried to keep mfpextra.tex as
small or fast as possible, but I do try to improve the accuracy when I can.

As previously mentioned, each of these operations come in two versions: a
version that acts on operands and stores the result in a macro, and a version that
acts on the stack. The former all have names that begin \MFP and the latter begin
with \R. The former can be used anywhere, while the latter can only be used in
a “program”. A program is started with \startMFPprogram and terminated with
\stopMFPprogram. The R in the names is for ‘real’. This is because it is possible
that stacks of other types will be implemented in the future.

For example, \MFPadd{1.2}{3.4}\X will add 1.20000000 to 3.40000000 and
then define \X to be the resulting 4.60000000. These operand forms do not alter
or even address the stack in any way. The stack-based version of the same operation
would look like the following:

\Rpush{1.2}

\Rpush{3.4}

\Radd

\Rpop\X
which would push first 1.20000000 then 3.40000000 onto the stack, then replace
them with 4.60000000, then remove that and store it in \X. Clearly the stack is
intended for calculations that produce a lot of intermediate values and only the
final result needs to be stored.

The command \startMFPprogram starts a group. That group should be ended
by \stopMFPprogram. Changes to the stack and defined macros are local to that
group. Thus the macro \X in the example above might seem to be useful only as
a temporary storage for later calculations in the same program group. However,
there are commands provided to force such a macro to survive the group, and

even to force the contents of the stack to survive the group (see the end of subsec-
tion 2.3). Do not try to turn a MINIFP program into a HTEX environment. The
extra grouping added by environments would defeat the effects of these commands.

2.1 Nonstack-based operations

In the following tables, an argument designated (num) can be any decimal real
number with at most 8 digits on each side of the decimal point, or it can be a
macro that contains such a number. If the decimal dot is absent, the fractional
part will be taken to be zero, if the integer part or the fractional part is absent, it
will be taken to be zero. (One consequence of these rules is that all the following
arguments produce the same internal representation of zero: {0.0}, {0.}, {.0},
{03}, {.}, and {}.) Spaces may appear anywhere in the (num) arguments and
are stripped out before the number is used. For example, {3 . 1415 9265} is a
valid argument. Commas are not permitted. The decimal point must be ASCII
46 (variously called a dot, period, or fullstop) with category 12 (‘other’). If an
input encoding is used that allows more than one ‘dot’, the user must be sure to
enter this one. If some babel language definitions make it a shorthand, it must be
inactivated before use.

The \macro argument is any legal macro. The result of using one of these
commands is that the macro is defined (or redefined, there is no checking done)
to contain the standard form of the result. If the (num) is a macro, the braces
surrounding it are optional.

Binary Operations

Command

operation

\MFPadd{(numi) {nums)}\macro
\MFPsub{(num;) }H(numsy)}\macro
\MFPmul{(num;)} (nums)}\macro

\MFPmpy{(numi) H{nums)}\macro
\MFPdiv{(num;) {{nums)}\macro

\MFPmin{(num;)} (numsy)}\macro
\MFPmax{(num;)} (nums)}\macro

Stores the result of (num,) + (numg) in \macro
Stores the result of (num;) — (nums) in \macro
Stores the result of (num;) X (nums), rounded to
8 places after the decimal point, in \macro

Same as \MFPmul

Stores the result of (numy)/(nums), rounded to 8
places after the decimal point, in \macro

Stores the smaller of (numy) and (nums) in \macro
Stores the larger of (numy) and (numsz) in \macro

Unary Operations

Command operation
\MFPchs{(num)}\macro Stores —(num) in \macro.
\MFPabs{(num)}\macro Stores |(num)| in \macro.
\MFPdb1{(num)}\macro Stores 2 x (num) in \macro.

\MFPhalve{{num)}\macro

\MFPint{(num)}\macro
\MFPfrac{(num)}\macro

\MFPfloor{(num)}\macro

\MFPceil{{num)}\macro
\MFPsgn{(num)}\macro

\MFPsq{(num)}\macro
\MFPinv{(num)}\macro

\MFPincr{(num)}\macro
\MFPdecr{({num)}\macro
\MFPzero{(num)}\macro
\MFPstore{(num)}\macro

Stores (num)/2, rounded to 8 places after the decimal
point, in \macro.

Replaces the part of (num) after the decimal point with
zeros (keeps the sign unless the result is zero) and stores
the result in \macro.

Replaces the part of (num) before the decimal point with
zero (keeps the sign unless the result is zero) and stores
the result in \macro.

Stores the largest integer not more than (num) in
\macro.

Stores the smallest integer not less than (num) in \macro.
Stores —1, 0 or 1 (in standard form) in \macro according
to whether (num) is negative, zero, or positive.

Stores the square of (num) in \macro.

Stores 1/{num), rounded to 8 places after the decimal
point, in \macro.

Stores (num) + 1 in \macro.

Stores (num) — 1 in \macro.

Ignores (num) and stores 0.00000000 in the \macro.
Stores the (num), converted to standard form, in \macro

The command \MFPzero is useful for “macro programs”. If you want to do
something to a number depending on the outcome of a test, you may occasionally
want to simply absorbed the number and output a default result. This is more
efficient than multiplying by zero (but less efficient than simply defining the \macro

to be zero.)

Note that one could easily double, halve, square, increment, decrement or invert
a (num) using the binary versions of \MFPadd, \MFPsub, \MFPmul or \MFPdiv. The
commands \MFPdbl, \MFPhalve, \MFPsq, \MFPincr, \MFPdecr and \MFPinv are
designed to be more efficient versions, since they are used repeatedly in internal

code.

Also, multiplication is far more efficient than division, so even if you use the
two argument versions, \MFPmul{(num)}{.52} is faster than \MFPdiv{(num)}{2}.
There is one command that takes no argument and returns no value:

Do Nothing
Command operation
\MFPnoop Does nothing.

The following are not commands at all, but macros that contain convenient

constants.

Constants

Constant value

\MFPpi 3.14159265, the eight-digit approximation to x.

\MFPe 2.71828183, the eight-digit approximation to e.

\MFPphi 1.61803399, the eight-digit approximation to the golden ratio ¢.

There also exist commands to check the sign of a number and the relative size
of two numbers:

\MFPchk{(num)}
\MFPcmp{ (numj) H {nums)}

These influence the behavior of six commands:

\IFneg{(true text)}{(false text)}
\IFzero{(true text)}{(false text)}
\IFpos{(true text)}{(false text)}
\IF1t{(true text)}(false text)}
\IFeq{(true text)}{(false text)}
\IFgt{(true text)}{(false text)}

Issuing \MFPchk{\X} will check the sign of the number stored in the macro \X.
Then \IFneg{A}{B} will produce ‘A’ if it is negative and ‘B’ if it is zero or positive.
Similarly, \MFPcmp{\X}{1} will compare the number stored in \X to 1. Afterward,
\IF1t{A}{B} will produce ‘A’ if \X is less than 1 and ‘B’ if \X is equal to or greater
than 1.

If users finds it tiresome to type two separate commands, they can easily define
a single command that both checks a value and runs \IF.... For example

\def\IFisneg#1{\MFPchk{#1}\IFneg}

Used like

\IFisneg{\X}{A}{B}
this will check the value of \X and run \IFneg on the pair of alternatives that
follow.

The user might never need to use \MFPchk because every one of the operators
provided by the MINIFP package runs an internal version of \MFPchk on the result
of the operation before storing it in the \macro. For example, after \MFPzero
the command \IFzero will always return the first argument. For this reason one
should not insert any MINIFP operations between a check/compare and the \IF. ..
command that depends on it.

Note: the behavior of all six \IF... commands is influenced by both
\MFPchk and \MFPcmp. This is because internally \MFPchk{\X} (for example)
and \MFPcmp{\X}{0} do essentially the same thing. In fact there are only three
internal booleans that govern the behavior of the six \IF... commands. The
different names are for clarity: \IFgt after a compare is less confusing than the
entirely equivalent \IFpos.

It should probably be pointed out that the settings for the \IF... macros are
local to any TEX groups they are contained in.

2.2 Commands to process numbers for printing

After \MFPadd{1}{2}\X one can use \X anywhere and get 3.00000000. One might
may well prefer 3.0, and so commands are provided to truncate a number or round
it to some number of decimal places. Note: these are provided for printing and they
will not invoke the above \MFPchk. They do not have any stack-based versions.
The commands are

\MFPtruncate{(int)}{ (num)}\macro

\MFPround{ (int)}{(num)}\macro

\MFPstrip{{num)}\macro
where (int) is a whole number between —8 and 8 (inclusive). The other two
arguments are as before.

These commands merely process (num) and define \macro to produce a trun-
cated or rounded version, or one stripped of trailing zeros, or one with added
trailing zeros. Note that truncating or rounding a number to a number of digits
greater than it already has will actually lengthen it with added zeros. For ex-
ample, \MFPround{4}{3.14159}\X will cause \X to be defined to contain 3.1416,
while \MFPround{6}{3.14159}\X will cause \X to contain 3.141590. If \Y con-
tains 3.14159, then \MFPtruncate{4}\Y\Y will redefine \Y to contain 3.1415.
Also, \MFPstrip{1.20000000}\Z will cause \Z to contain 1.2. All these com-
mands first normalize the (num), so any spaces are removed and redundant signs
are discarded.

If (int) is negative, places are counted to the left of the decimal point and Os
are substituted for lower order digits. That is, \MFPtruncate{-2}{1864.3}\X will
give \X the value 1800 and \MFPround{-2}{1864}\X will give \X the value 1900.

If the first argument of \MFPround or \MFPtruncate is zero or negative then
the dot is also omitted from the result. If \MFPstrip is applied to a number with
all zeros after the dot, then one 0 is retained. There is a star form where the dot
and the zero are dropped.

For these three commands, the sign of the number is irrelevant. That is, the
results for negative numbers are the negatives of the results for the absolute values.
The processing will remove redundant signs along with redundant leading zeros:
\MFPtruncate{-3}{-+123.456} will produce 0. The rounding rule is as follows:
round up if the digit to the right of the rounding point is 5 or more, round down
if the digit is 4 or less.

2.3 Stack-based macros

The stack-based macros can only be used in a MINIFP program group. This group
is started by the command \startMFPprogram and ended by \stopMFPprogram.
None of the stack-based macros takes an argument, but merely operate on values on
the stack, replacing them with the results. There are also commands to manipulate
the stack and save a value on the stack into a macro. Finally, since all changes
to the stack (and to macros) are local and therefore lost after \stopMFPprogram,
there are commands to selectively cause them to be retained.

To place numbers on the stack we have \Rpush and to get them off we have

\Rpop. The syntax is

\Rpush{(num)}

\Rpop\macro
The first will preprocess the (num) as previously discussed and put it on the stack,
the second will remove the last number from the stack and define the given macro
to have that number as its definition.

All the binary operations remove the last two numbers from the stack, operate
on them in the order they were put on the stack, and push the result on the stack.
Thus the program

\Rpush{1.2}
\Rpush{3.4}
\Rsub

will first put 1.20000000 and 3.40000000 on the stack and then replace them
with -2.20000000. Note the order: 1.2 — 3.4.

Binary Operations

Command operation

\Radd Adds the last two numbers on the stack.

\Rsub Subtracts the last two numbers on the stack.

\Rmul Multiplies the last two numbers on the stack, rounding to 8 decimal
places.

\Rmpy Same as \Rmul.

\Rdiv Divides the last two numbers on the stack, rounding to 8 decimal
places.

\Rmin Replaces the last two elements on the stack with the smaller one.

\Rmax Replaces the last two elements on the stack with the larger one.

The unary operations replace the last number on the stack with the result of
the operation performed on it.

Unary Operations

Command operation

\Rchs Changes the sign.

\Rabs Obtains the absolute value.

\Rdbl Doubles the value.

\Rhalve Halves the value, rounding to 8 places.

\Rint Replaces the fractional part with zeros. If the result equals 0.0,
any negative sign will be dropped.

\Rfrac Replaces the integer part with 0. If the result equals 0.0, any
negative sign will be dropped.

\Rfloor Obtains the largest integer not greater than the number.

\Rceil Obtains the smallest integer not less than the number.

\Rsgn Obtains —1, 0 or 1 according to whether the number is negative,
zero, or positive. These numbers are pushed onto the stack with
the usual decimal point followed by 8 zeros.

\Rsq Obtains the square. Slightly more efficient than the equivalent
\Rdup\Rmul. See below for \Rdup.

\Rinv Obtains the reciprocal. Slightly more efficient than the equivalent
division.

\Rincr Increases by 1. Slightly more efficient than the equivalent addition.

\Rdecr Decreases by 1. Slightly more efficient than the equivalent subtrac-
tion.

\Rzero Replaces the number with zero. Slightly more convenient than the

equivalent \Rpop\X followed by a \Rpush{0}.

There is one operation, which does not read the stack nor change it (nor do

anything else).

Do Nothing
Command operation
\Rnoop Does nothing.

There also exist commands to check the sign of the last number, and the relative
size of the last two numbers on the stack:

\Rchk
\Rcmp

They do not remove anything from the stack. Just like the nonstack counterparts,
they influence the behavior of six commands: \IFneg, \IFzero, \IFpos, \IF1lt,
\IFeq and \IFgt. Issuing \Rchk will check the sign of the last number on the
stack, while \Rcmp will compare the last two in the order they were pushed. For
example, in the following

\Rpush{1.3}

\Rpush{-2.3}

\Rcmp

\IFgt{\Radd}{\Rsub}

\Rpush\X

10

\Rchk
\IFneg{\Radd}{\Rsub}

\Rcmp will compare 1.3 to —2.3. Since the first is greater than the second, \IFgt
will be true and they will be added, producing —1.0. Following this the contents
of the macro \X are pushed, it is examined by \Rchk and then either added to or
subtracted from —1.0.

The user might never need to use \Rchk because every operator that puts
something on the stack also runs \Rchk. In the above program, in fact, \Rchk is
redundant since \Rpush will already have run it on the contents of \X.

There exist stack manipulation commands that allow the contents of the stack
to be changed without performing any operations. These are really just conve-
niences, as there effects could be obtained with appropriate combinations of \Rpop
and \Rpush. These commands, however, do not run \Rchk as \Rpush would.

Stack Manipulations

Command operation

\Rdup Puts another copy of the last element of the stack onto the
stack.

\Rexch Exchanges the last two elements on the stack.

After \stopMFPprogram, any changes to macros or to the stack are lost, unless
arrangements have been made to save them. There are four commands provided.
Two act on a macro which is the only argument, the other two have no arguments
and act on the stack. The macro must simply contain a value, it cannot be more
complicated and certainly cannot take an argument.

Ezxporting changed values

Command operation

\Export\macro Causes the definition of \macro to survive the program group.
\Global\macro Causes the definition of \macro to be global.

\ExportStack Causes the contents of the stack to survive the program group.
\GlobalStack Causes the contents of the stack to be global.

The difference between \Export and \Global is solely in how other grouping
is handled. If the program group is contained in another group (for example,
inside an environment), then the result of \Global\X is that the definition of
\X survives that group (and all containing groups) as well. On the other hand,
after \Export\X, then the definition survives the program group, but not other
containing groups.

If TEX grouping is used inside a program group, then using \Export inside
that group has no effect at all, while \Global works as before.

The stack versions are implemented by running \Export or \Global on the
internal macro that defines the stack, so they have the same behavior.

11

2.4 Errors

If one tries to pop from an empty stack, an error message will be issued. Ignoring
the error causes the macro to have the value stored in the macro \EndofStack.
Its default is 0.00000000.

If one tries to divide by zero, an error message will be issued. Ignoring the
error causes the result to be one of the following:

— Dividing 0 by 0 gives a result whose integer part is stored in \ZeroOverZeroInt
and whose fractional part is stored in \ZeroOverZeroFrac. The default is
0.00000000

— Dividing a nonzero xz by 0 gives a result whose integer part is stored in
\x0OverZeroInt and whose fractional part is stored in \xOverZeroFrac. The
defaults are both equal to 99999999. The sign of the result will be the sign of
x.

You can change any of these macros, but make sure they produce a result
which is a number in standard form (as described earlier). These macros are
copied directly into the result without checking. Then further processing steps
may require the result to be a number in standard form.

Error messages may result from trying to process numbers given in incorrect
format. However, there are so many ways for numbers to be incorrect that this
package does not even try to detect them. Thus, they will only be caught if some
TEX operation encounters something it cannot handle. (The WTEX manual calls
these “weird errors” because the messages tend to be uninformative.) Incorrectly
formed numbers may even pass unnoticed, but leave unexpected printed characters
on the paper, or odd spacing.

3 Implementation

3.1 Utility macros

We announce ourself, and our purpose. We save the catcode of @ and change it
to letter. Several other catcodes are saved and set to other in this file. We also
make provisions to load the extra definitions, either directly with \MFPloadextra
or through a declared option in IXTEX.

1 (xsty)

2 \expandafter

3 \ifx \csname MFP@finish\endcsname\relax
4 \else \expandafter\endinput \fi

5 \expandafter\edef\csname MFPQ@finish\endcsname{,
6 \catcode64=\the\catcode64 \space

7 \catcoded46=\the\catcode46 \space

8 \catcode60=\the\catcode60 \space

9 \catcode62=\the\catcode62 \spacel}/

10 \ifx\ProvidesPackage\UndEf InEd

11 \newlinechar‘\~"J}

12 \message{/

12

13 Package minifp: \MFPfiledate\space v\MFPfileversion. %

14 Macros for real number operations %

15 ~~Jand a stack-based programing language.”"J}/

16 \else

17 \ProvidesPackage{minifp} [\MFPfiledate\space v\MFPfileversion. %
18 Macros for real number operations %

19 and a stack-based programing language.l’

20 \DeclareOption{extra}{\def\MFPextra{}}/
21 \ProcessOptions\relax

22 \fi

23 \catcode64=11

24 \ifx\MFPextra\UndEfInEd

25 \def\MFP@loadextra{l}/,

26 \else

27 \def\MFP@loadextra{\input mfpextra\relax}/,
28 \fi

29 \def\MFPloadextra{\input mfpextra\relax}’
30 \catcode46=12

31 \catcode60=12

32 \catcode62=12

We check for WTEX (ignoring I¥TEX209); \MFPQifnoLaTeX...\MFP@end is
skipped in IXTEX and executed otherwise.

33 \long\def\gobbleto@MFP@end#1\MFP@end{}%
34 \def \MFP@end{\@empty}/

35 \ifx\documentclass\UndEfInEd

36 \def\MFPQifnoLaTeX{}V

37 \else

38 \let\MFP@ifnoLaTeX\gobbleto@MFPQend
39 \fi

We have IMTEX’s \zap@space. It pretty much must be used inside \edef or
other purely expansion context. The rest of these are standard ITEX internals.
Note that the token list that \zap@space is applied to should probably never
contain braces or expandable tokens.

Usage: \edef\X{\zap@space<tokens> \Qempty}

The space is necessary in case none exist; the \@empty terminates the loop.

40 \let\@xp\expandafter

41 \def\@XP{\@xp\@xp\0xpl}’

42 \MFP@ifnoLaTeX

43 \def\@empty{}%

44 \long\def\@gobble#1{}/

45 \def\zap@space#1l #2{#1\ifx#2\@empty\else\@xp\zap@space\fi#2}}
46 \long\def\@ifnextchar#1#2#3{J,

47 \let\reserved@d#1Y

48 \def\reserved@a{#2}/,

49 \def\reserved@b{#31}J,

50 \futurelet\@let@token\@ifnch},
51 \def\@ifnch{¥%

52 \ifx\@let@token\@sptoken

13

53 \let\reserved@c\@xifnch

54 \else

55 \ifx\@let@token\reserved@d

56 \let\reserved@c\reserved@a

57 \else

58 \let\reserved@c\reserved@b

59 \fi

60 \fi

61 \reserved@c}/,

62 {%

63 \def\:{\global\let\@sptoken= }\: %
64 \def\:{\@xifnch}\@xp\gdef\: {\futurelet\@let@token\@ifnchl}y,
65 Y%

66 \def\@ifstar#1{\@ifnextchar*{\@firstoftwo{#1}}}%
67 \long\def\@firstofone #1{#1}/,

68 \long\def\@firstoftwo #1#2{#1}}

69 \long\def\@secondoftwo#1#2{#2}J

70 \MFP@end

We need to divide by both 10* and 108 several times. I could have allocated two
count registers, but have taken the approach of reserving those for intermediate
calculations.

71 \def\MFP@tttfour {10000}), ttt = Ten To The
72 \def\MFP@ttteight{100000000}Y%

These are for manipulating digits. The \...ofmany commands require a se-
quence of arguments (brace groups or tokens) followed by \MFP@end. The minimum
number of required parameters is surely obvious. For example, \MFP@ninthofmany
must be used like

\MFP@ninthofmany(9 or more arguments)\MFPQend
All these are fully expandable.

73 \def \MFP@oneofmany#1#2\MFP@end{#11}7,

74 \def \MFPQfifthofmany#1#2#3#4#5#6\MFPQend{#5}/,

75 \def \MFP@ninthofmany#1#2#3#4#5#6#7#8{\MFPQoneofmany}’%

76 \def\MFPQeightofmany#1#2#3#4#5#6#7#8#9\MFPQend{#1#2#3#4#5#6#7#8}7,

3.2 Processing numbers and the stack

Our stack stores elements in groups, like
{-1.234567890}{0.00001234}\MFPQeos

with an end marker. The purpose of the marker is to prevent certain parameter

manipulations from stripping off braces. This means we can’t use \@empty to test

for an empty stack. At the moment, only \Rpop actually checks, but all other

stack commands (so far) use \Rpop to get their arguments.

77 \let\MFP@eos\relax

78 \def \MFP@EOS{\MFPQeos}/

79 \def \MFP@initRstack{\def \MFPORstack{\MFPQeos}}%

80 \MFP@initRstack

14

Define some scratch registers for arithmetic operations. We don’t care that
these might be already in use, as we only use them inside a group. However, we
need one counter that will not be messed with by any of our operations. I must
be sure not to use commands that change \MFP@loopctr in code that depends on
it.

81 \countdef \MFPQtempa
82 \countdef \MFPQ@tempb
83 \countdef \MFP@tempc
84 \countdef \MFPQtempd
85 \countdef \MFPQtempe
86 \countdef \MFP@tempf 10
87 \newcount \MFP@loopctr

0 o N O

The following can only be used where unrestricted expansion is robust. It will
allow results obtained inside a group to survive the group, but not be unrestrictedly
global. Example: the code

\MFPQendgroup@after{\def\noexpand\MFP0z@Val{\MFPQ@z@Val}}
becomes

\edef\x{\endgroup\def\noexpand\MFP@z@Val{\MFP@z@Vall}}\x
which gives, upon expansion of \x,

\endgroup\def \MFP@z@Val{(erpansion-of-\MFPQz@Val)}
which defines \MFP@z@Val outside the current group to equal its expansion within
the current group (provided the group was started with \begingroup).

We define a \MFP@returned@values to make all the conceivable produced val-
ues survive the group. The \MFPcurr@Sgn part is to permit testing the sign of the
result and allow conditional code based on it.

I have been lax at making sure \MFP@z@0vr is properly initiallized and properly
checked whenever it could be relevant, and properly passed on. I think every
internal command \MFP@Rzzz should ensure it starts being zero and ends with a
numerical value. At one time division could leave it undefined.

\MFP@subroutine executes its argument (typically a single command) with a
wrapper that initializes all the macros that might need initializing, and returns
the necessary results.

88 \def \MFP@endgroupQafter#i{\edef\x{\endgroup#1}\x}/
89 \def \MFP@afterdef{\def\noexpand}y,

90 \def\MFP@returned@values{/,

91 \MFPQafterdef\MFP@z@Val{\MFPQ@z@Sign\MFP@z@Int . \MFPQzQ@Frc}/,
92 \MFP@afterdef\MFP@z@0Ovr{\MFP@z@0Ovr}/

93 \MFPQafterdef \MFP@z@Und{\MFP@z@Und}’

94 \MFPQafterdef\MFPcurr@Sgn{\MFPQ@z@Sgn}1}/,

95 \def \MFP@subroutine#1{%

96 \begingroup

97 \MFP@Rzero

98 \def \MFP@z@0Ovr{0}%

99 \def \MFP@z@Und{0}/,

100 #17,

101 \MFP@endgroup@after\MFPQreturned@valuesl}/,

102 \def\MFP@Rzero{%

15

\EndofStack

\MaxReallnt
\MaxRealFrac

\x0OverZeroInt
\x0verZeroFrac
\ZeroOverZeroInt
\ZeroOverZeroFrac

103 \def\MFP0z@Sgn{0}/,
104 \def\MFP@z@Int{0}Y
105 \def\MFP@z@Frc{00000000}3}%

We define here the error messages: popping from an empty stack and dividing
by zero. In addition to the error messages, we provide some default values that
hopefully allow some operations to continue.

We also have a warning or two.

106 \def\MFPQerrmsg#1#2{%

107 \begingroup

108 \newlinechar ‘\""J\let~\space

109 \def\MFP@msgbreak{~~J~~~~"~~"7"~~"~ iy

110 \edef\reserved@a{\errhelp{#2}}\reserved@a
111 \errmessage{MiniFP error: #1}}

112 \endgroupl}’

113 \def \MFP@popemptyQerr{},

114 \MFPQerrmsg{cannot POP from an empty stack}/

115 {There were no items on the stack for the POP operation. %
116 If you continue, ~~Jthe macro will contain the %

117 value \EndofStack.}}/

118 \def\EndofStack{0.00000000}%
119 \def\MFP@dividebyzero@err{}
120 \MFPQerrmsg{division by zerol}}

121 {You tried to divide by zero. What were you thinking? %
122 If you continue, ~"Jthe value assigned will be either %
123 \ZeroOverZeroInt.\ZeroOverZeroFrac~ (numerator=0) or %
124 ~~J+/-\x0verZeroInt.\xOverZeroFrac”~ (numerator<>0) .}1}%

125 \def \MFPQwarn#1{/,

126 \begingroup

127 \newlinechar‘\~"J\let~\space

128 \def\MFP@msgbreak{~~J~~~~~~~~~~~~~~~~ Y

129 \immediate\writel6{""JMiniFP warning: #1.""~J}%
130 \endgroupl}’

These are the largest possible integer and fractional parts of a real number.
They are returned for division by zero, for logarithm of zero, and when overflow
is detected in the exponential function.

131 \def\MaxRealInt {99999999},
132 \def\MaxRealFrac {99999999}%

These are the results returned when trying to divide by zero. Two are used
when dividing a nonzero number by zero and and two when trying to divide zero
by zero.

133 \def\x0verZeroInt {\MaxRealInt}/,
134 \def\x0verZeroFrac {\MaxRealFracl}
135 \def\ZeroOverZeroInt {0}/

136 \def\ZeroOverZeroFrac{00000000}%

These macros strip the spaces, process a number into sign, integer and frac-
tional parts, and pad the fractional part out to eight decimals. They are used in

16

push so that the stack will only contains reals in a normalized form. Some of them
are also used to preprocess the reals in the operand versions of commands

The \MFP@*@Int and \MFP@xQ@Frc parts are always positive, the sign being
stored in \MFP@*@Sgn as —1, 0 or 1.

We strip the spaces and pad the fractional parts separately because they are
unnecessary when processing popped reals (though they wouldn’t hurt).

The number to be parsed is #4 and the macros to contain the parts are the first
three arguments. Since we normally call \MFPparse@real with one of two sets of
macros, we have two shortcuts for those cases.

137 \def \MFPparseQreal#1#2#3#4{/,

138 \MFPnospace@def\MFPtemp@Val{#41}

139 \MFPprocess@into@parts\MFPtemp@Val#1#2#3

140 \MFP@padtoeight#3},

141 \def\MFPparse@x{\MFPparse@real \MFP@x0Sgn\MFP@x@Int \MFPOxQFrc}/,
142 \def \MFPparse@y{\MFPparse@real \MFPQy@Sgn\MFP@y@Int \MFP@y@Frc}

This macro strips all spaces out of the number (not just before and after). It
takes a macro that will hold the result, followed by the number (as a macro or a
group of actual digits).

143 \def \MFPnospace@def#1#2{Y
144 \edef#1{#2\space}\edef#1{\@xp\zap@space#1\Cemptyl}}%

This is the process that splits a number into parts. The biggest difficulty is
obtaining the sign. All four arguments are macros, with the first one holding the
number. Following that are the macros to hold the sign, integer and fractional
parts.

145 \def\MFPprocess@into@parts#1#2#3#4{%
146 \@xp\MFPsplit@dot#1..\MFP@end #3#4

At this point #3 holds the part before the dot (or the whole thing if there was
no dot) and #4 holds the part after the dot, (or nothing). Now is the first place
where having at most eight digits simplifies things. Note that #3 could contain
any number of consecutive signs followed by up to eight digits. It could be zero
or empty, so to avoid losing the sign we append a 1 (for up to nine digits). We
temporarily define the sign based on the result, but may need to drop it if both
the integer and fractional parts are zero.

Prepending a zero to the fractional part pemits it to be empty. In the final
\edef, #3 is made positive.

147 \ifnum#31<0 \def#2{-1}Y

148 \else \def#2{1}}

149 \fi

150 \ifnum #30=0

151 \def#3{0}Y

152 \ifnum O0#4=0 \def#2{0}\fi

153 \fi

154 \edef#3{\number \ifnum #2<0 -\fi#3}}

This only copies the parts before and after the dot, #1 and #2, into macros #4
and #5.

17

155 \def\MFPsplit@dot#1.#2.#3\MFP@end#4#5{\edef#4{#1}\edef#5{#2}}%

This is used to pad the fractional part to eight places with zeros. If a number
with more than eight digits survives to this point, it gets truncated.

156 \def \MFP@padtoeight#1{/,
157 \edef#1{\@xp\MFP@eightofmany#100000000\MFP@end}}%

These take operands off the stack. We know already that there are no spaces

and that the fractional part has eight digits.

158 \def\MFPgetoperand@x{\Rpop\MFP@x@Val

159 \MFPprocess@into@parts\MFP@x@Val\MFP@x@Sgn\MFP@x@Int\MFP@xQFrc}/,
160 \def \MFPgetoperand@y{\Rpop\MFP@y@Val

161 \MFPprocess@into@parts\MFPQy@Val\MFP@y@Sgn\MFPQy@Int\MFP@yQFrc}/,

Concatenate an argument (or two) to the front of stack. The material must
already be in correct format. Note: ‘front’ is where they go visually (i.e., leftmost)
but it can be useful to imagine the stack growin rightward (or sometimes even
downward).

Note that the result of \MFP@cattwo{#1}{#2} is the same as \MFP@cat{#2} fol-
lowed by \MFP@cat{#1}. It seemed that reversing the arguments in \MFP@Rcattwo
confused me more than this fact.

162 \def\MFPORcat#1{\edef \MFPORstack{{#1}\MFP@Rstack}}%
163 \def\MFPORcattwo#1#2{\edef \MFPORstack{{#1}{#2}\MFP@Rstack}}/,

Convert from a signum (a number) to a sign (— or nothing):
164 \def\MFP@Sign#1{\ifnum#1<0 -\fi}y
165 \def \MFP@x@Sign{\MFP@Sign\MFP@x@Sgn}Y
166 \def\MFPQy@Sign{\MFP@Sign\MFPQyQSgnl}%
167 \def \MFP@z@Sign{\MFP@Sign\MFP@z@Sgn}Y
Sometimes only parts of the number needs changing (used in CHS, ABS). This
copies the integer and fractional parts of x into z.
168 \def\copyMFP@x{\edef \MFP@z@Int{\MFP@xQ@Int}\edef \MFPQz@Frc{\MFPOxQ@Frc}}/

We use \MFPpush@result to put the result of internal operations onto the
stack. For convenience, we also have it set the sign flags.
169 \def\MFPpush@result{\MFP@Rchk\MFPcurr@Sgn\MFPORcat\MFPQz@Val}},

When pop encounters an empty stack it gobbles the code that would perform
the pop (#1) and defines the macro (#2) to contain \EndofStack. The default
meaning for this macro is 0.

170 \def\if@EndofStack{’
171 \ifx\MFP@EOS\MFP@Rstack

172 \@xp\@firstoftwo
173 \else
174 \@xp\@secondoftwo
175 \fil}%

The macro \Rpop calls \MFP@popit followed by the contents of the stack, the
token \MFP@end and the macro to pop into. If the stack is not empty, \doMFP@popit
will read the first group #1 into that macro #3, and then redefine the stack to be

18

\MFPchk

\IFzero
\IFneg
\IFpos

\MFPcmp
\IFeq
\IF1t
\IFgt

the rest of the argument #2. If the stack is empty, \doMFP@EQOS will equate the
macro to \EndofStack (initialized to 0.00000000) after issuing an error message.
176 \def \MFP@popit{\if@EndofStack\doMFPOEOS\doMFPCpopitl}’

177 \def \doMFPOEOS#1\MFP@end#2{\MFP@popempty@err\let#2\EndofStackl}/,

178 \def \doMFP@popit#1#2\MFPCend#3{\edef \MFPORstack{#2}\edef#3{#1}}/

3.3 The user-level operations

All operations that can be done on arguments as well as the stack will have a
common format: The stack version pops the requisite numbers and splits them into
internal macros (\MFPgetoperand@+), runs an internal command that operates on
these internal macros, then “pushes” the result returned. The internal commands
take care to return the result in proper form so we don’t actually run \Rpush, but
only \MFPpush@result.

The operand version processes the operands into normalized form (as if pushed,
using \MFPparse@x*), then proceeds as in the stack version, but copies the result
into the named macro instead of to the stack (\MFPstore@result).

For unary operations we process one argument or stack element. We call it x
and use the x version of all macros. All internal commands (#1) return the results
in z versions.

The \MFPchk command examines its argument and sets a flag according to its
sign.

179 \def \MFPchk#1{/,
180 \MFPparse@x{#1}J,
181 \MFPORchk\MFP@x@Sgn}/,

‘We make \MFP@Rchk a little more general than is strictly needed here, by giving
it an argument (instead of only examining \MFP@x@Sgn). This is so we can apply
it to the results of operations (which would be in \MFPcurr@Sgn).

182 \def \MFPORchk#1{%

183 \MFPclear@flags

184 \ifnum#1>0 \MFP@postrue

185 \else\ifnum#1<0 \MFP@negtrue

186 \else \MFPQ@zerotrue

187 \fi\fil}}

188 \def\MFPclear@flags{\MFP@zerofalse \MFP@negfalse \MFP@posfalsel/,

These are the user interface to the internal \ifMFP@zero, \ifMFP@neg,

\1fMFP@pos
189 \def\IFzero{\ifMFP@zero\@xp\@firstoftwo\else\@xp\@secondoftwo\fi}’
190 \def\IFneg {\ifMFP@neg \@xp\@firstoftwo\else\@xp\@secondoftwo\fi}},
191 \def\IFpos {\ifMFP@pos \@xp\@firstoftwo\else\@xp\@secondoftwo\fi}},
192 \newif\ifMFP@zero \newif\ifMFP@neg \newif\ifMFP@pos

Our comparison commands parallel the check-sign commands. They even reuse
the same internal booleans. The differences: the internal \MFP@Rcmp doesn’t take
arguments and the comparison test is a little more involved. We could simply sub-
tract, which automatically sets the internal booleans, but it is way more efficient

19

to compare sizes directly.

193 \newif\ifMFPdebug

194 \def \MFPcmp#1#2{\MFPparse@x{#1}\MFPparse@y{#2}\MFP@Rcmpl}/,

195 \def\MFPORcmp{\MFPclear@flags

196 \ifnum \MFP@x@Sign\MFP@x@Int>\MFP@y@Sign\MFP@y@Int\relax

197 \MFP@postrue

198 \else\ifnum \MFP@x@Sign\MFP@xQ@Int<\MFP@y@Sign\MFPQy@Int\relax
199 \MFP@negtrue

200 \else\ifnum \MFP@x@Sign\MFP@x@Frc>\MFPQy@Sign\MFPQy@Frc\relax
201 \MFP@postrue

202 \else\ifnum \MFPQ@x@Sign\MFPOxQ@Frc<\MFPQ@y@Sign\MFPQ@yQ@Frc\relax

203 \MFP@negtrue
204 \else
205 \MFP@zerotrue

206 \fi\fi\fi\fil}%
207 \let\IFeq\IFzero\let\IF1t\IFneg \let\IFgt\IFpos

Given an operation (pop, chs, or whatever), the stack version will have the
same name with “R” (for “real”) prepended. The operand versions will have the
same name with “MFP” prepended. The internal version has the same name as the
stack version, with an “MFP@” prepended.

The unary operations are:

chs change sign of x.

abs absolute value of z.

dbl double x.

halve halve x.

sgn +1, —1 or 0 depending on the sign of x.
sq square x.

int zero out the fractional part of z.

frac zero out the integer part of x.

floor largest integer not exceeding .

ceil smallest integer not less than x.

The binary operations are (z represents the first and y second):

add add z and y.
sub subtract y from x.
mul multiply x and y.
div divide = by y.

There are also some operations that do not actually change any values, but
may change the stack or the state of some boolean:

cmp compare x and y (stack version does not change stack).

chk examine the sign of = (stack version does not change stack).

dup stack only, duplicate the top element of the stack.

push stack only, put a value onto the top of the stack.

pop stack only, remove the top element of the stack, store it in a variable.
exch stack only, exchange top two elements of the stack.

20

\startMFPprogram
\stopMFPprogram

\Rchs
\Rabs
\Rdbl
\Rhalve
\Rsgn
\Rsq
\Rinv
\Rint
\Rfrac
\Rfloor
\Rceil
\Rincr
\Rdecr
\Rzero

\Radd
\Rsub
\Rmul
\Rmpy
\Rdiv
\Rmin
\Rmax

\Rnoop
\Rcmp
\Rchk

\Rpush
\Rpop

\Rexch
\Rdup

The purpose of \startMFPprogram is to start the group, inside of which all the
stack operations can be used. The ensuing \stopMFPprogram closes the group.

208 \def \startMFPprogram{/,
209 \begingroup

Then we give definitions to all the stack-based macros. These definitions are

all lost after the group ends.

We start with the unary operations. Note that all they do is call a wrapper
macro \MFP@stack@Unary with an argument which is the internal version of the

command.

210 \def\Rchs {\MFP@stack@Unary\MFPQRchs}/,
211 \def\Rabs {\MFP@stack@Unary\MFP@Rabs}/,
212 \def\Rdbl {\MFP@stack@Unary\MFPORdb1}%
213 \def\Rhalve{\MFP@stack@Unary\MFPORhalvel},
214 \def\Rsgn {\MFP@stack@Unary\MFP@Rsgn}/
215 \def\Rsq {\MFP@stack@Unary\MFP@Rsq}/
216 \def\Rinv {\MFP@stack@Unary\MFPORinv},
217 \def\Rint {\MFP@stack@Unary\MFPORint}},
218 \def\Rfrac {\MFP@stack@Unary\MFP@Rfracl}/,
219 \def\Rfloor{\MFP@stack@Unary\MFPORfloor}/,
220 \def\Rceil {\MFP@stack@Unary\MFP@Rceill}%
221 \def\Rincr {\MFP@stack@Unary\MFP@Rincrl}y
222 \def\Rdecr {\MFP@stack@Unary\MFPORdecrl}y,
223 \def\Rzero {\MFP@stack@Unary\MFPORzerol}%

Then the binary operations, which again call a wrapper around the internal

version.

224 \def\Radd {\MFP@stack@Binary\MFPORadd}%
225 \def\Rmul {\MFP@stack@Binary\MFP@Rmull}/,
226 \let\Rmpy\Rmul

227 \def\Rsub {\MFP@stack@Binary\MFP@Rsubl}
228 \def\Rdiv {\MFP@stack@Binary\MFP@Rdivl}/
229 \def\Rmin {\MFP@stack®@Binary\MFP@Rmin}Y
230 \def\Rmax {\MFP@stack@Binary\MFP@Rmaxl}

And finally some special commands. There is a no-op and commands for com-
paring, checking, and manipulation of the stack. Note that \Rcmp parses the last
two elements on the stack, then puts them back before calling the internal com-
mand that operates on the parsed parts. The same is true of \Rchk, but only the

last stack element is examined.

231
232
233
234
235
236
237
238
239
240

\let\Rnoop\relax

\def \Rcmp{%
\MFPgetoperand@y\MFPgetoperand@x
\MFP@Rcattwo\MFP@y@Val\MFPQ@x@Val
\MFP@Rcmp}%

\def\Rchk{%
\MFPgetoperand@x
\MFP@Rcat \MFP@x@Val
\MFPORchk\MFP@x@Sgnl}’

\def\Rpush##1{%

21

\Global
\GlobalStack
\Export
\ExportStack

\MFPchs
\MFPabs
\MFPdbl
\MFPhalve
\MFPsgn
\MFPsq
\MFPinv
\MFPint
\MFPfrac
\MFPfloor
\MFPceil
\MFPincr
\MFPdecr
\MFPzero
\MFPstore

\MFPadd
\MFPsub
\MFPmul
\MFPmpy
\MFPdiv
\MFPmin
\MFPmax

241 \MFPparse@x{##1}%

242 \edef\MFP@z@Val{\MFP@x@Sign\MFPOx@Int . \MFP@xQ@Frc}

243 \edef\MFPcurr@Sgn{\MFP@x@Sgn}/
244 \MFPpush@result}y,

245 \def\Rpop{\@xp\MFP@popit\MFPORstack\MFP@end}/,

246 \def\Rexch{%

247 \Rpop\MFP@y@Val\Rpop\MFP@x@Val

248 \MFP@Rcattwo\MFP@x@Val\MFPQy@QVally,
249 \def\Rdup{%

250 \Rpop\MFP@x@Val

251 \MFP@Rcattwo\MFP@x@Val\MFP@x@Vally,

If mfpextra.tex is input, then \MFP@Rextra makes the additional commands

in that file available to an MINIFP program.

The last four commands allow computed values to be made available outside

the program group

252 \MFP@Rextra

253 \let\Global\MFP@Global

254 \let\GlobalStack\MFP@GlobalStack
255 \let\Export\MFPQExport

256 \let\ExportStack\MFP@ExportStackl}/,

257 \def \stopMFPprogram{\@xp\endgroup\MFPprogram@returns}y

258 \let\MFP@Rextra\Qempty
259 \let\MFPprogram@returns\Qempty

Now we define the operand versions. These also are defined via a wrapper
command that executes the very same internal commands as the stack versions.

First the unary operations.

260 \def\MFPchs {\MFPQop@Unary\MFP@Rchs}/,
261 \def\MFPabs {\MFP@op@Unary\MFP@Rabs}%
262 \def\MFPdbl {\MFPQop@Unary\MFP@Rdb11}%,
263 \def \MFPhalve{\MFP@op@Unary\MFP@Rhalvel}/,
264 \def\MFPsgn {\MFP@op@Unary\MFP@Rsgn}/
265 \def\MFPsq {\MFPQop@Unary\MFP@Rsq}%
266 \def\MFPinv {\MFPQop@Unary\MFP@Rinv}},
267 \def\MFPint {\MFPQop@Unary\MFP@Rintl}},
268 \def\MFPfrac {\MFPQop@Unary\MFPORfracl}
269 \def\MFPfloor{\MFP@op@Unary\MFP@Rfloor}/
270 \def\MFPceil {\MFPQop@Unary\MFP@Rceill}},
271 \def\MFPincr {\MFPQop@Unary\MFPORincrl}y
272 \def\MFPdecr {\MFPQop@Unary\MFP@Rdecrl}/,
273 \def\MFPzero {\MFP@op@Unary\MFP@Rzerol}/,
274 \def \MFPstore{\MFPQop@Unary\MFP@Rstorel}/,

Then the binary operations.

275 \def \MFPadd{\MFPQop@Binary\MFPORadd}%
276 \def \MFPmul{\MFPQop@Binary\MFPORmul}%
277 \let\MFPmpy \MFPmul

278 \def \MFPsub{\MFPQop@Binary\MFPORsub}%
279 \def\MFPdiv{\MFPQop@Binary\MFPORAiv}%
280 \def \MFPmin{\MFP@op@Binary\MFP@Rmin}’

22

\MFPnoop

281 \def \MFPmax{\MFPQop@Binary\MFP@Rmax1}

A nullary operation is one that produces a result with no operand. Thus, it
could return a fixed constant, or it could perform calculations that obtain input
from the system (e.g., current time). At the moment we don’t define any.

282 \def \MFP@stack@Nullary#1{J

283 \MFP@subroutine{#1}\MFPpush@result}}
284 \def \MFPQop@Nullary#1{%

285 \MFP@subroutine{#1}\MFPstore@resultl}’

These are the wrappers for unary operations. The operand versions have a
second argument, the macro that stores the result. But this will be the argument
of \MFPstore@result.

286 \def \MFP@stack@Unary#1{/,

287 \MFPgetoperand@x

288 \MFP@subroutine{#1}\MFPpush@result}’

289 \def \MFPQop@Unary#1#2{Y

290 \MFPparse@x{#2}%

291 \MFP@subroutine{#1}\MFPstore@resultl}

292 \def\MFPstoreQresult#1{\MFPORchk\MFPcurr@Sgn\edef#1{\MFPQz@Val}l}/,

These are the wrappers for binary operations. The top level definitions are
almost identical to those of the unary operations. The only difference is they pop
or parse two operands.

293 \def \MFP@stack@Binary#1{/

294 \MFPgetoperand@y \MFPgetoperand@x

295 \MFP@subroutine{#1}\MFPpush@result}’
296 \def \MFPQop@Binary#1#2#3{/,

297 \MFPparse@x{#2}\MFPparse@y{#3}%

298 \MFP@subroutine{#1}\MFPstore@resultl}

We end with a traditional, but generally useless command, the no-op, which
does nothing. It doesn’t even have a wrapper.

299 \let\MFPnoop\relax

3.4 The internal computations

To change the sign or get the absolute value, we just need to set the value of
\MFP@x@Sgn.

300 \def \MFP@Rabs{’,

301 \copyMFP@x \edef\MFP@z@Sgn{\ifnum\MFP@xQ@Sgn=0 O\elsel\fi}}}

302 \def\MFP@Rchs{\copyMFP@x \edef\MFP@z@Sgn{\number-\MFPOx@Sgn}}/

The doubling and halving operations are more efficient ways to multiply or
divide a number by 2. For doubling, copy x to y and add. For halving, we use
basic TEX integer division, more efficient than multiplying by 0.5 and far more
than using \MFP@Rdiv.

In \MFP@Rhalve. we add 1 to the fractional part for rounding purposes, and
we move any odd 1 from the end of the integer part to the start of the fractional
part.

23

303 \def \MFPORdb1{\MFPGRcopy xy\MFPORadd}%
304 \def\MFP@Rhalve{’

305 \MFP@tempa\MFP@x@Int

306 \MFPQtempb\MFP@xQ@Frc\relax

307 \ifodd\MFP@tempb

308 \def \MFP@zQUnd{5}%

309 \advance\MFP@tempb 1

310 \ifnum\MFP@ttteight=\MFP@tempb

311 \MFP@tempbO \advance\MFP@tempal

312 \fi

313 \fi

314 \ifodd \MFP@tempa

315 \advance\MFP@tempb \MFPOttteight\relax
316 \fi

317 \divide\MFP@tempa 2
318 \divide\MFPQ@tempb 2
319 \MFPORloadz\MFP@x@Sgn\MFPQ@tempa\MFP@tempbl}/,

The signum is 0.0, 1.0 or —1.0 to match the sign of x.

320 \def \MFP@Rsgn{\MFPORloadz \MFP@x@Sgn{\ifnum\MFP@x@Sgn=0 O\elsel\fi}0}/

The squaring operation just calls \MFP@Rmul after copying x to y. Its gain
in efficiency over a multiplication is that it can skip preprocessing of the second
(identical) operand.

321 \def\MFP@Rsq{\MFP@Rcopy xy\MFP@Rmull}/,
The inversion operation just calls \MFP@Rdiv after copying z to y and 1 to z.
Its advantage over a divide is it skips the preprocessing of 1 as an operand.
322 \def\MFPORinv{\MFP@Rcopy xy\MFP@Rload x110\MFPORAiv}%
Integer part: replace fractional part with zeros.
323 \def \MFP@Rint{/,
324 \MFP@Rloadz {\ifnum\MFPOx@Int=0 O\else\MFP@x@Sgn\fi}\MFP@xQ@Int 01}/,
Fractional part: replace integer part with a zero.
325 \def \MFP@Rfrac{%
326 \MFP@Rloadz {\ifnum\MFP@x@Frc=0 0\else\MFP@x@Sgn\fil}O\MFP@x@Frc}%

To increment and decrement by 1, except in border cases, we need only address
the integer part of a number. This doesn’t seem so simple written out but, even
so, it is more efficient than full-blown addition. It would be very slightly more
efficient if \MFPORdecr did not call \MFP@Rincr, but instead was similarly coded.

327 \def \MFP@Rincr{%

328 \ifnum\MFP@x@Sgn<0
329 \ifcase\MFP@x@Int

330 \MFP@tempa\MFP@ttteight

331 \advance\MFP@tempa -\MFP@xQ@Frc\relax

332 \MFP@Rloadz 10\MFP@tempa

333 \or

334 \MFP@Rloadz{\ifnum\MFP@x@Frc=0 O\else -1\fi}O\MFP@x@Frc
335 \else

336 \MFP@tempa\MFP@x@Int

24

337 \advance\MFPQtempa -1

338 \MFP@Rloadz{-1}\MFP@tempa\MFP@xQFrc
339 \fi
340 \else

341 \MFP@tempa\MFP@x@Int

342 \advance\MFP@tempa 1

343 \MFP@Rloadz 1\MFP@tempa\MFP@xQFrc

344 \fil}}

345 \def \MFPORdecr{%

346 \edef\MFP@x@Sgn{\number -\MFP@x@Sgn}\MFP@Rincr
347 \edef\MFP@z@Sgn{\number -\MFP@z@Sgn}}%

348 \def\MFP@Rstore{\MFPORcopy xz}/,

The floor of a real number x is the largest integer not larger than x. The ceiling
is the smallest integer not less than x. For positive x, floor is the same as integer
part. Not true for negative . Example: int(—1.5) = —1 but floor = —2

We use the same code to get floor or ceiling, the appropriate inequality char-
acter being its argument.

349 \def\MFPORfloorceil#1{¥
350 \MFPQ@tempa\MFP@xQ@Int\relax
351 \ifnum \MFP@x@Sgn #10

352 \ifnum\MFP@xQFrc=0
353 \else

354 \advance\MFPQtempal
355 \fi

356 \fi

357 \MFP@Rloadz{\ifnum\MFP@x@Int=0 O\else\MFP@x@Sgn\fi}\MFP@tempall}/
358 \def \MFP@Rfloor{\MFP@Rfloorceil<}}
359 \def\MFPQ@Rceil {\MFP@Rfloorceil>}/,

For multiplication, after the usual break into integer and fractional parts, we
further split these parts into 4-digit pieces with \MFP@split. The first argument
(#1) holds the eight digit number, then #2 is a macro that will hold the top four
digits and #3 will hold the bottom four.

360 \def\MFP@split#1#2#3{Y,
361 \begingroup

362 \MFP@tempa#l\relax

363 \MFP@tempb\MFP@tempa

364 \divide\MFP@tempb by\MFP@tttfour
365 \edef#2{\number\MFP@tempbl}7

366 \multiply\MFP@tempb by\MFPOtttfour

367 \advance\MFP@tempa-\MFPQ@tempb
368 \MFPQendgroupQ@after{’

369 \MFP@afterdef#2{#2}%

370 \MFPQafterdef#3{\number\MFPQtempal},
371}

372 %

373 \def \MFP@@split{%
374 \MFP@split\MFP@x@Int\MFP@xQInt@ii\MFP@xQIntOi
375 \MFP@split\MFP@x@Frc\MFP@x@Frc@i\MFP@x@Frc@ii

25

376 \MFP@split\MFP@y@Int\MFPQy@Int@ii\MFP@y@IntQi
377 \MFP@split\MFP@yQFrc\MFPQyCFrc@i\MFP@yQFrc@iil}},

We will store the intermediate and final products in \MFP@z@*. Each one is
ultimately reduced to four digits, like the parts of z and y. As each base-10000
digit of y is multiplied by a digit of x, we add the result to the appropriate digit
of the partial result z.

The underflow ends up in \MFP@z@Frc@iv and \MFP@z@Frc@iii. Overflow will
be in \MFP@z@Int@iii. Unlike the rest, it can be up to eight digits because we do
not need to carry results out of it.

This command prepends zeros so a number fills four slots. Here #1 is a macro
holding the value and it is redefined to contain the result. A macro that calls this
should ensure that #1 is not empty and is less than 10,000.

378 \def\makeMFP@fourdigits#1{/
379 \edef#1{\0xp\MFP@fifthofmany\number#1{}{0}{00}{000}\MFP@end\number#11}}/,

This is the same, but produces eight digits. Similarly #1 should be nonempty
and less than 100,000,000.
380 \def\makeMFP@eightdigits#1{%
381 \edef#1{\@xp\MFP@ninthofmany\number#1
382 {3{0}{003}{000}{0000}{00000}{000000}{0000000}\MFP@end \number#1}1}7%

The following macros implement carrying. The macros \MFP@carrya and
\MFP@carrym should be followed by two macros that hold numbers. The first
number can have too many digits. These macros remove extra digits from the
front and add their value to the number in the second macro (the “carry”). Both
act by calling \MFP@carry, which is told the number of digits to keep via #1 (10,000
for four digits, 100,000,000 for eight). The “a” in \MFP@carrya is for addition and

(43S)]

m” is for multiplication, which indicates where these will mainly be used.

383 \def\MFPQcarrya{\MFPQcarry\MFP@ttteightl}/
384 \def\MFPQcarrym{\MFP@carry\MFPOtttfour}y,
385 \def \MFPQcarry#1#2#3{/,

386 \begingroup

387 \MFPQcarryi{#1}#2#3%

388 \MFP@endgroupQafter{y,

389 \MFP@afterdef#3{\number \MFP@tempal}y,
390 \MFPQaf terdef#2{\number\MFPQtempb}%
301 }}%

This is the “internal” carry. #1, #2, and #3 are as in \MFP@carry. Its advantage
is that it can be used used where #2 and #3 are not macros, leaving the result in
\MFP@tempa and \MFP@tempb with \MFP@tempb in the correct range, [0,#1). Its
disadvantage is it does not protect temporary registers. Warning: do not use it
with #2=\MFP@tempa and do not use it without grouping if you want to preserve
the values in these temporary count registers.

392 \def \MFPQcarryi#1#2#3{},

393 \MFP@tempa=#3\relax
394 \MFP@tempb=#2\relax
395 \MFP@tempc=\MFP@tempb

26

396 \divide \MFP@tempc #1\relax
397 \advance \MFP@tempa \MFP@tempc
398 \multiply\MFP@tempc #1\relax
399 \advance \MFPQtempb -\MFPQ@tempc}
This adds #1 to #2, the result goes into macro #3. This does no checking. It is
basicly used to add with macros instead of registers.
400 \def\MFPQaddone#1#2#3{/,
401 \begingroup

402 \MFP@tempa#1%

403 \advance\MFPQ@tempa#2\relax

404 \MFPQ@endgroupQ@after{’,

405 \MFPQaf terdef#3{\number\MFPQtempal}’
406 }Y

Multiply #1 by \MFP@tempb and add to #2. \MFP@tempb is one digit
(base=10000) of y in multiplying = X y, #1 (usually a macro) holds one digit
of x. #2 is a macro that will hold one digit of the final product z. The product is
added to it (overflow is taken care of later by the carry routines).

407 \def\MFP@multiplyone#1#2{%

408 \MFPQtempa#1%

409 \multiply\MFP@tempa\MFPQ@tempb
410 \advance\MFPQtempa#2},

411 \edef#2{\number\MFP@tempal}l}’

This does the above multiplication-addition for all four “digits” of z. This
is where \MFPQ@tempb is initialized for \MFP@multiplyone. The first argument
represents a digit of y, the remaining four arguments are macros representing the
digits of z that are involved in multiplying the digits of x by #1.

412 \def\MFP@multiplyfour#1#2#3#4#5{),
413 \MFPQtempb #1\relax

414 \MFP@multiplyone\MFP@xQ@Int@ii #2J,
415 \MFP@multiplyone\MFP@xQ@Int@i #3
416 \MFP@multiplyone\MFP@xQFrc@i #4J,
417 \MFP@multiplyone\MFP@x@Frc@ii #5}/

Now we begin the internal implementations of the binary operations. All four
expect macros \MFP@x@Sgn, \MFP@x@Int, \MFP@xQFrc, \MFP@y@Sgn, \MFP@yQInt
and \MFP@y@Frc to be the normalized parts of two real numbers z and y.

\MFP@Rsub just changes the sign of y and then calls \MFP@Radd.

\MFP@Radd checks whether x and y have same or different signs. In the first
case we need only add absolute values and the sign of the result will match that
of the operands. In the second case, finding the sign of the result is a little more
involve (and “borrowing” may be needed).

418 \def \MFPORsub{\edef \MFPOy0Sgn{\number-\MFPQy@Sgn}\MFPCRadd}/,
419 \def\MFP@Radd{%

420 \MFP@tempa\MFP@x@Sgn

421 \multiply\MFP@tempa\MFP@y@Sgn\relax

422 \ifcase\MFP@tempa

423 \ifnum \MFP@x@Sgn=0

27

424 \MFP@Rcopy yz%

425 \else

426 \MFP@Rcopy xz%
427 \fi

428 \or

429 \@xp\MFPORadd@same
430 \else

431 \@Xp\MFP@Radd@diff
432 \fil}}

\MFP@Radd@same adds two numbers which have the same sign. The sign of the
result is the common sign. The fractional and integer parts are added separately,
then a carry is invoked. The overflow (\MFP@z@0vr) could be only a single digit 0
or 1.

433 \def \MFP@Radd@same{’,

434 \MFPQ@addone\MFP@x@Frc\MFP@yQFrc\MFPQz@Frc
435 \MFP@addone\MFP0x@Int\MFPQ@y@Int\MFP0z@Int
436 \MFP@carrya\MFPQzQ@Frc\MFPQz@Int

437 \MFPQcarrya\MFP@z@Int\MFPQ@z@0vr

438 \makeMFPQeightdigits\MFP@z@Frc

439 \edef\MFP@z@Sgn{\MFP@x@Sgn}}Y

We are now adding two numbers with opposite sign. Since x # 0 this is
the same as sgn(z)(|z| — |y|) . So we subtract absolute values, save the result
in \MFP@z@Sgn, \MFP@z@Int and \MFP0z@Frc (with the last two nonnegative, as
usual), then change the sign of \MFP@z@Sgn if \MFP@x@Sgn is negative. Since the
difference between numbers in [0,10%) has absolute value in that range, there is
no carrying. However, there may be borrowing.

440 \def \MFPORadd@diff{},
441 \MFP@addone\MFP@x@Frc{-\MFPQyQ@Frc}\MFP@zQFrc
442 \MFP@addone\MFP@x@Int{-\MFPQ@y@Int}\MFP@z@Int

Now we need to establish the sign and arrange the borrow. The sign of the
result is the sign of \MFP@z@Int unless it is 0; in that case it, is the sign of
\MFP@z@Frc. There must be a simpler coding, though.

443 \MFP@tempa=\MFP@z@Int

444 \MFP@tempb=\MFP@z@Frc\relax

445 \ifnum\MFP@tempa=0 \else \MFPQ@tempa=\MFP@Sign\MFP@tempa 1 \fi
446 \ifnum\MFP@tempb=0 \else \MFP@tempb=\MFP@Sign\MFP@tempb 1 \fi
447 \ifnum\MFP@tempa=0 \MFPQ@tempa=\MFPQ@tempb \fi

Now we have the sign of |z| — |y| in \MFP@tempa, and we multiply that sign by
the sign of x to get \MFP@z@Sgn. Then we multiply the current value of z by that
sign to get the absolute value, stored in \MFP@tempa and \MFP@tempb.

448 \edef\MFP@z@Sgn{\number\MFPOx@Sign\MFPQtempal}’
449 \MFP@tempb\MFP@tempa

450 \multiply\MFP@tempa \MFP@z@Int

451 \multiply\MFPQ@tempb \MFP@z@Frc\relax

What we should have now is a positive number which might still be represented
with a negative fractional part. A human being performing the subtraction would

28

have borrowed first. Being a computer, we do it last, and we’re done.
452 \ifnum\MFP@tempb<0

453 \advance\MFP@tempb\MFP@ttteight
454 \advance\MFP@tempa-1
455 \fi

456 \edef\MFP@z@Int{\number\MFPQtempa}’
457 \edef\MFP@zQ@Frc{\number\MFPQtempb}’
458 \makeMFP@eightdigits\MFPQz@Frc}’

\MFP@Rmul first computes the (theoretical) sign of the product: if it is zero, re-
turn zero, otherwise provisionally set the sign of the product and call \MFP@@Rmul.

459 \def \MFP@Rmul{},

460 \ifnum\MFP@x@Sgn=0 \MFPORzero

461 \else\ifnum\MFPQy@Sgn=0 \MFP@Rzero

462 \else \edef\MFP@z@Sgn{\number\MFP0x@Sign\MFP@y@Sgn}/,
463 \@XP\MFP@@Rmul

464 \fi\fil}}

\MFP@@Rmul first initializes the macros that will hold the base-10000 digits of z.
Then it splits the four expected macros into eight macros that hold the base-10000
digits for each of x and y. Then each digit of y is used to multiply the four digits

of x and the results are added to corresponding digits of z.

465 \def \MFP@Q@Rmul{%

466 \def\MFPQzQFrc@iv {0}\def\MFPQzQ@Frc@iii{0}%
467 \def\MFP@z@Frc@ii {0}\def\MFP@z@Frc@i {0}%
468 \def\MFP@z@Int@i {0}\def\MFP@z@Int@ii {03}%
469 \def\MFP@z@Int@iii{0}%

470 \MFP@@split

471 \MFP@multiplyfour \MFPQy@Frc@ii \MFPQ@z@Frc@i

472 \MFP@z@Frc@ii \MFP@z@Frc@iii \MFP@z@Frc@iv
473 \MFP@multiplyfour \MFPQyQ@Frc@i \MFP@z@Int@i
474 \MFP@z@Frc@i \MFP@z@Frc@ii \MFP@z@Frc@iii
475 \MFP@multiplyfour \MFPQ@y@Int@i \MFP@z@Int@ii
476 \MFP@z@Int@i \MFP@z@Frc@i \MFP@z@Frc@ii
477 \MFP@multiplyfour \MFPQy@Int@ii \MFP@z@Int@iii
478 \MFP@z@Int@ii \MFP@z@Int@i \MFP@zQFrc@i

Now apply the carry routines on the underflow digits. ..

479 \MFPQcarrym\MFPQ@zQ@Frc@iv\MFP@zQ@Frc@iii
480 \MFP@carrym\MFPQzQ@Frc@iii\MFP@zQFrc@ii

..and pause to round the lowest digit that will be kept. ..
481 \ifnum\MFP@z@Frc@iii<5000 \else

482 \MFP@tempb\MFP@z@Frc@ii

483 \advance\MFP@tempb1

484 \edef \MFPQ@zQ@Frc@ii{\number\MFPQ@tempb},
485 \fi

..and continue carrying.

486 \MFPQcarrym\MFPQ@zQ@Frc@ii\MFP@zQ@FrcQ@i
487 \MFP@carrym\MFPQzQ@Frc@i \MFPQzQ@Int@i

29

488 \MFPQ@carrym\MFP@z@Int@i \MFP@z@Int@ii
489 \MFP@carrym\MFP@z@Int@ii\MFP@z@Int@iii

To end, we arrange for all macros to hold four digits (except \MFP@z@Int@ii and
\MFP@z@Int@iii which don’t need leading 0s) and load them into the appropriate
8-digit macros. The underflow digits are stored in \MFP@z@Und in case we ever
need to examine them (we now do: in our unit conversion routine \MFP@DPmul),
and the overflow in \MFP@z@0vr in case we ever want to implement an overflow
error. Theoretically z # 0, but it is possible that z = 0 after reducing to eight
places. If so, we must reset \MFP@z@Sgn.

490 \makeMFP@fourdigits\MFP@z@Frc@iv

491 \makeMFP@fourdigits\MFP@zQFrc@iii

492 \makeMFP@fourdigits\MFP@zQFrcQ@ii

493 \makeMFP@fourdigits\MFP@z@Frc@i

494 \makeMFP@fourdigits\MFP@z@Int@i

495 \edef\MFP@z@Int{\number\MFP@z@Int@ii\MFPQ@z@Int@i}},

496 \edef\MFPQzQFrc{\MFPQzQFrc@i\MFP@z@Frc@iil}/,

497 \edef\MFP@z@Ovr{\number\MFP@z@Int@iiil}V,

498 \edef\MFP@zQUnd{\MFP@zQ@Frc@iii\MFP@z@Frc@ivl}/,

499 \ifnum\MFP@z@Int>0

500 \else\ifnum\MFP@z®@Frc>0

501 \else \def\MFP@z@Sgn{0l}%

502 \fi\fi}%

For division, we will obtain the result one digit at a time until the 9th digit after
the decimal is found. That 9th will be used to round to eight digits (and stored as
underflow). We normalize the denominator by shifting left until the integer part
is eight digits. We do the same for the numerator. The integer quotient of the
integer parts will be one digit (possibly a 0). If the denominator is shifted d digits
left and the numerator n digits left, the quotient will have to be shifted n — d
places right or d — n places left. Since the result is supposed to have 9 digits after
the dot, our quotient needs 9 + d — n + 1 total digits. Since d can be as high as
15 and n as low as 0, we could need 25 repetitions. However, that extreme would
put 15 or 16 digits in the integer part, a 7 or 8 digit overflow. (It can be argued
that only 16 significant digits should be retained in any case.) If d is 0 and n is
15 we would need —5 digits. That means the first nonzero digit is in the 15th or
16th place after the dot and the quotient is effectively zero.

Here I explain why we normalize the parts in this way. If a numerator has the
form mq.no and the denominator has the form d;.ds then TEX can easily obtain
the integer part of nj/dy, because these are within its range for integers. The
resulting quotient (let’s call it g7) is the largest integer satisfying ¢1d; < ni. What
we seek, however is the largest integer ¢ such that g(d;.ds) < ny.ng. It can easily
be shown that ¢ < ¢;. It is true, but not so easily shown, that ¢ > ¢; — 1. This is
only true if d; is large enough, in our case it has to be at least five digits. Thus we
only have to do one simple division and decide if we need to reduce the quotient
by one. If we arrange for d; to have eight digits, then ¢; will be one digit and the
test for whether we need to reduce it becomes easier.

30

This test is done as follows. The first trial quotient, g1, will work if
q1d1(10)® + qrdy < 11 (10)° + ny

This means

0< (’I’Ll - qldl)(lo)g + ng — q1ds. (1)
Since do is no more than eight digits, ¢1do is less than 9(10)%. Inequality (1) is
therefore satisfied if nqy — ¢1d; > 9. If that is not the case then the right side of (1)
is computable within TEX’s integer ranges and we can easily test the inequality.
If the inequality holds, then ¢ = q1, otherwise ¢ = ¢; — 1.

Note also that when ¢ = g1, then both terms in (1) (ignoring the 10® factor)
will be needed to calculate the remainder. If ¢ = ¢; — 1, we simply add d; and ds
to the respective parts. Thus we will save these values for that use.

Now I need to get it organized. \MFP@Rdiv will have \MFP@x@* and \MFPQy@*
available. One step (could be first or last). Is to calculate the sign. Let’s do it
first (because we need to check for zero anyway).

We invoke an error message upon division by zero, but nevertheless return a
value. By default it is 0 for 0/0 and the maximum possible real for /0 when z is
not zero. If the numerator is zero and the denominator not, we could do nothing
as z was initialized to be zero. However, we play it safe by explicitly setting z to
zZero.

If neither is zero, we calculate the sign of the result and call \MFP@@Rdiv to
divide the absolute values.

503 \def \MFP@Rdiv{%
504 \ifnum\MFP@y@Sgn=0 \MFP@dividebyzeroQerr

505 \ifnum\MFP@x@Sgn=0

506 \edef\MFP0z@Int{\ZeroOverZeroIntl}}
507 \edef\MFP@z@Frc{\ZeroOverZeroFracl}/
508 \else

509 \edef\MFP0z@Int{\x0verZeroInt}y,

510 \edef \MFP@z@Frc{\x0verZeroFracl}},
511 \fi

512 \edef \MFP@z@Sgn{\MFP@x@Sgn}/,

513 \else\ifnum\MFP@x@Sgn=0 \MFPQRzero

514 \else \edef\MFP@z@Sgn{\number\MFP@x@Sign\MFPOy@Sgn}\MFPQERAiv
515 \fi\fil}%

Now we have two positive values to divide. Our first step is to shift the de-
nominator (y) left and keep track of how many places. We store the shift in
\MFP@tempa. This actually changes the value of y, but knowing the shift will give
us the correct quotient in the end.

We first arrange that \MFP@y@Int is nonzero by making it \MFP@y®@Frc if it is
zero (a shift of eight digits). Then the macro \MFP@numdigits@toshift computes
8 minus the number of digits in \MFP@y@Int, which is how many positions left y
will be shifted. We then call \MFP@doshift@y on the concatenation of the digits
in the integer and fractional parts (padded with zeros to ensure there are at least
16). All this macro does is read the first eight digits into \MFP@y@Int and the next
eight into \MFPQyQFrc.

31

516 \def \MFPQORdiv{%

517 \ifnum\MFP@y@Int=0

518 \edef\MFP@y@Int{\number\MFPQy@Frc}/,
519 \def \MFPQyQ@Frc{00000000}%

520 \MFP@tempa=8
521 \else

522 \MFP@tempa=0
523 \fi

524 \advance\MFPQtempa\MFPOnumdigits@toshift\MFP@y@Int\relax
525 \@XP\MFP@doshift@y\@xp\MFP@y@Int\MFPQy@Frc0000000\MFP@end

We repeat all that on the numerator x, except shifting its digits left means
the final outcome will need a corresponding right shift. We record that fact by
reducing \MFP@tempa, which ends up holding the net shift necesary.

This has the advantage that we know the result will be in the range [0.1,10).
It also means we can reduce the number of places we will need to shift left as well
as reduce the number of iterations of the loop that calculates the digits.
526 \ifnum\MFP@x@Int=0
527 \edef\MFP@x@Int{\number \MFP@x@Frc}/,
528 \def \MFP@x@Frc{00000000}%
529 \advance\MFP@tempa -8
530 \fi
531 \advance\MFP@tempa-\MFP@numdigits@toshift\MFP@x@Int\relax
532 \@XP\MFP@doshift@x\@xp\MFP@x@Int\MFP@x@Frc0000000\MFP@end

Since our result will have at most one digit in the integer part, a rightward
shift of 10 places will make every digit 0 including the rounding digit, so we return
0.
533 \ifnum\MFPQ@tempa<-9
534 \MFP@Rzero
535 \else

Now we perform the division, which is a loop repeated 10 4+ \MFP@tempa times.
Therefore, we add 10 to \MFP@tempa in \MFP@tempf, our loop counter. We also
initialize the macro that will store the digits and then, after the division, shift and
split it into parts.
536 \MFP@tempf \MFPQtempa
537 \advance\MFP@tempf 10
538 \def\MFPOz@digits{}/
539 \MFP@Rdivloop
540 \MFPshiftandsplit@z@digits

The last remaining step is to round and carry and get the fractional part in
the appropriate 8-digit form..

541 \ifnum\MFP@z@Und>4

542 \MFPQaddone \MFPQz@Frc1\MFPQ@zQFrc
543 \MFPQcarrya\MFPOz@Frc\MFPQ@zQInt
544 \MFP@carrya\MFPQ@z@Int\MFP@z@0Ovr
545 \makeMFPQeightdigits\MFP@zQ@Frc
546 \fi

547 \fil}%

32

If #1 of \MFP@numdigits@toshift, hasn digits then \MFP@numndigits@toshift
picks out the value 8 — n. \MFP@doshift@x reads the first eight digits into
\MFP@x@Int and then pulls out eight more from the rest (#9) inside \MFP@x@Frc.
The same with \MFP@doshift@y.

548 \def\MFPOnumdigits@toshift#1{\@xp\MFP@ninthofmany#101234567\MFP@end}/,
549 \def\MFPQdoshiftOx#1#2#3#4#5#6#7#8#9\MFP@end{%

550 \def\MFP@xQInt{#1#2#3#4#5#6#7#8}/,

551 \edef\MFP@xQFrc{\MFPQeightofmany#9\MFP@end}1}/,

552 \def\MFPQ@doshiftQy#1#2#3#4#5#6#7#8#9\MFPQend{’,

553 \def \MFP@yQ@Int{#1#2#3#4#5#6#7#81}/,

554 \edef\MFP@yQFrc{\MFPQeightofmany#9\MFP@end}}/,

The loop counter is \MFP@tempf, \MFP@tempa is reserved for the shift required
later, the quotient digit will be \MFP@tempb. The remainder will be calculated in
\MFP@tempc and \MFP@tempd. \MFP@tempe will hold the value whose size deter-
mines whether the quotient needs to be reduced.

555 \def \MFP@Rdivloop{%

556 \MFPQ@tempb\MFP@xQ@Int % \MFPQ@tempb = n_1
557 \MFP@tempc\MFP@y@Int % \MFP@tempc = d_1
558 \divide\MFP@tempb \MFP@tempc % \MFPQ@tempb = n_1/d_1 = q_1
559 \multiply \MFP@tempc \MFPQ@tempb % \MFP@tempc = q_1 d_1
560 \MFP@tempd \MFP@y@Frc % \MFP@tempd = d_2
561 \multiply \MFP@tempd \MFP@tempb % \MFP@tempd = q_1 d_2

562 \MFPQ@tempe \MFPQ@tempc
563 \advance \MFPQ@tempe -\MFP@x@Int\relax % \MFP@tempe = -n_1 + q_1 d_1

564 \ifnum \MFP@tempe > -9 %#n1l-q9.1d.1<9

565 \multiply \MFPQ@tempe\MFP@ttteight % -(n_1 - q_1 d_1)(10)"8
566 \advance \MFP@tempe \MFP@tempd % add q_1 d_2

567 \advance \MFP@tempe -\MFP@x@Frc\relax % add -n_2

568 \ifnum \MFPQtempe>0 % Crucial inequality fails
569 \advance\MFP@tempb -1 % new q =q_1 -1

570 \advance\MFP@tempc -\MFP@y@Int %q1d.1-4d.1=qd.1
571 \advance\MFP@tempd -\MFPQy@Frc\relax’), q_1 d_.2 - d_2 = q d_2
572 \fi

573 \fi

574 \edef\MFP@z@digits{\MFP0z@digits\number\MFPQtempbl}/,

It remains to:

— Do the carry from \MFP@tempd to \MFP@tempc. Then \MFP@tempc . \MFP@tempd
will represent ¢ - y.

— Subtract them from \MFP@x@Int and \MFP@xQFrc (i.e. remainder = z — qy).

— Borrow, if needed, and we will have the remainder in \MFP@x@Int . \MFP@x@Frc.

Then we decrement the loop counter, and decide whether to repeat this loop. If
so, we need to shift the remainder right one digit (multiply by 10). We don’t use
\MFPQcarrya since it requires macros; its internal code, \MFP@carryi just leaves
the results in \MFPQ@tempa . \MFP@tempb.

575 \begingroup

576 \MFPQcarryi\MFP@ttteight \MFPOtempd \MFPOtempc

33

577 \MFP@endgroup@after{’,

578 \MFP@tempc=\number \MFP@tempa
579 \MFP@tempd=\number \MFP@tempb\relax
580 1%

581 % subtract

582 \MFP@addone\MFP@xQ@Int{-\MFPQ@tempc}\MFP@xQInt
583 \MFPQaddone\MFPOxQFrc{-\MFPQtempd}\MFP@xQFrc
584 %, borrow

585 \ifnum\MFP@x@Frc<0

586 \MFP@addone\MFP@x@Frc\MFP@ttteight \MFP@x@Frc
587 \MFP@addone\MFP@x@Int{-1}\MFP@x@Int
588 \fi

589 \advance\MFP@tempf -1
590 \ifnum\MFP@tempf>0

591 \edef\MFPOx@Int{\MFP@xQ@Int0}%
592 \edef \MFP@x@Frc{\MFP@xQ@Frc0}/,
593 \MFP@carrya\MFP@xQFrc\MFP@x@Int
594 \@xp\MFP@Rdivloop

595 \fil}%

Now \MFPshiftandsplit@z@digits. At this point, the digits of the quotient
are stored in \MFP@z@digits. We need to shift the decimal \MFP@tempa places
left, and perform the rounding. There are \MFP@tempa + 10 digits. This could
be as little as 1 or as great as 25. In the first case \MFP@tempa is —9, and this
(rightward) shift produces 0 plus a rounding digit. In the latter case \MFP@tempa
is 15, and the shift produces 8 digits overflow, an 8-digit integer part, an 8-digit
fractional part and a rounding digit. In the example 0123456, \MFP@tempa + 10 is
7, so \MFP@tempa is —3. The shift produces 0.000123456. The rounding digit (6)
makes the answer 0.0001 2346.

We take two cases:

— \MFP@tempa < 7, prepend 7 — \MFP@tempa zeros. The first 8 digits will become
the integer part, and there should be exactly 9 more digits.
— \MFP@tempa > 7, pluck \MFP@tempa — 7 digits for overflow, the next 8 for
integer part, leaving 9 more digits
In either case, the 9 last digits will be processed into a fractional part (with possible
carry if the rounding increases it to 10%).
After this, we will return to \MFP@Rdiv so overwriting \MFP@temp* won’t cause
any problems.
596 \def\MFPshiftandsplit@z@digits{%

597 \advance \MFPQtempa -7

598 \ifnum\MFP@tempa>0

599 \def \MFP@z@Ovr{}/

600 \@xp\MFPget@0Ovrdigits\MFP@zQdigits\MFPQend
601 \else

602 \ifnum\MFP@tempa<-7

603 \edef\MFP0z@digits{00000000\MFP0z@digits}V
604 \advance\MFP@tempa8

605 \fi

34

\MFPtruncate

606
607
608
609
610
611
612
613
614
615
616
617
618
619

\ifnum\MFPQtempa<-3
\edef \MFP@z@digits{0000\MFP@z@digits}
\advance\MFP@tempad
\fi
\edef\MFP@z@digits{Y
\ifcase-\MFP@tempa\or
O\or
00\or
000\or
0000\else
00000%
\fi \MFP@z@digits}
\@xp\MFPget@Intdigits\MFP@z@digits\MFPQ@end
\£i}%
The macro \MFPget@0Ovrdigits is a loop that loads the first \MFP@tempa digits

of what follows into \MFP@z@0vr. It does this one digit (#1) at a time. Once the
counter reaches 0, we call the macro that processes the integer part digits.

620 \def \MFPget@Ovrdigits#1{},

621
622
623
624
625
626
627

\edef \MFPQz@0vr{\MFP@z@0vr#1}/,
\advance\MFP@tempa -1
\ifnum\MFP@tempa>0
\@xp\MFPget@Ovrdigits
\else
\@xp\MFPget@Intdigits
\fi}%
The macro \MFPget@Intdigits should have exactly 17 digits following it. It

puts eight of them in \MFP@z@Int, then calls \MFPget@Frcdigits to read the frac-
tional part. That requires exactly nine digits follow it, putting eight in \MFP@z@Frc
and the last in \MFP@z@Und. Still, to allow a graceful exit should there be more,
we gobble the rest of the digits.

628 \def\MFPget@Intdigits#1#2#3#4#5#6#7#8{Y

629
630

\def \MFPQz@Int{\number#1#2#3#4#5#6#7#8}
\MFPget@Frcdigits}

631 \def \MFPget@Frcdigits#1#2#3#4#5#6#7#8#9{Y,

632
633

\def \MFPQzQFr c{#1#2#3#4#5#6#7#8}
\def \MFP@zQUnd{#9}\gobbleto@MFPQend}Y

The max amd min operations simply run the compare operation and use and

use the resultant booleans to copy x or y to z.
634 \def \MFP@Rmax{/,

635

\MFP@Rcmp \ifMFP@neg \MFPQ@Rcopy yz\else\MFPQ@Rcopy xz\fil}J,

636 \def \MFP@Rmin{%

637

\MFP@Rcmp \ifMFP@pos \MFP@Rcopy yz\else\MFP@Rcopy xz\fil}},

3.5 Commands to format for printing

This first runs the parsing command so the fractional part has exactly eight digits.
These become the arguments of \MFP@@Rtrunc, which just keeps the right number.

35

For negative truncations we prepend zeros to the integer part so it too is exactly
eight digits. These become the arguments of \MFP@@iRtrunc, which substitutes 0
for the last ~\MFP@tempa of them.
The macro to store the result in follows #2. It is read and defined by either
\MFP@Rtrunc or \MFPQ@iRtrunc.
638 \def\MFPtruncate#1#2{%
639 \begingroup

640 \MFP@tempa#l\relax
641 \MFPparse@x{#2}/,
642 \ifnum\MFPQ@tempa<1i
643 \@xp\MFP@iRtrunc
644 \else

645 \@xp\MFPORtrunc
646 \fi}

647 \def \MFP@Rtrunc#1{/
648 \edef\MFP@xQFrc{\@xp\MFPQORtrunc\MFPOxQ@Frc\MFPQend}7
649 \ifnum\MFP@x@Int=0

650 \ifnum\MFP@x@Frc=0
651 \def \MFP@x@Sgn{0}/,
652 \fi

653 \fi

654 \MFPQ@endgroupQafter{y

655 \MFPQafterdef#1{\MFP@x@3ign\MFPOx@Int . \MFP@xQFrc}}}/
656 \def \MFPQORtrunc#1#2#3#4#5#6#7#8#9\MFP@end{%

657 \ifcase\MFP@tempa\or

658 #1\or

659 #1#2\or

660 #1#2#3\or

661 #1#2#3#4\or

662 #1#2#3#4#5\or

663 #1#2#3#4#5#6\or

664 #1#2#3#AH#E#E6#T \else

665 #1#2H3HAHDHOHTHE\T1}Y,

666 \def \MFPQ@iRtrunc#1{Y%

667 \makeMFP@eightdigits\MFP@x@Int

668 \edef\MFP@x@Val{\number\MFPQ@x@Sign\@xp\MFPQ@iRtrunc\MFP@xQ@Int\MFPQend}%
669 \MFP@endgroup@after{\MFP@afterdef#1{\MFP@x@Val}l}}%
670 \def \MFPQQiRtrunc#1#2#3#4#5#6#7#8#9\MFPQend {7,

671 \ifcase-\MFPQtempa

672 #1#243#4#5H6#TH#8\or

673 #1#2#3#A#5#6#70\or

674 #1#2#3#4#5#600\or

675 #1#2#3#4#5000\or

676 #1#2#3#40000\or

677 #1#2#300000\or

678 #1#2000000\or

679 #10000000\else

680 00000000\£i}¥

For rounding we simply add the appropriate fraction and truncate. The macro

36

\MFPstrip

in which to store the result will follow #2, and be picked up by the \MFPtruncate
command.

681 \def\MFPround#1#2{%
682 \begingroup

683 \MFP@tempa#1i\relax
684 \ifnum 0>\MFP@tempa
685 \edef \MFPQy@Tmp<{%
686 \ifcase-\MFP@tempa\or
687 5\or

688 50\or

689 500\or

690 5000\or

691 50000\or

692 500000\ or

693 5000000\else
694 50000000\ fi
695 Y

696 \else

697 \edef\MFPQy@Tmp{%
698 \ifcase\MFPQtempa
699 .5\or

700 .05\or

701 .005\or

702 .0005\or

703 .00005\or

704 .000005\or

705 .0000005\or
706 .00000005\else
707 O\fi

708 %

709 \fi

710 \MFPchk{#2}\ifMFP@neg\edef \MFPQyQ@Tmp{-\MFP@y@Tmp}\fi
711 \MFPadd{#2}\MFP@y@Tmp \MFPQz@Tmp
712 \MFP@endgroup@after{\MFPQafterdef \MFPQzO@Tmp{\MFPQ@z@Tmp} 1}/
713 \MFPtruncate{#1}\MFPQzQTmpl}7
Stripping zeros from the right end of the fractional part. The star form differs
only in the handling of a zero fractional part. So we check whether it is zero and
when it is, we either append ‘.0’ or nothing. The rest of the code grabs a digit at
a time and stops when the rest are zero.
714 \def\MFPstrip{/
715 \@ifstar{\MFP@strip{}}{\MFP@strip{.0}}}%
716 \def \MFP@strip#1#2#3{/,
717 \MFPparse@x{#2}/,
718 \ifnum \MFP@x@Frc=0
719 \edef#3{\MFP0x@Sign\MFP@xQ@Int#1}%

720 \else
721 \edef#3{\MFP@x@Sign\MFP@xQInt . \Cxp\MFPQ@strip\MFPOxQFrc\MFPCend}’
722 \fi}}

723 \def \MFPQQstrip#1#2\MFPQend{%

37

724 #1Y
725 \ifnum 0#2>0

726 \@xp\MFP@@strip
727 \else
728 \@xp\gobbleto@MFPQend

729 \fi#2\MFP@end}/

3.6 Miscellaneous

Here is the code that allows definitions to survive after \stopMFPprogram. The
\Global variants are easiest.
730 \def\MFPQ@Global#1{\toks@\@xp{#1}\xdef#1{\the\toks@}}}
731 \def \MFPQGlobalStack{\MFP@Global \MFP@Rstack}’

The \Export command adds the command and its definition to a macro that
is executed after the closing group of the program.

732 \def \MFP@Export#1{%
733 \begingroup

734 \toks@\@xp{\MFPprogram@returnsl}/,

735 \MFPQ@endgroup@after{’

736 \MFP@afterdef\MFPprogram@returns{\the\toks@ \MFPQafterdef#1{#1}}/
737}

738 \def \MFP@ExportStack{\MFP@Export\MFP@Rstackl}/,

The various operations \MFP@R. .. together make up a “microcode” in terms
of which the stack language and the operand language are both defined. As a
language in its own right, it lacks only convenient ways to move numbers around,
as well as a few extra registers for saving intermediate results. In this language,
numbers are represented by a three part data structure, consisting of a signum,
an integer part and a fractional part.

Here we define extra commands to remedy this lack, starting with a way to
load a number (or rather, a three part data structure representing a number)
directly into a register. Here #1 is a register name (we always us a single letter)
and the remaining arguments are the signum, the integer part and the fractional
part (automatically normalized to 8 digits). The “register” is just a set of three
macros created from the name given.

We make loading a number into a register a little more general than strictly
needed, allowing the parts to be specified as anything TEX recognizes as a number
and allowing any register name. This generality might reduce efficiency but it
simplifies code. Because register z is by far the most common one to load, we
make more efficient version of it.

739 \def\MFPORload #1#2#3#4{,

740 \@xp\edef\csname MFP@#1@Sgn\endcsname{\number#2}J

741 \@xp\edef\csname MFP@#10@Int\endcsname{\number#3}J

742 \@xp\edef\csname MFPO#1@Frc\endcsname{\number#4}/,

743 \@xp\makeMFP@eightdigits\csname MFP@#1@Frc\endcsnamel}y,
744 \def\MFP@Rcopy#1#2{/,

745 \MFPO@Rload #2{\csname MFP@#1@Sgn\endcsnamel},

38

\MFPpi
\MFPe
\MFPphi

746
747
748 \def \MFPORloadz#1#2#3{Y
749

{\csname MFP@#1@Int\endcsnamel}’,
{\csname MFP@#1@Frc\endcsname}}/,

\edef\MFP@z@Sgn{\number#1}J,

750 \edef\MFP@z@Int{\number#2}Y
751 \edef\MFP@z@Frc{\number#3}Y,
752 \makeMFPQeightdigits\MFPQ@z@Frcl}/,

These are some miscellaneous constants. The 8-digit approximation to 7, is
\MFPpi and the constant mathematicians call e is \MFPe. Finally, the golden ratio
(often called ¢) is obtained by \MFPphi.

753 \def \MFPpi{3.14159265}Y
754 \def\MFPe{2.71828183}/
755 \def \MFPphi{1.61803399}%

Load (conditionally) mfpextra.tex.

756 \MFP@loadextra
757 \MFP@finish

758 (/sty)

4 Extras

The extras consist so far of sine, cosine, angle, logarithm, powers, square root,
and random number. For completeness, here is the table of user-level commands

available.

Operand versions

Command operation

\MFPsin{(num)}\macro Stores sin({num)) in \macro, where (num) is an
angle in degrees.

\MFPcos{(num)}\macro Stores cos({num)) in \macro, where (num) is an

\MFPangle{(x)}{(y)}\macro
\MFPrad{(num)}\macro
\MFPdeg{(num)}\macro
\MFPlog{(num)}\macro
\MFP1n{(num)}\macro
\MFPexp{(num)}\macro

\MFPsqrt{(num)}\macro
\MFPrand{(num)}\macro

\MFPpow{(num)}{(int)}\macro

angle in degrees.

Stores in \macro the polar angle coordinate € of
the point (x,y), where —180 < 0 < 180.

The angle (num) in degrees is converted to radi-
ans, and result is stored in \macro.

The angle (num) in radians is converted to de-
grees, and result is stored in \macro.

Stores log((num)) in \macro (base 10 logarithm).
Stores In({num)) in \macro (natural logarithm).
Stores exp({num)) (i.e., €*) in \macro.

Stores the square root of (num) in \macro.
Stores a random real number between 0 amd
(num) in \macro. If (num) is negative, so is the
result.

Stores the (int) power of (num) in \macro. The
second operand must be an integer (positive or
negative).

39

\Rsin
\Rcos
\Rangle
\Rrad
\Rdeg
\Rlog
\R1ln
\Rexp
\Rsqrt
\Rrand
\Rpow

In addition, there is \MFPsetseed for setting the internal random number seed.
It takes one argument, the seed value, which must be an integer greater than or
equal to 1 and less than or equal to 23! — 2 = 2147483646. If the seed is set
to zero or a negative number then the first use of the random number generator
will replace it with a seed value based on the current time and date. The randum
number seed is a global value.

There are actually three random number generators and they can be selected
with the commands \MFPrandgenA, \MFPrandgenB, or \MFPrandgenC. The first
uses the code and multiplier value from the well-known macro file random. tex. It
is the default. The other two use different multipliers which are alleged to have
better statistical behavior. If any of these commands is used inside a group, that
generator is in force during that group only.

Stack versions

Command operation

\Rsin The number is interpreted as degrees, and its sine is computed.
\Rcos The number is interpreted as degrees, and its cosine is computed.
\Rangle The top two numbers are interpreted as coordinates of a point P

in the order they were pushed. The polar angle coordinate 6 of
P, with —180 < 6 < 180 is computed.

\Rrad The number of degrees is converted to radians.

\Rdeg The number of radians is converted to degrees.

\Rlog Computes the base-10 logarithm.

\R1ln Computes the natural logarithm.

\Rexp Computes the exponential of the number (i.e., e*).

\Rsqrt Computes the square root of the number.

\Rrand Returns a random real number between 0 and the number, keep-
ing the sign.

\Rpow Computes x¥. The last number pushed (y) must be an integer.

The user could easily convert between radians and degrees using multiplication
and/or division. One could similarly convert between natural logarithms and base
ten logarithms. The commands \Rdeg, \Rrad, \Rlog and \R1ln (and their \MFP. ..
counterparts) aim for more accurate results.

4.1 Loading the extras

We start mfpextra with the hook \MFP@Rextra that \startMFPprogram will call to
make available the extra operations defined here. If minifp.sty has been loaded,
this macro is \@empty, otherwise it should be undefined. If it is undefined we load
minifp.sty. If it is then not \@empty we assume mfpextra.tex was previously
loaded and end input here.

759 (kextra)

760 % check if mfpextra already loaded:

761 \expandafter\ifx\csname MFP@xfinish\endcsname\relax
762 \else \expandafter\endinput\fi

40

\MFPsin
\MFPcos
\MFPrad
\MFPdeg
\MFPlog
\MFP1n
\MFPexp
\MFPsqrt
\MFPrand
\MFPpow

\LogOfZeroInt
\LogOfZeroFrac

763 \expandafter\edef\csname MFPQ@xfinish\endcsname{’,
764 \catcode64=\the\catcode64 \space

765 \catcode46=\the\catcode46 \space

766 \catcode60=\the\catcode60 \space

767 \catcode62=\the\catcode62 \spacel/,

768 \catcode64=11 % @

769 \catcode46=12 . (period)

770 \catcodeB60=12 % <

771 \catcode62=12 % >

772 \ifx\MFPQRextra\UndEfInEd \input minifp.sty \fi
773 \ifx\MFP@Rextra\Q@empty

774 \else

775 \immediate\writel6{mfpextra.tex: already loaded.~"J}J
776 \MFP@xfinish

777 \expandafter\endinput

778 \fi

779 \immediate\write16{},

780 mfpextra.tex: extra operations for the MiniFP package.”"J}},
781 \def \MFP@Rextra{’

782 \def\Rcos {\MFP@stack@Unary\MFP@Rcos 1}/

783 \def\Rsin {\MFP@stack@Unary\MFP@Rsin }7

784 \def\Rangle{\MFP@stack@Binary\MFP@Rangle}’

785 \def\Rrad {\MFP@stack@Unary\MFP@Rrad 1}/

786 \def\Rdeg {\MFP@stack@Unary\MFPORdeg }%

787 \def\Rlog {\MFP@stack@Unary\MFP@Rlog }%

788 \def\Rln {\MFP@stack@Unary\MFP@Rln 1}%

789 \def\Rexp {\MFP@stack@Unary\MFPQRexp 1}

790 \def\Rsqrt {\MFP@stack@Unary\MFP@Rsqrtl}%

791 \def\Rrand {\MFP@stack@Unary\MFP@Rrandl}/,

792 \def\Rpow {\MFP@stack@Binary\MFP@Rpowl}}/,

Then the wrappers for the operand versions.

793 \def\MFPcos {\MFPQop@Unary\MFP@Rcos 1}/
794 \def\MFPsin {\MFPQop@Unary\MFP@Rsin }/,
795 \def \MFPangle {\MFPQop@Binary\MFP@Ranglel}%
796 \def\MFPrad {\MFP@op@Unary\MFP@Rrad 1}/
797 \def\MFPdeg {\MFPQop@Unary\MFP@Rdeg 1}/
798 \def\MFPlog {\MFPQop@Unary\MFP@Rlog 1}/
799 \def\MFP1n {\MFP@op@Unary\MFP@R1n 1},
800 \def\MFPexp {\MFP@op@Unary\MFP@Rexp }%
801 \def\MFPsqrt {\MFPQop@Unary\MFP@Rsqrt}%
802 \def\MFPrand {\MFP@op@Unary\MFP@Rrand}’
803 \def\MFPpow {\MFP@op@Binary\MFPO@Rpow}%

4.2 FError messages

These extra commands come with a few possible new warnings and errors.
Trying to take the logarithm of zero will result in an error message. If one
allows TEX to continue, the returned value will be negative, with an integer part

41

whose absolute value is equal to the contents of \LogOfZeroInt and a fractional
part equal to the contents of \LogOfZeroFrac. The defaults are both 99999999.
Trying to take the logarithm of a negative number will produce the warning

MFP warning: Log of a negative number is complex.
Only the real part will be computed.

The log of the absolute value is returned.

Trying to take the square root of a negative number has similar behavior. It
produces a warning and returns O.

Trying to take the exponential of a number larger than about 18.42 will cause
an error and the number returned has integer part 99999999 and fractional part
99999999.

Trying to take a negative power of 0 produces an error and returns the same
value as trying to divide 1 by 0.

Messages for errors related to impossible powers and logarithms.

804 \def\MFP@logofzeroQerr{y,
805 \MFP@errmsg{logarithm of zerol}},

806 {You tried to take the logarithm of zero. What were you %
807 thinking? If you ~~Jcontinue, the value %
808 assigned will be -\LogOfZeroInt.\LogOfZeroFrac.l}}/

809 \def\LogOfZeroInt {\MaxReallInt}/,
810 \def\Log0fZeroFrac{\MaxRealFracl}/
811 \def\MFPQ@expoverflow@err{y,

812 \MFP@errmsg{Power too largel}%

813 {The power you tried to calculate is too large for %
814 8 digits. If you continue, ~"Jthe value assigned will be 9
815 \MaxRealInt.\MaxRealFrac.}}%

816 \def\MFP@badpower@err{/,
817 \MFP@errmsg{negative power of zerol}},

818 {You tried to take a negative power of zero. What were you
819 thinking? If you "“~Jcontinue, the value assigned will be %
820 \x0verZeroInt.\xOverZeroFrac.}}/

A debugging utility, \MFPshowreg displays the contents of a register.

821 \def\MFPshowreg #1{J

822 \1fMFPdebug

823 \begingroup

824 \edef\theregister{)

825 #1 = \expandafter \MFP@Sign

826 \csname MFP@#1@Sgn\endcsname %
827 \csname MFP@#1@Int\endcsname.?
828 \csname MFP@#1@Frc\endcsnamel}’,

829 \show\theregister
830 \endgroup
831 \fil}%

42

4.3 Sine and Cosine

For iterated code, the most common register to copy is z and the most common
place to copy it is to = or y so we make single commands to do those.
832 \def \MFP@Rcopyz#1{\MFP@Rload {#1}\MFP@z@Sgn\MFPQ@z@Int\MFP@zQFrc}/,

833 \def \MFP@Rcopyzx{\MFP@Rcopyz x1}/
834 \def\MFPORcopyzy{\MFPO@Rcopyz y}%

Our code assumes the number z is an angle in degrees. To get sine and cosine
of numbers as radians, simply convert your radians to degrees using \MFPdeg or
\Rdeg. Then find the sine or cosine of the result. For example, if \X holds the
angle in in radians and you want the result to be stored in \S:

\MFPdeg\X\Y \MFPsin\Y\S

For unit conversions such as radian to degree we try to be more accurate than
a multiplication by an eight-digit conversion factor allows. If x is large and the
factor is off by 0.5 x 10™8, then the result can be significantly off. But if we are
able to give the conversion factor 16 digits precision, then only the imprecision of
x will significantly affect the result.

We express the conversion factor as an integer part and two eight-digit frac-
tional parts. We multiply « by the integer and first fractional part (#1 and #2) with
a normal \MFP@Rmul, but we save the underflow digits and undo the rounding that
occured at the 8th digit. Together these give us an essentially exact result. Then
we multiply 2 by the second fractional part (#3) and add the saved underflow to
the result. Finally, we round and add the result to the first product. Argument #3,
as well as the underflow digits, represent numbers less than 1078, so we effectively
scale them up by 108, round the result to an integer and scale that back down.

The registers w and v are used to save intermediate results. The “DP” in
\MFP@DPmul refers to the fact that we are multiplying by a “double precision”
real. The conversion factors are required to be positive.

835 \def \MFP@DPmul#1#2#3{%

836 \ifnum\MFP@x@Sgn=0

837 \MFP@Rzero

838 \else

839 \MFP@Rcopy xv’

840 \MFP@Rload y1{#1}{#2}\MFP@Rmul
841 \edef \MFPQw@Und{\MFP@z@Und}

842 \ifnum\MFPQ@z@Frc@iii>4999

843 \MFPQ@tempa\MFPQ@z@Frc \advance\MFPQtempa-1
844 \edef\MFPOz@Frc{\number\MFPQ@tempalj

845 \makeMFPQeightdigits\MFP@zQ@Frc

846 \fi

847 \MFP@Rcopyz w%
848 \MFP@Rcopy vx\MFP@Rload y10{#3}\MFP@Rmul
849 \MFP@Rcopyzx\MFP@Rload y\MFP@v@Sgn O{\MFPQw@Und}\MFPORadd

850 \MFP@tempa\MFP@z@Int\relax

851 \ifnum\MFP@z@Frc<50000000 \else \advance\MFPQtempa 1 \fi

852 \ifnum\MFPQ@tempa<\MFPOttteight\relax

853 \MFP@Rload x{\ifnum\MFP@tempa>0 \MFP@z@Sgn\elseO\fi}0\MFP@tempa

43

854 \else

855 \MFP@Rload X\MFP@Z@SgnlO%
856 \fi

857 \MFP@Rcopy wy\MFP@Radd

858 \fil}/

Conversion factors:

— radians to degrees: 57.2957795130823209

— degrees to radians: 0.0174532925199433

— natural log to common log: 0.4342944819032518
— common log to natural log: 2.3025850929940457

Note that the comparatively large size of the first number means that the
+0.5-10~8 imprecision that x implicitly carries will be multiplied to approximately
+29.6 - 1078 in the result. The only way around this would be to operate with
higher precision internally. We do that in the code for computing angles.

859 \def \MFP@Rdeg{\MFP@DPmul{57}{29577951}{30823209}}%
860 \def \MFP@Rrad{\MFP@DPmul{0}{01745329}{25199433}}/
861 \def\MFP@RbaseX{\MFP@DPmul{0}{43429448}{19032518}}%
862 \def \MFP@RbaseE{\MFP@DPmul{2}{30258509}{29940457}}/,

There are very few angles that are expressible in eight digits whose sine or
cosine can be expressed exactly in eight digits. For these, we do obtain an exact
result. Other values produce inexact results. It would be nice if we could at least
obtain these correctly rounded to eight decimals, but unfortunately our methods
will often produce a result off by 1 in the eighth decimal from the correctly rounded
value. Anything that involves the addition of two or more rounded results can have
this problem. The only way to get correctly rounded results is to carry out all
operations internally to additional places. Even then, there will be the occasional
4999 ... that should round to 0 but rounds to 1 instead.

For the cosine, just compute sin(90 — z).

863 \def \MFP@Rcos{/,
864 \MFP@Rcopy xy\MFP@Rload x1{90}0\MFP@Rsub
865 \MFP@Rcopyzx\MFP@Rsin}/,

Reduce |z| by subtracting 180 from the integer part until it is less than 180.
Of course, sinz = sgn(z)sin(|z|) so we only need to compute sin(|z|). The sign
will be that of x; each reduction by 180 changes the sign, but the reduction code
keeps track of that. If x is 0 after the reduction, return zero.

866 \def\MFP@Rsin{}

867 \MFP@tempa\MFP@xQ@Int

868 \MFP@tempb\MFP@xQ@Frc

869 \MFPQ@tempc\MFP@x@Sgn\relax

870 \MFP@reduce@angle

871 \ifnum\MFP@tempa>0 \MFPQ@Rsin

872 \else\ifnum\MFP@tempb>0 \MFPQ@Rsin
873 \else \MFP@Rzero

874 \fi\fil}}

44

This following reduces |x| to the case 0 < |z| < 180. It assumes the integer
part is in count register \MFPQ@tempa, the sign in \MFPQ@tempc.

875 \def \MFP@reduce@angle{’,
876 \ifnum\MFP@tempa<180

877 \else
878 \advance\MFP@tempa-180
879 \MFP@tempc-\MFP@tempc
880 \@xp\MFP@reduce@angle
881 \fil}J

At this point, |z| is represented by \MFP@tempa (integer part) and \MFP@tempb
(fractional part). Also, we already know the sign stored in \MFP@tempc. Moreover
0 < \MFP@tempa < 180. We now reduce to 0 < |z| < 90 using sin(x) = sin(180 —
|z]), and return 1 if equal to 90.

The calculation of 180 — « is optimized, taking advantage of the fact that both
x and the result are known to be positive. If the fractional part is positive, we
borrow 1 by reducing 180 to 179.

882 \def \MFPQ@@Rsin{%
883 \ifnum\MFP@tempa<90

884 \else

885 \MFP@tempa -\MFPQ@tempa

886 \ifnum\MFP@tempb>0

887 \MFP@tempb -\MFP@tempb

888 \advance\MFP@tempb \MFPQttteight\relax
889 \advance\MFP@tempa 179

890 \else \advance\MFPQtempa 180
891 \fi

892 \fi

893 \ifnum\MFP@tempa=90

894 \MFP@Rloadz \MFP@tempc10%

895 \else

We would need to convert x to radians (multiply by 7/180) to use the standard
power series, but instead we will incorporate the conversion factor into the power
series coefficients.

We will, however, try to increase accuracy by reducing the size of x and cor-
respondingly increasing the appropriate factors. Since the number of significant
figures of a product is limited by the least number of significant figures of the two
factors, the bottleneck on accuracy is that of the smaller term: all our numbers
have eight digits so if a number is small, the number of nonzero digits is small.

Dividing by 100 seems a good choice (so our units are “hectodegrees”). This
makes 0 < z < .9 and the integer part (\MFP@tempa) will be henceforth ignored.

The addition of 50 is for rounding purposes. After that, our computa-
tions amount to concatenating the top six digits of \MFP@tempb to the digits of
\MFP@tempa. This will produce the integer form of the fractional part of x/100
(the integer part of /100 is zero).

Division by 100 can turn a number into 0. This is one place we can lose
accuracy (up to £1 in the last digit of the result). In compensation, the rest of

45

the calculations become very much more accurate.

896 \advance\MFP@tempb 50 \divide\MFP@tempb 100

897 \multiply\MFP@tempa 1000000 \advance\MFP@tempb\MFPQ@tempa
898 \ifnum\MFP@tempb=0

899 \MFP@Rzero

900 \else

We save some multiplications by working with ¢t = 2. As we don’t need the
original x anymore, we simply replace it with the newly reduced value. We also
save this reduced x in another register, s, as we will need it again at the end,
and our intermediate calculations do not preserve the x register. Then we square
x and, if that square is 0 we can skip all the power series and simply return z
converted to radians. If 22 is not zero, we save it in temporary register ¢ and
call our power series. When this program is finished, all that remains is the final
multiplication by a conversion factor (\MFP@DPmul).

901 \MFP@Rload s\MFP@tempcO\MFP@tempb
902 \MFP@Rcopy sx%

903 \MFP@Rsq

904 \ifnum \MFP@z@Frc>0

905 \MFP@Rcopyz t\MFP@Rsin@prog

906 \else

907 \MFP@Rcopy sx%

908 \fi

909 \MFP@DPmul 1{74532925}{19943296}Y
910 \fi

911 \fil}%

\MFP@Rsin@prog is the power series computation. The power series need only
go to the '3 term as the next is less than 10~ and in our 8-place computations
is indistingushable from 0. Our series is:

ra(l —r2t/30 + r42 /50 — O3 /70 4 812 /91 — 1045 /111 4 1240 /13))

where r is the factor that converts x to radian measure (hectodegrees to radians).
When zx is so small as to produce ¢ = 0 we have skipped all this.
We minimize any multiplications of tiny numbers by computing this as

re(l — ft(1 — et(1 — dt(1 — ct(1 — bt(1 — at)))))).

In this format, additional terms might actually make a difference, because at is

not particularly small. However, the more computations we have, the more errors

accumulate. Therefore we take the fewest that produce acceptable accuracy.
Now r = 1.7453292519943296 and a, b, etc., have formulas:

a=12/13/12, b =1r?/11/10, c = r?/9/8,
d=1%/7/6, e =1%/5/4, f=1r%/3/2.

An alternative method would be to accumulate a sum, computing each term from
the previous one (e.g., if u = t3/7! is the fourth term, the next one is u ¢ (1/(8
9))). This is a bit more complicated to code and requires moving values around

46

more. It would have the advantage that we can stop whenever a term evaluates
to zero, making computation faster for small values of z. I have not determined
whether it would compromise accuracy.

We avoid divisions by precomputing the coefficients a, b, ¢, etc. Note that
without the reduction in z, the value of a for example would be 0.00000195, with
only three significant figures of accuracy. Now we can have seven, and the accuracy
is more-or-less determined by that of the reduced x.

a = 0.01952676, b = 0.02769249, ¢ = 0.04230797,,
d = 0.07252796, e = 0.15230871, f = 0.50769570.

It is important to note that the following operations step all over the \MFP@tempz
\count registers, so we have made sure that we no longer need them.

The \MFP@f1lipz computes 1 —z, where z is the result of the previous operation.
Instead of simply subtracting, we optimize based on the fact that z is known to
be nonnegative and not larger than 1.

The macro \MFP@com@iter ‘flipz’ the previous result then multiplies by ¢ and
the indicated coefficient. (The name of this macro stands for “common iterated”
code; it is reused for some other power series.)

For extra efficiency, the power series uses a “small” version of multiplication
\MFP@Rsmul, used only when the factors are sure to lie in [0, 1]. This does not take
into account the sign of z, whence the ending \edef.

912 \def\MFPORsin@prog{%

913 \MFP@Rcopy tx\MFP@Rload y10{01952676}\MFP@Rsmul’

914 \MFPQcom@iter{02769249}\MFPQcom@iter{04230797}\MFPQcom@iter{07252796}%
915 \MFPQcom@iter{15230871}\MFPQ@com@iter{50769570}\MFP@flipz \MFPORcopyzx
916 \MFPORcopy sy\MFP@Rsmul\MFP@Rcopyzx\edef\MFPOx@Sgn{\MFP@s@Sgn}}/

917 \def\MFP@f1lipz{},

918 \ifnum\MFP@z@Sgn=0

919 \MFP@Rloadz 1107

920 \else

921 \MFP@tempa\MFP@ttteight

922 \advance\MFP@tempa-\MFP@z@Frc\relax

923 \MFP@Rloadz{\ifcase\MFPQtempa O\elsel\fi}O\MFPQtempa
924 \fil}

925 \def \MFPQ@com@iter#1{\MFPQflipz
926 \MFP@Rcopyzx\MFP@Rcopy ty\MFP@Rsmul
927 \MFP@Rcopyzx\MFPORload y10{#1}\MFP@Rsmull}/,

As to the accuracy of these computations, we can certainly lose accuracy at
each step. In principle, if z is known to 10 significant figures (z > 10 degrees), then
even though we lose two figures with division by 100, the accuracy bottleneck is the
fact that our coefficients have only seven figures. Now we have 17 multiplications,
and while products are said to have the same number of significant figures as
the factors, in the worse case we can accumulate inaccuracy of about .5 x 1078
per multiplication. So we are not guaranteed an accuracy of more than about
+10~". Numerical tests, however, show that it isn’t that bad, probably because the
direction of inaccuracies usually varies randomly, and inaccuracies in one direction
compensate for those going the other way. I have not seen a case where the result

47

is off by more than 1 in the last decimal place (i.e., 1.5 x 10~8). In the case where
we can know the result exactly, x = 30, we get an exact answer, even though we
don’t single it out (as we do 0, 90 and 180).

The following is the “small” version of \MFP@Rmul. Limited to non-negative
numbers less than or equal to 1. Theoretically all the numbers are strictly be-
tween 0 and 1, but in practice a multiplication could round to 0 and then, after
subtraction, a 1 could occur. We handle those easy cases separately, so that in
\MFP@@Rsmul we don’t have to worry about the integer parts at all.

Also, since these are completely internal, we don’t even define the overflow and
underflow macros.

928 \def\MFP@Rsmul{/,

929 \ifnum \MFP@x@Sgn=0 \MFP@Rzero

930 \else\ifnum \MFPQy@Sgn=0 \MFP@Rzero

931 \else\ifnum\MFP@x@Int>0 \MFP@Rcopy yz/%

932 \else\ifnum\MFPQy@Int>0 \MFPORcopy xz/%

933 \else \MFP@@Rsmul

934 \fi\fi\fi\fil}y

935 \def \MFP@@Rsmul{%

936 \MFP@split\MFP@x@Frc\MFP@xQFrc@i\MFP@xQFrc@ii
937 \MFP@split\MFPQyQFrc\MFP@yQ@Frc@i\MFPyQFrc@ii
938 \def\MFPOzOFrc@i {0}\def\MFPOzQFrc@ii {0}
939 \def\MFP@zQFrc@iii{0}\def\MFP@zQFrc@iv {0}
940 \MFPQ@tempb\MFPQyQ@Frc@ii\relax

941 \MFP@multiplyone\MFP@xQ@Frc@ii\MFPQzQFrc@iv
942 \MFP@multiplyone\MFP@xQFrc@i\MFP@z@Frc@iii
943 \MFP@tempb\MFPQ@y@Frc@i\relax

944 \MFP@multiplyone\MFP@xQ@Frc@ii\MFPQ@z@Frc@iii
945 \MFP@multiplyone\MFP@x@Frc@i\MFP@z@Frc@ii
946 \MFP@carrym\MFPQ@z@Frc@iv\MFP@zQ@Frc@iii

947 \MFP@carrym\MFPQ@zQ@Frc@iii\MFP@zQFrc@ii

948 \ifnum\MFP@z@Frc@iii<5000 \else

949 \MFP@tempb\MFP@zQFrc@ii
950 \advance\MFPQtempb1l
951 \edef\MFPQ@z@Frc@ii{\number\MFP@tempb}\fi

952 \MFP@carrym\MFP@z@Frc@ii\MFPQz@Frc@i

953 \makeMFPQ@fourdigits\MFPOzQFrcQii

954 \makeMFP@fourdigits\MFP@z@Frc@i

955 \def\MFP@z@Int{0}}

956 \edef\MFPQz@Frc{\MFP@zQFrc@i\MFPQz@Frc@ii}}

957 \edef\MFP@z@Sgn{\ifnum\MFP@z@Frc=0 O\else 1\fil}}J

4.4 Polar angle

Instead of supplying the arcsine and arccosine functions, we supply the more gen-
eral angle function. This is a binary operation that accepts the two coordinates of
a point and computes its angle in polar coordinates. One then has, for example,
arctan = angle(1, z) and arccosz = angle(z, v'1 — 22?).

We start, as usual, with a few reductions. When the y-part is 0, we immediately

48

return 0 or 180. If the y-part is negative, we compute the angle for (z,|y|) and
negate it. If the z-part is negative, we compute the angle for |z| and subtract
it from 180. Finally, reduced to both coordinates positive, if y > = we compute
the angle of (y,x) and subtract that from 90. Ultimately, we apply a power series
formula for angle(1,y/x) and get convergence when the argument is less than
1, but convergence is poor unless the argument is less than 1/2. When that is
not the case, conceptually, we rotate the picture clockwise by the arctangent of
1/2, compute the angle of the new point and then add a precomputed value of
arctan(1/2).

958 \def \MFP@Rangle{’,

959 \ifcase\MFP@y@Sgn\relax

960 \ifcase\MFPOx@Sgn\relax

961 \MFP@warn{Point (0,0) has no angle. Returning O anywayl}’
962 \MFP@Rzero

963 \or

964 \MFP@Rzero

965 \else

966 \MFP@R1loadz 1{1803}0%

967 \fi

968 \@xp\@gobble

969 \or

970 \def\MFP@angle@Sgn{1}\@xp\@firstofone
971 \else

972 \def \MFP@y@Sgn{1}%

973 \def\MFP@angle@Sgn{-1}\@xp\@firstofone
974 \fi

975 {\ifcase\MFP@x@Sgn\relax

976 \MFP@R1oadz1{90}0%

977 \or \MFP@GRangle

978 \else

979 \def \MFP@x@Sgn{1}\MFP@CRangle

980 \MFP@Rcopyzy\MFP@Rload x1{180}0\MFP@Rsub
981 \fi

982 \let\MFP0z@Sgn\MFPQangle@Sgnl}}/,

983 \def \MFP@@Rangle{%

984 \MFP@Rcmp

985 \ifMFP@neg

986 \MFP@Rcopy xw\MFP@Rcopy yx\MFP@Rcopy wy%
987 \MFP@@®@Rangle

988 \MFP@Rload x1{90}0\MFP@Rcopyzy\MFP@Rsub

989 \else
990 \MFP@@®@Rangle
991 \fi}/

Precisely what we do when we are finally in the case 0 < y < z is perform
a couple of reductions. Ultimately we want to compute the arctan of z = y/x.
We once again use a power series but, for fast convergence, we require z to be
considerably less than 1. For reasons we discuss later, we won’t be able to use
the more efficient \MFP@Rsmul so we want to keep the number of iterations of our

49

power series calculations low.

So we start with two iterations of the algorithm used by Knuth: if y/x > 1/2 we
transform the pair (x,y) to a new one whose angle has been reduced by arctan(1/2).
The new pair is (2',y') = (2z + y, 2y —). If we still have y/x > 1/4, we perform
(z”,y") = (4x +y, 4y —), which then satisfies y’ /2" < 1/4. When either of these
transformations is performed, we add the corresponding angle to the “angle-so-far”
in register a.

We could continue this iteration 32 times to get (theoretically) the angle in
degrees to 1078, That seems a bit long, plus the accumulation of errors over 32
iterations could (in the worst case) produce less than +10~7 accuracy.

To get the accuracy we need, we work in “scaled reals”. That is, we get 10
effective decimal places of accuracy by letting an x in the range 0 < x < 100 stand
for 0 < /100 < 1.

Our initial reductions can increase x by a factor of about 13. Moreover, we
ultimately need to scale y by 100 when we convert to scaled computations. Thus,
if we make sure z is less than 1000000, we will prevent overflow in both cases.

992 \def\MFP@Rquad{\MFP@RAb1\MFP@Rcopyzx\MFPERAb1}Y,
993 \def \MFPO@@Rangle{%

994 \MFP@Rcopy xs\MFP@Rcopy yt%

995 \ifnum\MFP@x@Int<1000000

996 \else

997 \MFPORdivC \MFP@Rcopyz s%

998 \MFP@Rcopy tx\MFPO@RdivC \MFP@Rcopyz t/

999 \fi

1000 \ifnum\MFP@t@Sgn=0 \MFP@Rzero

1001 \else

1002 \MFP@Rcopy tx\MFPORdb1\MFP@Rcopyzx\MFP@Rcopy sy\MFP@Rcmp
1003 \1fMFP@pos

1004 \MFP@Rsub\MFP@Rcopyz u\MFP@Rcopy sx\MFP@Rdbl
1005 \MFP@Rcopyzx\MFP@Rcopy ty\MFP@Radd

1006 \MFP@Rcopyz s\MFP@Rcopy ut’

1007 \MFP@Rload a1{2656}{50511771}}

1008 \else

1009 \MFP@Rload a0007%

1010 \fi

1011 \MFP@Rcopy tx\MFP@Rquad\MFP@Rcopyzx\MFP@Rcopy sy\MFP@Rcmp
1012 \1ifMFP@pos

1013 \MFP@Rsub\MFP@Rcopyz u\MFP@Rcopy sx\MFP@Rquad
1014 \MFP@Rcopyzx\MFP@Rcopy ty\MFPORadd

1015 \MFP@Rcopyz s\MFPORcopy ut%

1016 \MFP@Rcopy ax\MFP@Rload y1{1403}{624346793}%
1017 \MFP@Radd\MFP@Rcopy zal

1018 \fi

1019 \MFP@Rcopy tx\MFP@RmulC

1020 \MFP@Rcopyzx\MFP@Rcopy sy\MFPORdiv

1021 \MFP@Rcopyzx\MFP@Ratanc

1022 \MFP@Rcopyzx\MFP@Rdeg

1023 \MFP@Rcopyzx\MFP@Rcopy ay\MFP@Radd

a0

1024 \MFP@Rcopyzx\MFP@RdivC
1025 \fil}%

Here are fast multiplication and division by 100. We need these because we
are going to compute the arctangent in radians to ten decimal places. We do this
by computing with scaled reals in which, for example, 0.5 is represented by 50.0.
When we do this, multiplication requires a division by 100: .5 x .5 = .25 would be
computed as (50 x 50)/100 = 25.

1026 \def\MFP@twoofmany#1#2#3\MFP@end{#1#21},

1027 \def \MFP@gobbletwo#1#2{}%

1028 \def \MFP@Rmu1C{%

1029 \edef\MFP@z@Int{\MFP@x@Int\@xp\MFP@twoofmany\MFP@x@Frc\MFPQendl}7,
1030 \edef\MFP@z@Frc{\@xp\MFP@gobbletwo\MFPOx@Frc00}/
1031 \edef\MFP@z@Sgn{\MFP@x@Sgnl}}/,

1032 \def\MFP@RAivC{}

1033 \makeMFP@eightdigits\MFP@x@Int

1034 \makeMFP@eightdigits\MFP@x@Frc

1035 \@XP\MFPQ@RAivC\@xp\MFPOxQ@Int\MFPO@xQ@Frc\MFPQend}/,
1036 \def \MFPQORAivC#1#2#3#4#5#6{/,

1037 \edef\MFP@z@Int{\number#1#2#3#4#5#6}/,

1038 \MFPQQ@ORAivCl}%

1039 \def \MFPQQORAivC#1#2#3#A#5#6#7#8#9\MFPQend{/,

1040 \MFPQtempa#1#2#3#4#5#6#7#8\relax

1041 \ifnum#9>49 \advance\MFPQ@tempal \fi

1042 \edef\MFP@z@Frc{\number \MFP@tempa}/,

1043 \makeMFPQeightdigits\MFP@z@Frc

1044 \edef\MFP@z@Sgn{\MFP@x@Sgnl}’,

1045 \ifnum\MFP@tempa=0

1046 \ifnum\MFP@z@Int=0 \def\MFPOz@Sgn{0}\fi

1047 \fi}%

Finally, we compute the arctan of a scaled real producing a result as a scaled
number (i..e., as “centiradians”—100 times the number of radians) using a power
series. Since that number could be around 0.25 (represented by 25.0), we have to
sum to at least its 15th power (4715/15 ~ .6 x 1071 and the next term in the
series is effectively 0). Fortunately, the power series has only odd terms, so there
are only eight terms we actually need to calculate. The calculation proceeds much
like the one for the sine, starting with the sum

where u = z2.

We start with the common iterated code. It assumes a scaled value in = to
be multiplied by the saved (scaled) value of 22 (in register u) and by a coefficient
(supplied in separate integer and fractional parts). It ends with the new value in
x.

1048 \def \MFP@scaledmul {\MFP@Rmul \MFPORcopyzx\MFPORAivC}%
1049 \def\MFPQatan@iter#1#2{/

ol

1050 \MFP@Rcopy uy\MFP@scaledmul

1051 \MFP@Rcopyzx\MFPORload y1{#1}{#2}\MFP@scaledmul

1052 \MFP@Rcopyzy\MFP@Rload x1{100}{00000000}%

1053 \MFP@Rsub\MFP@Rcopyzx}/

1054 \def\MFP@Ratanc{/

1055 \MFP@Rcopy xs\MFP@Rcopy xy\MFP@scaledmul

1056 \ifnum \MFP@z@Sgn=0

1057 \MFP@Rcopy sz%

1058 \else

1059 \MFP@Rcopyz u\MFP@Rcopyzx

1060 \MFP@Rload y1{86}{66666667}\MFP@scaledmul

1061 \MFP@Rcopyzy\MFP@Rload x1{100}{00000000}\MFP@Rsub\MFP@Rcopyzx
1062 \MFPQatan@iter{84}{61538462}\MFPQatan@iter{81}{81818182}}
1063 \MFP@atan@iter{77}{77777778}\MFPQatan@iter{71}{42857143}},
1064 \MFP@atan@iter{60}{00000000}\MFPQ@atan@iter{33}{33333333}},
1065 \MFP@Rcopy sy\MFP@scaledmul

1066 \fil}%

4.5 Logarithms

Now for logarithms. We are going to compute both common logarithms (base 10)
and natural logarithms (base e). The first step of the calculation is be essentially
trivial and works with base 10: to get the integer part of the log for numbers
with positive integer part, count the digits in the integer part and subtract 1. For
numbers less than one, count the number of zeros at the beginning of the fractional
part and add 1 (subtract this from the result of the second part). This reduces the
problem to numbers 1 < z < 10. A few divisions (when necessary) reduce to the
case where z = 1 + u with u small enough that the power series for log(1 + u) can
be computed accurately in an acceptable number of of terms. Then we proceed as
in the code for sine.

The power series produces a logarithm in base e so we ultimately get the answer
in two parts, with the parts calculated for different bases. The last step for the
common log is to multiply the second part by a conversion factor and add the first
to it. For natural log, convert the first and add the second. Which one is to be
returned is passed as a boolean.

We keep the value-so-far in register s and the modified z-value in register t.

1067 \newif\ifMFP@natural

1068 \def\MFPORlog{\MFP@naturalfalse\MFPORlog®@}%
1069 \def\MFPOR1n{\MFP@naturaltrue\MFPOR1log@l}’

1070 \def\MFP@R1log@{’,

1071 \ifnum\MFP@x@Sgn=0

1072 \MFP@logofzeroQerr

1073 \MFP@Rloadz{-1}\LogOfZeroInt\LogOfZeroFrac
1074 \else

1075 \ifnum \MFP@x@Sgn<0

1076 \MFP@warn{The logarithm of a negative number is complex.
1077 \MFP@msgbreak Only the real part will be computedl}’
1078 \def\MFP@x@Sgn{1}%

92

1079
1080

\fi
\MFP@Rload s000Y%

If the integer part is 0, the fractional part is not. Save the number of places

that will be shifted in \MFP@tempa. We use \number to strip the leading zeros
and (essentially) we count the number of digits that remain. Then we shift left,
putting the first digit into the integer part of s and the rest into the fractional

part.
1081 \ifnum \MFP@x@Int=0
1082 \edef \MFP@x@Tmp{\number \MFP@xQ@Frc}Y,
1083 \MFP@tempa=\MFP@numshiftL\MFP@x@Tmp\relax
1084 \def\MFP@s@Sgn{-11}/
1085 \edef\MFPOt@Int{\@xp\MFPQoneofmany \MFP@x@Tmp\MFPCend}/,
1086 \edef\MFP@t@Frc{\@xp\@gobble\MFPOx@Tmp01}7,
1087 \MFP@padtoeight \MFP@t@Frc
1088 \else

When the integer part is not 0, we get the number of digits to shift again in
\MFP@tempa. It will be one less than the number of integer digits.

1089
1090
1091
1092
1093
1094
1095

\MFP@tempa\MFP@numshiftR\MFP@x@Int

\edef \MFP@x@Tmp{\MFP@x@Int\MFP@xQFrc}y,

\ifnum\MFP@tempa>0 \def\MFP@s@Sgn{1}\fi

\edef\MFPQt@Int{\@xp\MFPQoneofmany\MFPOxQTmp\MFPQend}/,

\edef \MFPOx@Tmp{\@xp\@gobble\MFPOxQTmpl}’

\edef \MFP@t@Frc{\@xp\MFPQeightofmany\MFPOx@Tmp\MFPQ@end}’
\fi

Now the integer part of log;, = is known. We save it in s. Also set the sign of

the reduced argument (positive). Then call \MFP@Rlog@reduce, which reduces z
to less than 1.161 while possibly increasing s. For the natural log, we convert the
value in s.

If the reduced z is 1, return the value in s, otherwise call the power series

program (discarding the integer part of ¢, which should be a 1). Finally, convert
the returned result if necessary and add register s to it.

1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107

\edef\MFP@s@Int{\number\MFP@tempal},

\def\MFP@t@Sgn{1}/,

\MFP@Rlog@reduce

\ifMFP@natural \MFP@Rcopy sx\MFP@RbaseE \MFPORcopy zs\fi

\ifnum\MFPQtQFrc=0
\MFP@Rcopy sz%

\else
\def\MFP@t@Int{0}\MFP@Rlog@prog
\ifMFP@natural\else \MFPQ@Rcopyzx \MFP@RbaseX \fi
\MFP@Rcopy sy\MFP@Rcopyzx\MFP@Radd

\fi

\fi}y
We determine the size of a right shift by lining up the digits in the integer part,

followed by the possible numbers, and picking out the ninth argument. Similarly,

93

to get a left shift we line up the digits of the fractional part (minus the leading
zeros) followed by the possible numbers, and again picking the ninth.

1108 \def \MFP@numshiftR#1{\@xp\MFP@ninthofmany#176543210\MFP@end}/,
1109 \def\MFP@numshiftL#1{\@xp\MFPOninthofmany#112345678\MFPQend}/

In \MFP@Rlog@reduce we divide by the square root of 10 if the number is
significantly larger than that (adding .5 to value-so-far). We repeat with the 4th,
8th and 16th roots. It seems that this could be where errors can accumulate, so
the divisions are done with double precision multiplication and « is scaled by 100.
Our check whether 2 > 1/10 is rather rough: comparing the first three digits only,
but even in the worst case, the final x is less than 1.1605, so at most 0.161 is fed
to the power series.

1110 \def \MFP@Rlog@reduce{%

1111 \MFP@Rcopy tx\MFPORmulC\MFP@Rcopyz t%

1112 \MFP@reduceonce {316}{31622776}{60168379}{50000000}%
1113 \MFP@reduceonce {177}{56234132}{51903491}{25000000}%
1114 \MFP@reduceonce {133}{74989420}{93324558}{12500000}%
1115 \MFP@reduceonce {115}{86596432}{33600654}{06250000}7%
1116 \MFP@Rcopy tx\MFP@RdivC\MFP@Rcopyz t}%

1117 \def \MFP@reduceonce#1#2#3#4{/,

1118 \ifnum\MFP@t@Int>#1\relax

1119 \MFP@Rcopy tx%

1120 \MFP@DPmul O{#2}{#3}\MFP@Rcopyz t%

1121 \MFP@Rcopy sx\MFP@Rload y10{#4}\MFP@Radd

1122 \MFP@Rcopyz s%

1123 \fi}}%

Now we have a value for ¢ of the form 1 + v with 0 < u < 0.161. We will use

the formula .
n(l+u) = Z)t — w

We only need to carry it far enough to assure that the remaining terms would
be zero in our finite resolution arithmetic, that is (.161)*/k < .5 x 1078, This is
satisfied by k = 10. So we carry the sum to 9 places.

Again, we compute this by

u(l —au(l —bu(l — cu(l — du(l — eu(l — fu(l — gu(l — hu))))))))

where a =1/2, b=2/3,..., g =7/8, and h = 8/9 This arrangement allows us to
reuse \MFPQcom@iter.

1124 \def\MFP@Rlog@prog{’

1125 \MFP@Rcopy tx\MFP@Rload y10{88888889}\MFP@Rsmul

1126 \MFP@com@iter{87500000}\MFP@com@iter{85714286}\MFP@com@iter{83333333}/
1127 \MFP@com@iter{80000000}\MFP@com@iter{75000000}\MFPQcom@iter{66666667}
1128 \MFP@com@iter{50000000}\MFP@f1ipz\MFP@Rcopyzx\MFP@Rcopy ty\MFPORsmul}y

o4

4.6 Powers

With the exponential function we immediately return 1 if x = 0. We call two sep-
arate handlers for positive and negative x. This is because the issues are different
between positive and negative exponents.

1129 \def\MFP@Rexp{%
1130 \ifcase\MFPOx@Sgn\relax

1131 \MFP@Rloadz 110%
1132 \or
1133 \MFP@Rexp@pos

1134 \else

1135 \def\MFP@x@Sgn{1}’
1136 \MFP@Rexp@neg

1137 \fi}%

One issue for positive exponents is overflow, so we issue an error message for
that case. The largest mumber that will not produce overflow is 18.42068074
so we first compare to that; if larger, issue the error message and return
99999999.99999999.

We compute the integer power first, using an \ifcase. Because there are only
19 cases to consider a table lookup is faster than multiplications.

Then, we examine the first digit d after the decimal and compute ¢, again by
cases. This is multiplied by the integer power previously found. What remains is
the rest of the fractional part of x, which is strictly less than 0.1. The exponential
of this is computed using the first several terms of the power series for e*.

1138 \def \MFP@Rexp@pos{/
1139 \MFP@Rload y1{18}{42068074}\MFPCRcmp
1140 \ifMFP@pos

1141 \MFP@expoverflow@err
1142 \MFP@Rloadz 1\MaxRealInt\MaxRealFrac
1143 \else

1144 \MFP@tempa\MFP@x@Int
1145 \edef\MFP@powerofQe{Y
1146 1\ifcase\MFP@tempa
1147 10\or

1148 2{71828183}\or

1149 7{38905610}\or

1150 {20}{08553692}\or

1151 {54}{59815003}\or

1152 {1483}{41315910}\or
1153 {403}{42879349}\or
1154 {1096}{63315843}\or
1155 {2980}{95798704}\or
1156 {8103}{08392758}\or
1157 {22026}{46579481}\or
1158 {59874}{14171520} \or
1159 {162754}3{79141900}\or
1160 {442413}{39200892}\or
1161 {1202604}{28416478}\or

%)

1162 {3269017}{37247211}\or

1163 {8886110}{52050787}\or

1164 {24154952}{75357530} \or

1165 {65659969}{13733051}\else

1166 {\MaxRealInt}{\MaxRealFrac}\fil}/

1167 \@xp\MFPORloadz\MFP@powerof Qe

1168 \ifnum\MFP@x@Frc=0

1169 \else

1170 \MFP@Rcopyz s%

1171 \MFP@tempa=\@xp\MFPQoneofmany\MFPOxQ@Frc\MFPQend
1172 \edef \MFP@powerofQ@e{%

1173 y1\ifcase\MFP@tempa

1174 10\or

1175 1{10517092}\or

1176 1{22140276}\or

1177 1{34985881}\or

1178 1{49182470}\or

1179 1{64872127}\or

1180 1{82211880}\or

1181 2{01375271}\or

1182 2{22554093}\or

1183 2{45960311}\else

1184 10\£fi}%

1185 \edef \MFPOt@Frc{0\0xp\@gobble\MFPOxQ@Frcl}Y
1186 \MFP@Rcopy sx\@xp\MFP@Rload\MFP@powerof@e\MFPORmul
1187 \ifnum\MFP@t@Frc=0

1188 \else

1189 \MFP@Rcopyz s\MFP@Rload t10\MFP@t@Frc
1190 \MFP@Rexp@pos@prog

1191 \MFP@Rcopy sx\MFP@Rcopyzy\MFP@Rmul
1192 \fi

1193 \fi

1194 \fi}}%

Since the x value is now less than 0.1, we can get eight places of accuracy with
only six terms of the power series. We can also arrange to use the more efficient
\MFP@Rsmul for multiplication.

We organize the computation thusly

1+ (z+z/2(x+2/3(x +2/4(x + z/5(x + x/6)))))

We start by loading = (now in register t) into register z, then repeatedly run
\MFP@Rexp@iter feeding it the successive values of 1/n. This iterator first multi-
plies the most recent result (the z register) by 1/n, then that by x and then adds
x to that. The final step is to add 1.

1195 \def \MFP@Rexp@pos@prog{%

1196 \MFP@Rcopy tz\MFP@Rexp@iter{14285714}\MFP@RexpQiter{16666667}/

1197 \MFPORexpQiter{20000000}\MFP@Rexp@iter{25000000}%

1198 \MFP@Rexp@iter{33333333}\MFPORexpQiter{50000000}\MFPORcopyzx

1199 \MFP@Rincrl}%

96

1200 \def\MFPORexpQiter#1{Y

1201 \MFP@Rcopyzx\MFPORload y10{#1}\MFP@Rsmul
1202 \MFP@Rcopyzx\MFP@Rcopy ty\MFP@Rsmul

1203 \MFP@Rcopyzx\MFP@Rcopy ty\MFP@Raddl}/,

It is impossible to get accuracy to the last digit when e” is large. This is because
an absolute error in x converts to a relative error in e, That is, knowing x only
to 1078 means e® is off by (about) e* - 10~%. Roughly speaking, this means only
about 8 places of e” are accurate, so if (for example) the integer part of e has six
places then only two places after the decimal are significant.

The first issue with negative exponents is that it doesn’t take much to produce
a value of e™* that rounds to 0. Any x > 19.11382792. So we start by comparing
to that value and simply return zero if x is larger.

We perform exactly the same reductions as for positive exponents, handling
the integer part and the first decimal separately. Then we call the power series
program (not the same).

1204 \def\MFP@RexpC@neg{’

1205 \MFP@Rload y1{19}{11382792}/
1206 \MFP@Rcmp

1207 \ifMFP@pos

1208 \MFP@Rloadz 000%

1209 \else

1210 \MFP@tempa\MFP@x@Int
1211 \edef \MFP@powerof@e{/,
1212 \ifcase\MFP@tempa
1213 11{0}\or

1214 10{36787944}\or
1215 10{13533528}\or
1216 10{04978707}\or
1217 10{01831564}\or
1218 10{00673795}\or
1219 10{00247875}\or
1220 10{00091188}\or
1221 10{00033546}\or
1222 10{00012341}\or
1223 10{00004540}\or
1224 10{00001670}\or
1225 10{00000614}\or
1226 10{00000226}\or
1227 10{00000083}\or
1228 10{00000031}\or
1229 10{00000011}\or
1230 10{00000004}\or
1231 10{00000002}\or
1232 10{00000001}\else
1233 000\fi}%

1234 \@xp\MFPORloadz\MFP@powerofQe
1235 \ifnum\MFP@xQFrc=0

o7

1236 \else

1237 \MFP@Rcopyz s

1238 \MFP@tempa=\@xp\MFP@oneofmany\MFPOx@Frc\MFPQend
1239 \edef \MFP@powerofQe{Y

1240 y1\ifcase\MFP@tempa

1241 10\or

1242 0{90483742}\or

1243 0{81873075}\or

1244 0{74081822}\or

1245 0{67032005}\or

1246 0{60653066}\or

1247 0{54881164}\or

1248 0{49658530} \or

1249 0{44932896}\or

1250 0{40656966} \else

1251 10\£i}%

1252 \edef\MFPOt@Frc{0\@xp\@gobble\MFP@xQFrcl}/,
1253 \MFP@Rcopy sx\@xp\MFP@Rload\MFP@powerof@e\MFPORmul
1254 \ifnum\MFP@t@Frc=0

1255 \else

1256 \MFP@Rcopyz s\MFP@Rload t10\MFP@t@Frc
1257 \MFP@Rexp@negQ@prog

1258 \MFP@Rcopyzx\MFP@Rcopy sy\MFPORmul

1259 \fi

1260 \fi

1261 \fil}%

Since x is now positive we calculate e™*.
power, organized as follows

Again we need only up to the 6th

1—a(l—2/2(1 — 2/3(1 — 2/4(1 — 2/5(1 — /6)))))

Since this has exactly the same form as the the power series calculation for log and
sin, we can reuse the code in \MFP@com@iter. We end with the final multiplication
by x and the subtraction from 1 rather than call \MFP@com@iter with a useless
multiplication by 1.

1262 \def \MFP@Rexp@neg@prog{’

1263 \MFP@Rcopy tx\MFP@Rload y10{14285712}\MFP@Rsmul

1264 \MFP@com@iter{16666667}\MFP@com@iter{20000000}%

1265 \MFP@com@iter{25000000}\MFPQ@com@iter{33333333}/,

1266 \MFP@com@iter{50000000}\MFP@f1ipz\MFP@Rcopyzx

1267 \MFP@Rcopy ty\MFP@Rsmul\MFP@flipz}/,

The most efficient way to take an integer power of a number x is to scan the
binary code for the exponent. Each digit 1 in this code corresponds to a 2* power
of x, which can be computed by repeatedly squaring x. These dyadic powers are
mutiplied together. We can convert this idea to a simple loop illustrated by this
example of finding '3 (13 = 1101 in base 2). Here p holds the current product
and ¢ holds the current dyadic power of x, initialized with p =1 and ¢ = x:

1. Rightmost digit 1: update p + pg = x and q <+ ¢*> = 22.

98

Next digit 0: Just update g < ¢% = z*.
8

Next digit 1: update p < pg = 2° and ¢ + ¢® = z8.
4. Next digit 1: update p + pg = '3, detect that we are at the end and skip the
update of g. Return p.

w N

Of course, this requires the binary digits of the exponent n. But the rightmost
digit of n is 1 if and only if n is odd, and we can examine each digit in turn if we
divide n by 2 (discarding the remainder) at each stage. We detect the end when
n is reduced to 1.

Accuracy is partly a function of the number of multiplications. The above
scheme requires at most |log, n| squarings and at most [logy n] multiplications
for ™, while directly multiplying z - « - - - would require n — 1 multiplications.

I have tested with an exponents around 8000, which has 13 binary digits. Each
squaring could double the relative error. For that large a power, the base has to
be near 1 to avoid overflow or underflow. So the relative error is about .5(10)~5.
Doubling that 12 times would increase it to about .00004, and the result could
have as little as 4 or 5 significant figures. In these tests, the results were actually
accurate to 5 or 6 significant figures, starting with 8 figures. Raising to this power
takes only about 25 times as long as a single multiplication (rather than 7999

times).
For negative powers we can either find the positive power of z and take its

reciprocal or take the reciprocal of x and find its positive power.

second so that overflow can be detected in \MFP@@Rpow.
1268 \def \MFP@Rpow{%

1269 \ifnum\MFPQy@Frc>0

1270 \MFP@warn{The "pow" function requires an integer power.
1271 \MFP@msgbreak The fractional part will be ignoredl}/
1272 \fi

1273 \MFPQ@loopctr=\MFPQ@y@Int\relax

1274 \ifnum\MFP@loopctr=0

1275 \MFP@Rloadz 110%

1276 \else

1277 \ifnum\MFP@x@Sgn=0

1278 \ifnum\MFP@y@Sgn>0

1279 \MFP@Rloadz 000%

1280 \else

1281 \MFP@badpower@err

1282 \MFP@Rloadz 1\x0verZeroInt\xOverZeroFrac

1283 \fi

1284 \else

1285 \ifnum\MFP@x@Sgn>0

1286 \def\MFP@power@Sgn{1}%

1287 \else

1288 \edef\MFP@power@Sgn{\ifodd\MFP@loopctr -\fi 1},
1289 \fi

1290 \ifnum\MFPQy@Sgn<0 \MFPORinv \MFPORcopyzx\fi

1291 \ifnum\MFP@loopctr=1

1292 \MFP@Rloadz \MFP@power@Sgn\MFP@xQ@Int\MFPOx@Frc

99

We do the

1293 \else

1294 \MFP@@Rpow
1295 \fi
1296 \fi

1297 \fil}%

This implements the algorithm discussed above. We save x in register g, ini-
tialize the starting value of 1 in p and then run the loop. If the binary digit just
read is a 1 (i.e., \ifodd is true), it multiplies p and ¢. It also saves the last prod-
uct (copies z to p). This need not be done on the last iteration, but must not
be moved out of the \ifodd conditional because intervening computations modify
z. If there are more iterations to do (i.e., the \ifnum is true), this squares ¢ and
reduces the counter. Note that the exponents 0 and 1 do not occur since we have
handled them separately.

In case of overflow (either the multiplication or the squaring) we break the loop
and return oo.

1298 \def \MFP@@Rpow{%

1299 \MFP@Rcopy xqk

1300 \MFP@Rload p110%

1301 \MFP@Rpow@loopl}’

1302 \def \MFPORpow@loop{%

1303 \ifodd\MFP@loopctr

1304 \MFP@Rcopy px\MFP@Rcopy qy\MFP@Rmul

1305 \ifnum \MFPQz@Ovr>0 \MFP@handle®@expoverflow
1306 \else

1307 \ifnum\MFP@loopctr>1 \MFP@Rcopyz p\fi
1308 \fi

1309 \fi

1310 \ifnum\MFP@loopctr>1
1311 \MFP@Rcopy gx\MFP@Rsq

1312 \ifnum \MFP@z@0Ovr>0 \MFP@handle®@expoverflow
1313 \else

1314 \MFP@Rcopyz q’%

1315 \divide\MFP@loopctr 2

1316 \@XP\MFP@Rpow@loop

1317 \fi

1318 \fil}%

1319 \def\MFP@handle@expoverflow{’

1320 \MFPQ@expoverflow@err

1321 \MFP@loopctr=0

1322 \MFP@Rloadz\MFP@power@Sgn\MaxRealInt\MaxRealFrac}/,

4.7 The square root

One can combine logarithms and exponentials to get any power: to get ¥, compute
e¥"® This has the disadvantage that it doesn’t work if is negative. Most powers
of negative numbers are not defined, but certainly integer powers are. Thus we
have defined \MFPpow and \Rpow for that case.

60

If we enforce a positive x, then y can have any value. However, the computa-
tion of e®™® cannot give a result as good as one can get from a special purpose
algorithm for the square root. For example, the inaccuracies in computing Inz
will make e®™? inexact, while the square root function we implement below will
produce exactly v/9 = 3. In fact, if a square root can be expressed exactly within
our 8-digit precision, our code will find it.

For the square root we return zero if x is not positive. If the integer part
of = is 0, we copy the fractional part to the integer part (that is, we multiply
by 108, remembering to multiply by 10~* later). This makes the square root of
such numbers rather more accurate. (To get around some other rare but annoying
inaccuracies, we go through a similar process when the integer part of x is at most
4 digits, multiplying by 10* before and by 10~2 after.)

We then compute the square root using an algorithm that will be exact when-
ever possible. We perform one additional processing step. To explain it, note that
our algorithm actually produces the largest number s with four digits right of the
decimal place that satisfies s2 < z. That is

52 <z< (s + 10_4)2

From this it follows that z = (s + €)? = s% 4 2se + €2 with ¢ < 107* (and so
€2 < 1078). We estimate this ¢ and add that estimate to s. The estimate we use
is obtained by discarding the very small €2 and solving for the remaining e get

I*S2

2s

ERE=

With this value, s + € misses the exact square root by at most €2/(2s) < .5-1075,
because s > 1. The final result s 4 € is equivalent to computing the average of s
and z/s. This, possibly divided by 10% or 10? is the returned value.

By tests, with rare exceptions, our computations produces a result correct in
all eight decimal places. In the rare exception, the last place is within 1 of the
correct value.

1323 \def \MFPORsqrt{%
1324 \ifcase\MFP@x@Sgn\relax

1325 \MFP@Rzero

1326 \or

1327 \ifnum\MFP@x@Int=0

1328 \def\MFP@sqrt@reduce{2}/,

1329 \edef \MFP@x@Int{\number\MFP@x@Frc}

1330 \edef \MFP@x@Frc{00000000}%

1331 \else\ifnum\MFP@x@Int<10000

1332 \def \MFP@sqrt@reduce{1}/,

1333 \edef \MFP@x@Int{\MFPOx@Int\@xp\MFP@fourofmany \MFP@x@Frc\MFP@end}/,
1334 \edef \MFP@x@Frc{\@xp\MFP@gobblefour \MFP@x@Frc0000}%
1335 \else

1336 \def\MFP@sqrt@reduce{0}/,

1337 \fi\fi

1338 \MFP@Rcopy xt%

61

1339 \MFP@Isqrt
1340 \MFP@Rcopyz s\MFP@Rcopyzy

1341 \MFPQRcopy tx\MFPQRdiv

1342 \MFP@Rcopy sx\MFP@Rcopyzy\MFP@Radd

1343 \MFP@Rcopyzx\MFP@Rhalve

1344 \ifcase \MFP@sqrt@reduce\relax

1345 \or

1346 \MFP@Rcopyzx\MFP@Rload y10{01000000}\MFP@Rmul
1347 \or

1348 \MFP@Rcopyzx\MFP@Rload y10{00010000}\MFP@Rmul
1349 \fi

1350 \else

1351 \MFP@warn{Square root of a negative number. Zero will be returned.}},
1352 \MFP@Rzero

1353 \fi}%
1354 \def \MFP@fourofmany#1#2#3#4#5\MFPQend{#1#2#3#4},
1355 \def \MFPQgobblefour#1#2#3#4{}/,

There is a rather straightforward pencil and paper algorithm that provides the
square root digit by digit, and it produces an exact answer when that is possible.
Unfortunately, the decimal version is not easy to code. Fortunately the same
algorithm works in any number base and it is rather simple to code the binary
version (because we only need to decide at each stage whether the “next digit”
is 0 or 1. This produces a square root in binary digits, from which it is easy to
compute the number itself. The result is exact if the answer would be a finite
number of binary digits. We apply it to the integer 10%z. While this number is
too large for TEX to handle as an integer, it is not that hard to convert it to a
string of binary digits stored in a macro.

The algorithm simplifies somewhat if we proces a base 4 integer, producing
a base 2 result. Also, instead of producing the square root encoded in a string
of binary digits, we simply build the numerical result as we discover the binary
digits (multiply previous value by two and add the new digit.) Fortunately, the
square root of 1082 (and the temporary scratch registers used in the code) will
never exceed TEX’s limit for integers.

The macro \MFP@ItoQ implements the conversion to base-4 digits. The two
arguments are the integer and fractional part of x. The result is stored in
\MFP@ItoQ@Tmp, which is so far only used by the square root code.

The test \ifodd\MFP@tempb is used to get the binary digits. Combining two
of them yields the quadrenary digits. The \ifodd\MFP@tempa tests are there to
check whether there will be a remainder after division by 2, which should then be
inserted at the front of \MFP@tempb before division by 2. Two divisions by 2 each
iteration amounts to division by 4. This is slightly more efficient than dividing by
4 and determining the remainder.

1356 \def \MFP@ItoQ#1#2{/

1357 \MFPQ@tempa#1\relax\MFPQtempb#2\relax
1358 \def\MFP@ItoQ@Tmp{}\MFP@ItoQ@loop}’
1359 \def\MFP@ItoQ@loop{%

1360 \ifodd\MFP@tempb

62

1361 \ifodd\MFP@tempa \advance\MFP@tempb \MFPQttteight\relax\fi
1362 \divide\MFP@tempa2 \divide\MFP@tempb2

1363 \edef\MFP@ItoQ@Tmp{\ifodd\MFP@tempb 3\else 1\fi\MFPQ@ItoQ@Tmpl}’
1364 \else

1365 \ifodd\MFP@tempa \advance\MFPQ@tempb \MFPQttteight\relax\fi
1366 \divide\MFP@tempa2 \divide\MFP@tempb2

1367 \edef\MFP@ItoQ@Tmp{\if odd\MFPQ@tempb 2\else O\fi\MFPQItoQ@Tmp}%
1368 \fi

1369 \ifodd\MFP@tempa \advance\MFP@tempb \MFP@ttteight\relax\fi

1370 \divide\MFP@tempa 2 \divide\MFP@tempb 2

1371 \ifnum\MFP@tempa>0

1372 \@xp\MFP@ItoQ@loop
1373 \else\ifnum\MFP@tempb>0
1374 \@XP\MFP@ItoQ@loop

1375 \fi\fi}%

This integer square root n is 10* times the largest number y satisfying
y? < z and having at most four decimal places. The rest of the code after the
\MFP@Isqrt@loop is intended to divide n (returned in \MFP@tempc) by 10* in order
to get the number y itself.

1376 \def \MFP@Isqrt{/

1377 \MFP@ItoQ\MFP@x@Int\MFP@xQFrc

1378 \MFP@tempa=0 \MFP@tempb=0 \MFP@tempc=0
1379 \expandafter\MFPQ@Isqrt@loop\MFPQ@ItoQ@Tmp\MFPQend
1380 \MFP@tempa=\MFPQ@tempc

1381 \divide\MFPQ@tempc\MFPOtttfour

1382 \edef\MFP0zQInt{\number\MFP@tempcl}y,
1383 \multiply\MFP@tempc \MFP@tttfour

1384 \advance\MFP@tempa -\MFP@tempc

1385 \edef\MFP@zQFrc{\number\MFPQtempaly,
1386 \makeMFP@fourdigits\MFP@z@Frc

1387 \edef\MFPQz@Frc{\MFP@z@Frc0000}/

1388 \def\MFP@z@Sgn{1}}/

The following is a loop that essentially performs a base-2 version of the base-10
algorithm that I learned at age 12 from my father (apparently it was taught in
eighth or ninth grade in his day, but not in mine). Seeing it written out, I am
surprise at how concise and elegant it is!

1389 \def\MFP@Isqrt@loop#1{%

1390 \ifx\MFPQend #17,

1391 \else

1392 \multiply\MFP@tempa 2 \multiply\MFPQ@tempb 4 \multiply\MFP@tempc 2
1393 \advance \MFPQ@tempb#1\relax

1394 \ifnum\MFP@tempa<\MFPQtempb

1395 \advance\MFP@tempc 1 \advance\MFP@tempa 1
1396 \advance\MFP@tempb -\MFPQ@tempa

1397 \advance\MFPQ@tempa 1

1398 \fi

1399 \expandafter\MFP@Isqrt@loop

1400 \fi}%

63

4.8 Random numbers

We borrow the code of random.tex to generate a random integer in the range 1 to
231 — 2. inclusive. Mathematically, this works because the modulus m = 23! — 1 is
a prime number, and the multiplicative group of nonzero elements of Z,, is cyclic.
The multiplier chosen (in our cases 16 807, 48 271, or 69 621) has to be a generator
of that group.

The first step is the code for \nextrandom from random.tex. We could omit
this if it is already defined, or we could even input random.tex but, for better
control, we define it ourselves with an internal name. This code leaves the next
random number in \MFP@randseed. The initial seed is calculated from the time
and date if it was not positive

1401 \newcount\MFP@randseed 7, the random number (and starting seed)
1402 \def\MFP@nextrand{\begingroup
1403 \ifnum\MFP@randseed<1

1404 \global\MFP@randseed\time

1405 \global\multiply\MFP@randseed388 \globall\advance\MFP@randseed\year
1406 \global\multiply\MFP@randseed31 \globalladvance\MFP@randseed\day
1407 \global\multiply\MFP@randseed97 \globalladvance\MFPQrandseed\month
1408 \MFP@nextrand \MFP@nextrand \MFP@nextrand

1409 \fi

1410 \MFP@tempa\MFPQ@randseed

1411 \divide\MFP@tempa \MFP@rand@q % modulus = m*q + r

1412 \MFP@tempb\MFPQ@tempa

1413 \multiply\MFP@tempa \MFP@rand@q

1414 \globalladvance\MFP@randseed-\MFP@tempa % seed mod q

1415 \global\multiply\MFP@randseed \MFP@rand@m

1416 \multiply\MFP@tempb \MFP@rand@r

1417 \global\advance\MFP@randseed-\MFP@tempb

1418 \ifnum\MFP@randseed<\z@ \globalladvance\MFPQrandseed "7FFFFFFF\relax\fi
1419 \endgroupl}

\MFPrandgenA We have paametrized \MFP@nextrand so that any suitable multiplier can be
\MFPrandgenB used. The following commands each select one of the three multipliers that we
\MFPrandgenC provide, plus precomputed values for the quotient and remainder. We default to
generator “A”.

1420 \def\MFPrandgenA{\def\MFP@rand@m{16807 }\def\MFP@rand@q{127773 }%

1421 \def\MFP@rand@r{2836 }}%

1422 \def\MFPrandgenB{\def \MFPOrand@m{48271 }\def\MFPQ@rand@q{44488 1}/

1423 \def\MFP@rand@r{3399 }1}%

1424 \def\MFPrandgenC{\def \MFP@rand@m{69621 }\def\MFP@rand@q{30845 }/,

1425 \def\MFPQrand@r{23902 }}%

1426 \MFPrandgenA

The command \MFPranr{(z)}\X will take a parameter z and define \X to
contain a (pseudo)random real number in the interval [0,z]. Theoretically, the
number should lie in [0, x), but rounding will make « itself a possible value. Sim-
ilarly, \Rrand will replace the = on top of the stack with this random value. To
get the result, we call \MFP@getrand twice to produce two random integers in the

64

\MFPsetseed

range [0,99999999] and assemble them into a double precision multiplier less than
1. Then we multiply = by that with our \MDP@DPmul.

The test at the end of \MFP@getrand fails only about 1 time in 50, so the odds
are vanishingly small that more than a few tries are needed.

1427 \def\MFP@getrand{/, leaves result in \MFP@tempa

1428 \MFP@nextrand

1429 \MFP@tempa\MFP@randseed

1430 \advance\MFPQ@tempa-1

1431 \divide\MFP@tempa 21 % (2731-3)= 100000000%21 + r
1432 \ifnum \MFP@ttteight> \MFP@tempa

1433 \else \@xp\MFPQ@getrand\fi}}

1434 \def\MFP@Rrand{’
1435
1436
1437

Finally, a user-level command to set the seed value.
1438 \def\MFPsetseed#1{\global\MFP@randseed #1\relax}’

1439 \MFP@xfinish
1440 (/extra)

Index

\MFP@getrand \edef\MFP@a@Tmp{\number\MFP@tempal}%
\MFP@getrand \edef\MFP@bOTmp{\number\MFPQ@tempal}’%
\MFP@DPmu10\MFP@a@Tmp \MFP@bQTmp}%

Numbers refer to the page(s) where the corresponding entry is described.

E
\EndofStack 12, 16
\Export 11, 22
\ExportStack 11,22

G
\Global 11, 22
\GlobalStack 11,22

I
\IFeq 7,19
\IFgt 7,19
\IF1t 7,19
\IFneg 7,19
\IFpos 7,19
\IFzero 7,19

L
\LogOfZeroFrac 41
\LogOfZeroInt 41

M
\MaxRealFrac 16, 42
\MaxReallnt 16, 42

\MFPabs 6, 22
\MFPadd 5, 22
\MFPangle 39
\MFPceil 6, 22
\MFPchk 7,19
\MFPchs 6, 22
\MFPcmp 7,19
\MFPcos 39, 41
\MFPdbl 6, 22
\MFPdecr 6, 22
\MFPdeg 39, 41
\MFPdiv 5, 22
\MFPe 7, 39
\MFPexp 39, 41
\MFPfloor 6, 22
\MFPfrac 6, 22
\MFPhalve 6, 22
\MFPincr 6, 22
\MFPint 6, 22
\MFPinv 6, 22
\MFPln 39, 41
\MFPlog 39, 41
\MFPmax 5, 22

\MFPmin
\MFPmpy
\MFPmul
\MFPnoop
\MFPphi
\MFPpi

\MFPpow
\MFPrad
\MFPrand
\MFPrandgenA
\MFPrandgenB
\MFPrandgenC
\MFPround

\MFPsetseed
\MFPsgn
\MFPsin
\MFPsq
\MFPsqrt

\MFPstore
\MFPstrip
\MFPsub
\MFPtruncate
\MFPzero

R
\Rabs 10, 21
\Radd 9,21
\Rangle 40
\Rceil 10, 21
\Rchk 10, 21
\Rchs 10, 21
\Rcmp 10, 21
\Rcos 40
\Rdbl 10, 21
\Rdecr 10, 21
\Rdeg 40
\Rdiv 9,21
\Rdup 11, 21
\Rexch 11, 21
\Rexp 40
\Rfloor 10, 21

\Rfrac 10, 21
\Rhalve 10, 21
\Rincr 10, 21
\Rint 10, 21
\Rinv 10, 21
\Rln 40
\Rlog 40
\Rmax 9, 21
\Rmin 9, 21
\Rmpy 9, 21
\Rmul 9, 21
\Rnoop 10, 21
\RpOp 9,21
\Rpow 40
\Rpush 9, 21
\Rrad 40
\Rrand 40

66

\Rsgn 10, 21
\Rsin 40
\Rs@ 10, 21
\Rsqrt 40
\Rsub 9, 21
\Rzero 10, 21
S
\startMFPprogram 4,21
\stopMFPprogram 4, 21
X

\xOverZeroFrac .. 12,16
\xOverZeroInt ... 12,16

Z
\ZeroOverZeroFrac 12, 16
\ZeroOverZeroInt 12,16

