
PSTricks:

PostScript macros for Generic TeX.

Dripping Faucet

M

m

g

Mathematical Model for
a Dripping Faucet

le
ec

he
ng

User’s Guide

Timothy Van Zandt

10 December 2007

Version 1.51

Author’s address:

Department of Economics and Political Science

INSEAD

Boulevard de Constance

77305 Fontainebleau Cedex

France

Internet: <tvz@econ.insead.fr>

1Documentation edited and repacked at December 23, 2007 by Rolf

Niepraschk niepraschk@gmx.de and Herbert Voß voss@pstricks.de.

niepraschk@gmx.de
voss@pstricks.de

Contents

Welcome to PSTricks 1

Part I The Essentials 3

1 Arguments and delimiters 3

2 Color 4

3 Setting graphics parameters 5

4 Dimensions, coordinates and angles 6

5 Basic graphics parameters 8

Part II Basic graphics objects 10

6 Lines and polygons 10

7 Arcs, circles and ellipses 12

8 Curves 14

9 Dots 16

10 Grids 17

11 Plots 19

Part III More graphics parameters 24

12 Coordinate systems 24

13 Line styles 24

14 Fill styles 26

15 Arrowheads and such 28

16 Custom styles 30

Part IV Custom graphics 32

17 The basics 32

18 Parameters 32

19 Graphics objects 33

20 Safe tricks 36

Table of contents 1

21 Pretty safe tricks 38

22 For hackers only 39

Part V Picture Tools 41

23 Pictures 41

24 Placing and rotating whatever 42

25 Repetition 45

26 Axes 47

Part VI Text Tricks 51

27 Framed boxes 51

28 Clipping 54

29 Rotation and scaling boxes 55

Part VII Nodes and Node Connections 57

30 Nodes 58

31 Node connections 60

32 Node connections labels: I 69

33 Node connection labels: II 73

34 Attaching labels to nodes 74

35 Mathematical diagrams and graphs 75

36 Obsolete put commands 79

Part VIII Trees 82

37 Overview 82

38 Tree Nodes 83

39 Tree orientation 86

40 The distance between successors 87

41 Spacing between the root and successors 89

42 Edges 90

43 Edge and node labels 93

Table of contents 2

44 Details 96

45 The scope of parameter changes 99

Part IX Filling and Tiling 101

46 Overview 101

Part X Three Dimensional Graphics 102

47 Overview 102

Part XI Special Tricks 103

48 Coils and zigzags 103

49 Special coordinates 104

50 Overlays 106

51 The gradient fill style 107

52 Typesetting text along a path 108

53 Stroking and filling character paths 109

54 Importing EPS files 110

55 Exporting EPS files 111

Help 114

A Boxes 114

B Tips and More Tricks 116

C Including PostScript code 117

D Troubleshooting 119

Table of contents 3

Welcome to PSTricks

PSTricks is a collection of PostScript-based TEX macros that is compatible

with most TEX macro packages, including Plain TEX, LATEX and ConTEXt,

PSTricks gives you color, graphics, rotation, trees and overlays. PSTricks

puts the icing (PostScript) on your cake (TEX)!

To install PSTricks, follow the instructions in the file read-me.pst that

comes with the PSTricks package. Even if PSTricks has already been in-

stalled for you, give read-me.pst a look over.

This User’s Guide verges on being a reference manual, meaning that it is

not designed to be read linearly. Here is a recommended strategy: Fin-

ish reading this brief overview of the features in PSTricks. Then thumb

through the entire User’s Guide to get your own overview. Return to Part I

(Essentials) and read it carefully. Refer to the remaining sections as the

need arises.

When you cannot figure out how to do something or when trouble arises,

check out the appendices (Help). You just might be lucky enough to find

a solution. There is also a LATEX file samples.pst of samples that is dis-

tributed with PSTricks. Look to this file for further inspiration.

This documentation is written with LATEX. Some examples use LATEX spe-

cific constructs and some don’t. However, there is nothing LATEX specific

about any of the macros, nor is there anything that does not work with

LATEX. This package has been tested with Plain TEX, LATEX and ConTEXt

and should work with other TEX macro packages as well.

The main macro file is pstricks.tex/pstricks.sty. Each of the PSTricks
pstricks macro files comes with a .tex extension and a .sty extension; these are

equivalent, but the .sty extension means that you can include the file name

as a LATEX package.

There are numerous supplementary macro files. A file, like the one above

and the left, is used in this User’s Guide to remind you that you must input

a file before using the macros it contains.

For most PSTricks macros, even if you misuse them, you will not get

PostScript errors in the output. However, it is recommended that you re-

solve any TEX errors before attempting to print your document. A few

PSTricks macros pass on PostScript errors without warning. Use these with

care, especially if you are using a networked printer, because PostScript er-

rors can cause a printer to bomb. Such macros are pointed out in strong

terms, using a warning like this one:

Welcome to PSTricks 1

P
S Warning: Use macros that do not check for PostScript errors

with care. PostScript errors can cause a printer to bomb!

Keep in mind the following typographical conventions in this User’s Guide.

• All literal input characters, i.e., those that should appear verbatim

in your input file, appear in upright Helvetica and Helvetica-Bold
fonts.

• Meta arguments, for which you are supposed to substitute a value

(e.g., angle) appear in slanted Helvetica-Oblique and Helvetica-
BoldOblique fonts.

• The main entry for a macro or parameter that states its syntax ap-

pears in a large bold font, except for the optional arguments, which

are in medium weight. This is how you can recognize the optional

arguments.

• References to PSTricks commands and parameters within paragraphs

are set in Helvetica-Bold .

Welcome to PSTricks 2

I The Essentials

1 Arguments and delimiters

Here is some nitty-gritty about arguments and delimiters that is really im-

portant to know.

The PSTricks macros use the following delimiters:

Curly braces {arg}

Brackets (only for optional arguments) [arg]

Parentheses and commas for coordinates (x ,y)

= and , for parameters par1=val1, …

Spaces and commas are also used as delimiters within arguments, but in

this case the argument is expanded before looking for the delimiters.

Always use a period rather than a comma to denote the decimal point, so

that PSTricks doesn’t mistake the comma for a delimiter.

The easiest mistake to make with the PSTricks macros is to mess up the

delimiters. This may generate complaints from TEX or PSTricks about bad

arguments, or other unilluminating errors such as the following:

! Use of \get@coor doesn’t match its definition.

! Paragraph ended before \pst@addcoor was complete.

! Forbidden control sequence found while scanning use of \check@arrow.

! File ended while scanning use of \lput.

Delimiters are generally the first thing to check when you get errors with a

PSTricks macro.

Since PSTricks macros can have many arguments, it is useful to know that

you can leave a space or new line between any arguments, except between

arguments enclosed in curly braces. If you need to insert a new line between

arguments enclosed in curly braces, put a comment character % at the end

of the line.

As a general rule, the first non-space character after a PSTricks macro

should not be a [or (. Otherwise, PSTricks might think that the [or (is

actually part of the macro. You can always get around this by inserting a

pair {} of braces somewhere between the macro and the [or (.

The Essentials 3

2 Color

The grayscales

black, darkgray, gray, lightgray, and white,

and the colors

red, green, blue, cyan, magenta, and yellow

are predefined in PSTricks.

This means that these names can be used with the graphics objects that are

described in later sections. This also means that the command \gray (or

\red , etc.) can be used much like \rm or \tt, as in

{\gray This stuff should be gray.}

The commands \gray , \red , etc. can be nested like the font commands as

well. There are a few important ways in which the color commands differ

from the font commands:

1. The color commands can be used in and out of math mode (there are

no restrictions, other than proper TEX grouping).

2. The color commands affect whatever is in their scope (e.g., lines),

not simply characters.

3. The scope of the color commands does not extend across pages.

4. The color commands are not as robust as font commands when used

inside box macros. See page 120 for details. You can avoid most

problems by explicitly grouping color commands (e.g., enclosing the

scope in braces {}) whenever these are in the argument of another

command.1

You can define or redefine additional colors and grayscales with the follow-

ing commands. In each case, numi is a number between 0 and 1. Spaces

are used as delimiters—don’t add any extraneous spaces in the arguments.

\newgray{ color }{num }

num is the gray scale specification, to be set by PostScript’s setgray
operator. 0 is black and 1 is white. For example:

1 \newgray{darkgray}{.25}

1However, this is not necessary with the PSTricks LR-box commands, expect when

\psverbboxtrue is in effect. See Section A.

Color 4

\newrgbcolor{ color }{num1 num2 num3 }

num1 num2 num3 is a red-green-blue specification, to be set by

PostScript’s setrgbcolor operator. For example,

1 \newrgbcolor{green}{0 1 0}

\newhsbcolor{ color }{num1 num2 num3 }

num1 num2 num3 is an hue-saturation-brightness specification, to

be set by PostScript’s sethsbcolor operator. For example,

1 \newhsbcolor{mycolor}{.3 .7 .9}

\newcmykcolor{ color }{num1 num2 num3 num4 }

num1 num2 num3 num4 is a cyan-magenta-yellow-black specifica-

tion, to be set by PostScript’s newcmykcolor operator. For example,

1 \newcmykcolor{hercolor}{.5 1 0 .5}

For defining new colors, the rbg model is a sure thing. hsb is not recom-

mended. cmyk is not supported by all Level 1 implementations of PostScript,

although it is best for color printing. For more information on color models

and color specifications, consult the PostScript Language Reference Man-

ual, 2nd Edition (Red Book), and a color guide.

Driver notes: The command \pstVerb must be defined.

3 Setting graphics parameters

PSTricks uses a key-value system of graphics parameters to customize the

macros that generate graphics (e.g., lines and circles), or graphics com-

bined with text (e.g., framed boxes). You can change the default values of

parameters with the command \psset , as in

1 \psset{fillcolor=yellow}
2 \psset{linecolor=blue,framearc=.3,dash=3pt 6pt}

The general syntax is:

\psset{ par1=value1 ,par2=value2,… }

As illustrated in the examples above, spaces are used as delimiters for some

of the values. Additional spaces are allowed only following the comma that

separates par=value pairs (which is thus a good place to start a new line

if there are many parameter changes). E.g., the first example is acceptable,

but the second is not:

Setting graphics parameters 5

1 \psset{fillcolor=yellow, linecolor=blue}
2 \psset{fillcolor= yellow,linecolor =blue }

The parameters are described throughout this User’s Guide, as they are

needed.

Nearly every macro that makes use of graphics parameters allows you to

include changes as an optional first argument, enclosed in square brackets.

For example,

1 \psline[linecolor=green,linestyle=dotted](8,7)

draws a dotted, green line. It is roughly equivalent to

1 {\psset{linecolor=green,linestyle=dotted}\psline(8,7)}

For many parameters, PSTricks processes the value and stores it in a pe-

culiar form, ready for PostScript consumption. For others, PSTricks stores

the value in a form that you would expect. In the latter case, this User’s

Guide will mention the name of the command where the value is stored.

This is so that you can use the value to set other parameters. E.g.,

1 \psset{linecolor=\psfillcolor,doublesep=.5\pslinewidth}

However, even for these parameters, PSTricks may do some processing and

error-checking, and you should always set them using \psset or as optional

parameter changes, rather than redefining the command where the value is

stored.

4 Dimensions, coordinates and angles

Whenever an argument of a PSTricks macro is a dimension, the unit is

optional. The default unit is set by the

unit= dim Default: 1cm

parameter. For example, with the default value of 1cm, the following are

equivalent:

1 \psset{linewidth=.5cm}
2 \psset{linewidth=.5}

By never explicitly giving units, you can scale graphics by changing the

value of unit .

Dimensions, coordinates and angles 6

You can use the default coordinate when setting non-PSTricks dimensions

as well, using the commands

\pssetlength{ cmd }{dim }
\psaddtolength{ cmd }{dim }

where cmd is a dimension register (in LATEX parlance, a “length”), and dim
is a length with optional unit. These are analogous to LATEX’s \setlength
and \addtolength.

Coordinate pairs have the form (x ,y). The origin of the coordinate system

is at TEX’s currentpoint. The command \SpecialCoor lets you use polar

coordinates, in the form (<r>;<a>), where r is the radius (a dimension) and

a is the angle (see below). You can still use Cartesian coordinates. For a

complete description of \SpecialCoor , see Section 49.

The unit parameter actually sets the following three parameters:

xunit= dim Default: 1cm
yunit= dim Default: 1cm
runit= dim Default: 1cm

These are the default units for x-coordinates, y-coordinates, and all other

coordinates, respectively. By setting these independently, you can scale the

x and y dimensions in Cartesian coordinate unevenly. After changing yunit
to 1pt, the two \psline ’s below are equivalent:

1 \psset{yunit=1pt}
2 \psline(0cm,20pt)(5cm,80pt)
3 \psline(0,20)(5,80)

The values of the runit , xunit and yunit parameters are stored in the di-

mension registers \psunit (also \psrunit), \psxunit and \psyunit .

Angles, in polar coordinates and other arguments, should be a number giv-

ing the angle in degrees, by default. You can also change the units used for

angles with the command

\degrees [num]

num should be the number of units in a circle. For example, you might use

1 \degrees[100]

to make a pie chart when you know the shares in percentages. \degrees
without the argument is the same as

1 \degrees[360]

Dimensions, coordinates and angles 7

The command

\radians

is short for

\degrees[6.28319]

\SpecialCoor lets you specify angles in other ways as well.

5 Basic graphics parameters

The width and color of lines is set by the parameters:

linewidth= dim Default: .8pt
linecolor= color Default: black

The linewidth is stored in the dimension register \pslinewidth , and the

linecolor is stored in the command \pslinecolor .

The regions delimited by open and closed curves can be filled, as deter-

mined by the parameters:

fillstyle= style
fillcolor= color

When fillstyle=none , the regions are not filled. When fillstyle=solid , the

regions are filled with fillcolor . Other fillstyle ’s are described in Section

14.

The graphics objects all have a starred version (e.g., \psframe *) which

draws a solid object whose color is linecolor . For example,

1 \psellipse*(1,.5)(1,.5)

Open curves can have arrows, according to the

arrows= arrows

parameter. If arrows=- , you get no arrows. If arrows=<-> , you get arrows

on both ends of the curve. You can also set arrows=-> and arrows=<- ,

if you just want an arrow on the end or beginning of the curve, respec-

tively. With the open curves, you can also specify the arrows as an optional

argument enclosed in {} brackets. This should come after the optional pa-

rameters argument. E.g.,

Basic graphics parameters 8

1 \psline[linewidth=2pt]{<-}(2,1)

Other arrow styles are described in Section 15

If you set the

showpoints= true/false Default: false

parameter to true, then most of the graphics objects will put dots at the

appropriate coordinates or control points of the object.2 Section 9 describes

how to change the dot style.

2The parameter value is stored in the conditional \ifshowpoints.

Basic graphics parameters 9

II Basic graphics objects

6 Lines and polygons

The objects in this section also use the following parameters:

linearc= dim Default: 0pt

The radius of arcs drawn at the corners of lines by the \psline and

\pspolygon graphics objects. dim should be positive.

framearc= num Default: 0

In the \psframe and the related box framing macros, the radius of

rounded corners is set, by default, to one-half num times the width

or height of the frame, whichever is less. num should be between 0

and 1.

cornersize= relative/absolute Default: relative

If cornersize is relative, then the framearc parameter determines

the radius of the rounded corners for \psframe , as described above

(and hence the radius depends on the size of the frame). If corner-
size is absolute, then the linearc parameter determines the radius of

the rounded corners for \psframe (and hence the radius is of constant

size).

Now here are the lines and polygons:

\psline *[par]{arrows}(x0,y0)(x1,y1)… (xn,yn)

This draws a line through the list of coordinates. For example:

0 1 2 3 4
0

1

2

1 \psline[linewidth=2pt,linearc=.25]{->}(4,2)(0,1)(2,0)

\qline(coor0)(coor1)

This is a streamlined version of \psline that does not pay attention to

the arrows parameter, and that can only draw a single line segment.

Note that both coordinates are obligatory, and there is no optional

Basic graphics objects 10

argument for setting parameters (use \psset if you need to change

the linewidth , or whatever). For example:

0 1 2
0

1

1 \qline(0,0)(2,1)

\pspolygon *[par](x0,y0)(x1,y1)(x2 ,y2)… (xn,yn)

This is similar to \psline , but it draws a closed path. For example:

0 1 2 3 4
0

1

2

1 \pspolygon[linewidth=1.5pt](0,2)(1,2)
2 \pspolygon*[linearc=.2,linecolor=darkgray](1,0)(1,2)(4,0)(4,2)

\psframe *[par](x0,y0)(x1,y1)

\psframe draws a rectangle with opposing corners (x0,y0) and (x1,y1).
For example:

0 1 2 3 4
0

1

2

1 \psframe[linewidth=2pt,framearc=.3,fillstyle=solid,
2 fillcolor=lightgray](4,2)
3 \psframe*[linecolor=white](1,.5)(2,1.5)

\psdiamond *[par](x0,y0)(x1,y1)

\psdiamond draws a diamond centered at (x0,y0), and with the half

width and height equal to x1 and y1, respectively.

0 1 2 3 4
0

1

2

1 \psdiamond[framearc=.3,fillstyle=solid,
2 fillcolor=lightgray](2,1)(1.5,1)

The diamond is rotated about the center by

gangle= gangle Default: 0

\pstriangle *[par](x0,y0)(x1,y1)

\pstriangle draws an isosceles triangle with the base centered at

(x0,y0), and with width (base) and height equal to x1 and y1, re-

spectively.

0 1 2 3 4
0

1

2

1 \pstriangle*[gangle=10](2,.5)(4,1)

Lines and polygons 11

7 Arcs, circles and ellipses

\pscircle *[par](x0,y0){radius }

This draws a circle whose center is at (x0,y0) and that has radius

radius. For example:

-1 0 1 2
-1

0

1

2

1 \pscircle[linewidth=2pt](.5,.5){1.5}

\qdisk(coor){radius }

This is a streamlined version of \pscircle* . Note that the two ar-

guments are obligatory and there is no parameters arguments. To

change the color of the disks, you have to use \psset :

1 \psset{linecolor=gray}
2 \qdisk(2,3){4pt}

\pswedge *[par](x0,y0){radius }{angle1 }{angle2 }

This draws a wedge whose center is at (x0,y0), that has radius ra-
dius, and that extends counterclockwise from angle1 to angle2. The

angles must be specified in degrees. For example:

0 1 2
0

1

2

1 \pswedge[linecolor=gray,linewidth=2pt,fillstyle=solid]{2}{0}{70}

\psellipse *[par](x0,y0)(x1,y1)

(x0,y0) is the center of the ellipse, and x1 and y1 are the horizontal

and vertical radii, respectively. For example:

-1 0 1 2
-1

0

1

1 \psellipse[fillcolor=lightgray](.5,0)(1.5,1)

\psarc *[par]{arrows}(x ,y){radius }{angleA }{angleB }

This draws an arc from angleA to angleB, going counter clockwise,

for a circle of radius radius and centered at (x ,y). You must include

either the arrows argument or the (x ,y) argument. For example:

Arcs, circles and ellipses 12

0 1 2 3
0

1

2

1 \psarc*[showpoints=true](1.5,1.5){1.5}{215}{0}

See how showpoints=true draws a dashed line from the center to

the arc; this is useful when composing pictures.

\psarc also uses the parameters:

arcsepA= dim Default: 0pt
angleA is adjusted so that the arc would just touch a line of

width dim that extended from the center of the arc in the direc-

tion of angleA.

arcsepB= dim Default: 0pt
This is like arcsepA , but angleB is adjusted.

arcsep= dim Default: 0
This just sets both arcsepA and arcsepB .

These parameters make it easy to draw two intersecting lines and

then use \psarc with arrows to indicate the angle between them. For

example:

0 1 2 3 4
0

1

2

3

1 \SpecialCoor
2 \psline[linewidth=2pt](4;50)(0,0)(4;10)
3 \psarc[arcsepB=2pt]{->}{3}{10}{50}

\psarcn *[par]{arrows}(x ,y){radius }{angleA }{angleB }

This is like \psarc , but the arc is drawn clockwise. You can achieve

the same effect using \psarc by switching angleA and angleB and

the arrows.3

\psellipticarc *[par]{arrows}(x0,y0)(x1,y1){angleA }{angleB }

This draws an elliptic from angleA to angleB, going counter clock-

wise, with (x0,y0) the center of the ellipse and x1 and y1 the hori-

zontal and vertical radii, respectively. For example:

-1 0 1 2
-1

0

1

1 \psellipticarc[showpoints=true,arrowscale=2]{->}(.5,0)(1.5,1){215}{0}

3However, with \pscustom graphics object, described in Part IV, \psarcn is not

redundant.

Arcs, circles and ellipses 13

See how showpoints=true draws a dashed line from the center to

the arc; this is useful when composing pictures.

Like \psarc , \psellipticarc use the arcsep /arcsepA /arcsepB pa-

rameters.

Unlike \psarc , \psellipticarc use the dimen =inner /middle /outer
parameter.

\psellipticarcn *[par]{arrows}(x0,y0)(x1,y1){angleA }{angleB }

This is like \psellipticarc , but the arc is drawn clockwise. You can

achieve the same effect using \psellipticarc by switching angleA
and angleB and the arrows.4

8 Curves

\psbezier *[par]{arrows}(x0,y0)(x1,y1)(x2 ,y2)(x3 ,y3)

\psbezier draws a bezier curve with the four control points. The

curve starts at the first coordinate, tangent to the line connecting to

the second coordinate. It ends at the last coordinate, tangent to the

line connecting to the third coordinate. The second and third coor-

dinates, in addition to determining the tangency of the curve at the

endpoints, also “pull” the curve towards themselves. For example:

b

b

b

1 \psbezier[linewidth=2pt,showpoints=true]{->}(0,0)(1,4)(2,1)(4,3.5)

showpoints=true puts dots in all the control points, and connects

them by dashed lines, which is useful when adjusting your bezier

curve.

\parabola *[par]{arrows}(x0 ,y0)(x1,y1)

Starting at (x0,y0), \parabola draws the parabola that passes through

(x0,y0) and whose maximum or minimum is (x1,y1). For example:

4However, with \pscustom graphics object, described in Part IV, \psellipticarcn is

not redundant.

Curves 14

0 1 2 3 4
0

1

2

3

1 \parabola*(1,1)(2,3)
2 \psset{xunit=.01}
3 \parabola{<->}(400,3)(200,0)

The next three graphics objects interpolate an open or closed curve through

the given points. The curve at each interior point is perpendicular to the

line bisecting the angle ABC, where B is the interior point, and A and C are

the neighboring points. Scaling the coordinates does not cause the curve to

scale proportionately.

The curvature is controlled by the following parameter:

curvature= num1 num2 num3 Default: 1 .1 0

You have to just play around with this parameter to get what you

want. Individual values outside the range -1 to 1 are either ignored

or are for entertainment only. Below is an explanation of what each

number does. A, B and C refer to three consecutive points.

Lower values of num1 make the curve tighter.

Lower values of num2 tighten the curve where the angle ABC is

greater than 45 degrees, and loosen the curve elsewhere.

num3 determines the slope at each point. If num3=0, then the curve

is perpendicular at B to the bisection of ABC. If num3=-1, then

the curve at B is parallel to the line AC. With this value (and only

this value), scaling the coordinates causes the curve to scale propor-

tionately. However, positive values can look better with irregularly

spaced coordinates. Values less than -1 or greater than 2 are con-

verted to -1 and 2, respectively.

Here are the three curve interpolation macros:

\pscurve *[par]{arrows}(x1,y1)… (xn,yn)

This interpolates an open curve through the points. For example:

0 1 2 3 4
0

1

2
b

b

b

1 \pscurve[showpoints=true]{<->}(0,1.3)(0.7,1.8)
2 (3.3,0.5)(4,1.6)(0.4,0.4)

Note the use of showpoints=true to see the points. This is helpful

when constructing a curve.

Curves 15

\psecurve *[par]{arrows}(x1,y1)… (xn,yn)]

This is like \pscurve , but the curve is not extended to the first and

last points. This gets around the problem of trying to determine how

the curve should join the first and last points. The e has something to

do with “endpoints”. For example:

0 1 2 3 4
0

1

2

3

4 b

b

b

b

b

1 \psecurve[showpoints=true](.125,8)(.25,4)(.5,2)
2 (1,1)(2,.5)(4,.25)(8,.125)

\psccurve *[par]{arrows}(x1,y1)… (xn,yn)

This interpolates a closed curve through the points. c stands for

“closed”. For example:

0 1 2 3 4
0

1

b

b

b

b

1 \psccurve[showpoints=true]
2 (.5,0)(3.5,1)(3.5,0)(.5,1)

9 Dots

The graphics objects

\psdot *[par](x1,y1)
\psdots *[par](x1,y1)(x2,y2)… (xn,yn)

put a dot at each coordinate.

What a “dot” is depends on the value of the

dotstyle= style Default: *

parameter. This also determines the dots you get when showpoints=true .

The dot styles are also pretty intuitive:

Dots 16

Style Example

* b b b b b

o bc bc bc bc bc

Bo bC bC bC bC bC

x ´ ´ ´ ´ ´

+ + + + + +

B+ + + + + +

asterisk * * * * *

Basterisk * * * * *

oplus Å Å Å Å Å

otimes Ä Ä Ä Ä Ä

| | | | | |

B| | | | | |

Style Example

square rs rs rs rs rs

Bsquare rS rS rS rS rS

square* r r r r r

diamond ld ld ld ld ld

diamond* l l l l l

triangle ut ut ut ut ut

Btriangle uT uT uT uT uT

triangle* u u u u u

pentagon qp qp qp qp qp

Bpentagon qP qP qP qP qP

pentagon* q q q q q

Except for diamond, the center of dot styles with a hollow center is colored

fillcolor .

Here are the parameters for changing the size and orientation of the dots:

dotsize= dim ‘num’ Default: 2pt 2

The diameter of a circle or disc is dim plus num times linewidth
(if the optional num is included). The size of the other dots styles

is similar (except for the size of the | dot style, which is set by the

tbarsize parameter described on page ??).

dotscale= num1 ‘num2’ Default: 1

The dots are scaled horizontally by num1 and vertically by num2.

If you only include num1, the arrows are scaled by num1 in both

directions.

dotangle= angle Default: 0

After setting the size and scaling the dots, the dots are rotated by

angle.

10 Grids

PSTricks has a powerful macro for making grids and graph paper:

\psgrid (x0,y0)(x1,y1)(x2,y2)

\psgrid draws a grid with opposing corners (x1,y1) and (x2,y2). The in-

tervals are numbered, with the numbers positioned at x0 and y0. The coor-

dinates are always interpreted as Cartesian coordinates. For example:

Grids 17

-1 0 1 2 3

-1

0

1

2

1 \psgrid(0,0)(-1,-1)(3,2)

(Note that the coordinates and label positioning work the same as with

\psaxes .)

The main grid divisions occur on multiples of xunit and yunit . Subdivi-

sions are allowed as well. Generally, the coordinates would be given as

integers, without units.

If the (x0,y0) coordinate is omitted, (x1,y1) is used. The default for (x1,y1)
is (0,0). If you don’t give any coordinates at all, then the coordinates of the

current \pspicture environment are used or a 10x10 grid is drawn. Thus,

you can include a \psgrid command without coordinates in a \pspicture
environment to get a grid that will help you position objects in the picture.

The main grid divisions are numbered, with the numbers drawn next to

the vertical line at x0 (away from x2) and next to the horizontal line at x1
(away from y2). (x1,y1) can be any corner of the grid, as long as (x2,y2) is

the opposing corner, you can position the labels on any side you want. For

example, compare

0 1 2 3 4
0

1

1 \psgrid(0,0)(4,1)

and

43210
1

0

1 \psgrid(4,1)(0,0)

The following parameters apply only to \psgrid :

gridwidth= dim Default: .8pt

The width of grid lines.

gridcolor= color Default: black

The color of grid lines.

griddots= num Default: 0

If num is positive, the grid lines are dotted, with num dots per divi-

sion.

Grids 18

gridlabels= dim Default: 10pt

The size of the numbers used to mark the grid.

gridlabelcolor= color Default: black

The color of the grid numbers.

subgriddiv= int Default: 5

The number of grid subdivisions.

subgridwidth= dim Default: .4pt

The width of subgrid lines.

subgridcolor= color Default: gray

The color of subgrid lines.

subgriddots= num Default: 0

Like griddots , but for subdivisions.

Here is a familiar looking grid which illustrates some of the parameters:

-1 0 1 2 3
-1

0

1

1 \psgrid[subgriddiv=1,griddots=10,gridlabels=7pt](-1,-1)(3,1)

Note that the values of xunit and yunit are important parameters for \ps-
grid , because they determine the spacing of the divisions. E.g., if the value

of these is 1pt, and then you type

1 \psgrid(0,0)(10in,10in)

you will get a grid with 723 main divisions and 3615 subdivisions! (Ac-

tually, \psgrid allows at most 500 divisions or subdivisions, to limit the

damage done by this kind of mistake.) Probably you want to set unit to

.5in or 1in, as in

1 \psgrid[unit=.5in](0,0)(20,20)

11 Plots

The plotting commands described in this part are defined in pst-plot.tex /
pst-plot pst-plot.sty, which you must load first.

The \psdots , \psline , \pspolygon , \pscurve , \psecurve and \psccurve
graphics objects let you plot data in a variety of ways. However, first you

Plots 19

have to generate the data and enter it as coordinate pairs (x ,y). The plotting

macros in this section give you other ways to get and use the data. (Section

26 tells you how to generate axes.)

To parameter

plotstyle= style Default: line

determines what kind of plot you get. Valid styles are dots, line, polygon,

curve, ecurve, ccurve. E.g., if the plotstyle is polygon, then the macro

becomes a variant of the \pspolygon object.

You can use arrows with the plot styles that are open curves, but there is no

optional argument for specifying the arrows. You have to use the arrows
parameter instead.

P
S

Warning: No PostScript error checking is provided for the

data arguments. Read Appendix C before including PostScript

code in the arguments.

There are system-dependent limits on the amount of data TEX

and PostScript can handle. You are much less likely to exceed

the PostScript limits when you use the line, polygon or dots
plot style, with showpoints=false , linearc=0pt , and no ar-

rows.

Note that the lists of data generated or used by the plot commands cannot

contain units. The values of \psxunit and \psyunit are used as the unit.

\fileplot *[par]{file }

\fileplot is the simplest of the plotting functions to use. You just

need a file that contains a list of coordinates (without units), such as

generated by Mathematica or other mathematical packages. The data

can be delimited by curly braces { }, parentheses (), commas, and/or

white space. Bracketing all the data with square brackets [] will

significantly speed up the rate at which the data is read, but there are

system-dependent limits on how much data TEX can read like this in

one chunk. (The [must go at the beginning of a line.) The file should

not contain anything else (not even \endinput), except for comments

marked with %.

\fileplot only recognizes the line, polygon and dots plot styles, and it

ignores the arrows , linearc and showpoints parameters. The \list-
plot command, described below, can also plot data from file, without

these restrictions and with faster TEX processing. However, you are

less likely to exceed PostScript’s memory or operand stack limits

with \fileplot .

Plots 20

If you find that it takes TEX a long time to process your \fileplot
command, you may want to use the \PSTtoEPS command described

on page 112. This will also reduce TEX’s memory requirements.

\dataplot *[par]{commands }

\dataplot is also for plotting lists of data generated by other pro-

grams, but you first have to retrieve the data with one of the following

commands:

\savedata{ command }[data]
\readdata{ command }{file }

data or the data in file should conform to the rules described above

for the data in \fileplot (with \savedata , the data must be delimited

by [], and with \readdata , bracketing the data with [] speeds things

up). You can concatenate and reuse lists, as in

1 \readdata{\foo}{foo.data}
2 \readdata{\bar}{bar.data}
3 \dataplot{\foo\bar}
4 \dataplot[origin={0,1}]{\bar}

The \readdata and \dataplot combination is faster than \fileplot if

you reuse the data. \fileplot uses less of TEX’s memory than \read-
data and \dataplot if you are also use \PSTtoEPS .

Here is a plot of Integral(sin(x)). The data was generated by Mathe-

matica, with

1 Table[{x,N[SinIntegral[x]]},{x,0,20}]

and then copied to this document.

ut

ut

ut

ut
ut

ut
ut ut

ut
ut ut

ut
ut ut ut ut ut ut ut ut ut

1 \psset{xunit=.2cm,yunit=1.5cm}
2 \savedata{\mydata}[
3 {{0, 0}, {1., 0.946083}, {2., 1.60541}, {3., 1.84865}, {4., 1.7582},
4 {5., 1.54993}, {6., 1.42469}, {7., 1.4546}, {8., 1.57419},
5 {9., 1.66504}, {10., 1.65835}, {11., 1.57831}, {12., 1.50497},
6 {13., 1.49936}, {14., 1.55621}, {15., 1.61819}, {16., 1.6313},
7 {17., 1.59014}, {18., 1.53661}, {19., 1.51863}, {20., 1.54824}}]
8 \dataplot[plotstyle=curve,showpoints=true,
9 dotstyle=triangle]{\mydata}

10 \psline{<->}(0,2)(0,0)(20,0)

\listplot *[par]{list }

\listplot is yet another way of plotting lists of data. This time, list
should be a list of data (coordinate pairs), delimited only by white

space. list is first expanded by TEX and then by PostScript. This

means that list might be a PostScript program that leaves on the

Plots 21

stack a list of data, but you can also include data that has been re-

trieved with \readdata and \dataplot . However, when using the line,

polygon or dots plotstyles with showpoints=false , linearc=0pt
and no arrows, \dataplot is much less likely than \listplot to ex-

ceed PostScript’s memory or stack limits. In the preceding example,

these restrictions were not satisfied, and so the example is equivalent

to when \listplot is used:

1 ...
2 \listplot[plotstyle=curve,showpoints=true,
3 dotstyle=triangle]{\mydata}
4 ...

\psplot *[par]{xmin}{xmax}{ function }

\psplot can be used to plot a function f(x), if you know a little

PostScript. function should be the PostScript code for calculating

f(x). Note that you must use x as the dependent variable. PostScript

is not designed for scientific computation, but \psplot is good for

graphing simple functions right from within TEX. E.g.,

1 \psplot[plotpoints=200]{0}{720}{x sin}

plots sin(x) from 0 to 720 degrees, by calculating sin(x) roughly

every 3.6 degrees and then connecting the points with \psline . Here

are plots of sin(x) cos((x/2)2) and sin2(x):

1 \psset{xunit=1.2pt}
2 \psplot[linecolor=gray,linewidth=1.5pt,plotstyle=curve]%
3 {0}{90}{x sin dup mul}
4 \psplot[plotpoints=100]{0}{90}{x sin x 2 div 2 exp cos mul}
5 \psline{<->}(0,-1)(0,1)
6 \psline{->}(100,0)

\parametricplot *[par]{tmin}{tmax}{ function }

This is for a parametric plot of (x(t), y(t)). function is the PostScript

code for calculating the pair x(t) y(t).

For example,

0 1 2 3
0

1

2

3 b

b

b

b

b

b
b
b
b

b
b b b

1 \parametricplot[plotstyle=dots,plotpoints=13]%
2 {-6}{6}{1.2 t exp 1.2 t neg exp}

plots 13 points from the hyperbola xy = 1, starting with (1.26, 1.26)
and ending with (1.26, 1.26).

Plots 22

Here is a parametric plot of (sin(t), sin(2t)):

1 \psset{xunit=1.7cm}
2 \parametricplot[linewidth=1.2pt,plotstyle=ccurve]%
3 {0}{360}{t sin t 2 mul sin}
4 \psline{<->}(0,-1.2)(0,1.2)
5 \psline{<->}(-1.2,0)(1.2,0)

The number of points that the \psplot and \parametricplot commands

calculate is set by the

plotpoints= int Default: 50

parameter. Using curve or its variants instead of line and increasing the

value of plotpoints are two ways to get a smoother curve. Both ways in-

crease the imaging time. Which is better depends on the complexity of the

computation. (Note that all PostScript lines are ultimately rendered as a

series (perhaps short) line segments.) Mathematica generally uses lineto to

connect the points in its plots. The default minimum number of plot points

for Mathematica is 25, but unlike \psplot and \parametricplot , Mathemat-

ica increases the sampling frequency on sections of the curve with greater

fluctuation.

Plots 23

III More graphics parameters

The graphics parameters described in this part are common to all or most

of the graphics objects.

12 Coordinate systems

The following manipulations of the coordinate system apply only to pure

graphics objects.

A simple way to move the origin of the coordinate system to (x ,y) is with

the

origin= {coor} Default: 0pt,0pt

This is the one time that coordinates must be enclosed in curly brackets {}
rather than parentheses ().

A simple way to switch swap the axes is with the

swapaxes= true Default: false

parameter. E.g., you might change your mind on the orientation of a plot

after generating the data.

13 Line styles

The following graphics parameters (in addition to linewidth and linecolor)

determine how the lines are drawn, whether they be open or closed curves.

linestyle= style Default: solid

Valid styles are none, solid, dashed and dotted.

dash= dim1 dim2 Default: 5pt 3pt

The black-white dash pattern for the dashed line style. For

example:

More graphics parameters 24

1 \psellipse[linestyle=dashed,dash=3pt 2pt](2,1)(2,1)

dotsep= dim Default: 3pt

The distance between dots in the dotted line style. For example

1 \psline[linestyle=dotted,dotsep=2pt]{|-»}(4,1)

border= dim Default: 0pt

A positive value draws a border of width dim and color

bordercolor on each side of the curve. This is useful for giving the

impression that one line passes on top of another. The value is saved

in the dimension register \psborder .

bordercolor= color Default: white

See border above.

For example:

1 \psline(0,0)(1.8,3)
2 \psline[border=2pt]{*->}(0,3)(1.8,0)
3 \psframe*[linecolor=gray](2,0)(4,3)
4 \psline[linecolor=white,linewidth=1.5pt]{<->}(2.2,0)(3.8,3)
5 \psellipse[linecolor=white,linewidth=1.5pt,
6 bordercolor=gray,border=2pt](3,1.5)(.7,1.4)

doubleline= true/false Default: false

When true, a double line is drawn, separated by a space that is

doublesep wide and of color doublecolor . This doesn’t work as

expected with the dashed linestyle , and some arrows look funny as

well.

doublesep= dim Default: 1.25\pslinewidth

See doubleline , above.

doublecolor= color Default: white

See doubleline , above.

Here is an example of double lines:

1 \psline[doubleline=true,linearc=.5,
2 doublesep=1.5pt]{->}(0,0)(3,1)(4,0)

Line styles 25

shadow= true/false Default: false

When true, a shadow is drawn, at a distance shadowsize from the

original curve, in the direction shadowangle , and of color

shadowcolor .

shadowsize= dim Default: 3pt

See shadow , above.

shadowangle= angle Default: -45

See shadow , above.

shadowcolor= color Default: darkgray

See shadow , above.

Here is an example of the shadow feature, which should look

familiar:

1 \pspolygon[linearc=2pt,shadow=true,shadowangle=45,
2 xunit=1.1](-1,-.55)(-1,.5)(-.8,.5)(-.8,.65)
3 (-.2,.65)(-.2,.5)(1,.5)(1,-.55)

Here is another graphics parameter that is related to lines but that applies

only to the closed graphics objects \psframe , \pscircle , \psellipse and

\pswedge :

dimen= outer/inner/middle Default: outer

It determines whether the dimensions refer to the inside, outside or middle

of the boundary. The difference is noticeable when the linewidth is large:

0 1 2 3 4
0

1

2

3

1 \psset{linewidth=.25cm}
2 \psframe[dimen=inner](0,0)(2,1)
3 \psframe[dimen=middle](0,2)(2,3)
4 \psframe[dimen=outer](3,0)(4,3)

With \pswedge, this only affects the radius; the origin always lies in the

middle the boundary. The right setting of this parameter depends on how

you want to align other objects.

14 Fill styles

The next group of graphics parameters determine how closed regions are

filled. Even open curves can be filled; this does not affect how the curve is

painted.

Fill styles 26

fillstyle= style Default: none

Valid styles are

none, solid, vlines, vlines*, hlines, hlines*, crosshatch
and crosshatch*.

vlines, hlines and crosshatch draw a pattern of lines, according to

the four parameters list below that are prefixed with hatch. The *
versions also fill the background, as in the solid style.

fillcolor= color Default: white

The background color in the solid, vlines*, hlines* and crosshatch*
styles.

hatchwidth= dim Default: .8pt

Width of lines.

hatchsep= dim Default: 4pt

Width of space between the lines.

hatchcolor= color Default: black

Color of lines. Saved in \pshatchcolor .

hatchangle= rot Default: 45

Rotation of the lines, in degrees. For example, if hatchangle is set

to 45, the vlines style draws lines that run NW-SE, and the hlines
style draws lines that run SW-NE, and the crosshatch style draws

both.

Here is an example of the vlines and related fill styles:5

1 \pspolygon[fillstyle=vlines](0,0)(0,3)(4,0)
2 \pspolygon[fillstyle=hlines](0,0)(4,3)(4,0)
3 \pspolygon[fillstyle=crosshatch*,fillcolor=black,
4 hatchcolor=white,hatchwidth=1.2pt,hatchsep=1.8pt,
5 hatchangle=0](0,3)(2,1.5)(4,3)

Each of the pure graphics objects (except those beginning with q) has a

starred version that produces a solid object of color linecolor . (It automat-

ically sets linewidth to zero, fillcolor to linecolor , fillstyle to solid, and

linestyle to none.)

5PSTricks adjusts the lines relative to the resolution so that they all have the same width

and the same intervening space. Otherwise, the checkered pattern in this example would

be noticeably uneven, even on 300 dpi devices. This adjustment is resolution dependent,

and may involve adjustments to the hatchangle when this is not initially a multiple of 45

degrees.

Fill styles 27

15 Arrowheads and such

Lines and other open curves can be terminated with various arrowheads,

t-bars or circles. The

arrows= style Default: -

parameter determines what you get. It can have the following values, which

are pretty intuitive:6

Value Example Name

- None

<-> Arrowheads.

>-< Reverse arrowheads.

«-» Double arrowheads.

»-« Double reverse arrowheads.

|-| T-bars, flush to endpoints.

|*-|* T-bars, centered on endpoints.

|<->| T-bars and arrowheads.

|<*->|* T-bars and arrowheads, flush.

[-] Square brackets.

(-) Rounded brackets.

o-o Circles, centered on endpoints.

- Disks, centered on endpoints.

oo-oo Circles, flush to endpoints.

- Disks, flush to endpoints.

c-c Extended, rounded ends.

cc-cc Flush round ends.

C-C Extended, square ends.

You can also mix and match. E.g., ->, *-) and [-> are all valid values of the

arrows parameter.

Well, perhaps the c, cc and C arrows are not so obvious. c and C correspond

to setting PostScript’s linecap to 1 and 2, respectively. cc is like c, but

adjusted so that the line flush to the endpoint. These arrows styles are

noticeable when the linewidth is thick:

6This is TEX’s version of WYSIWYG.

Arrowheads and such 28

- c-c cc-cc C-C

1 \psline[linewidth=.5cm](0,0)(0,2)
2 \psline[linewidth=.5cm]{c-c}(1,0)(1,2)
3 \psline[linewidth=.5cm]{cc-cc}(2,0)(2,2)
4 \psline[linewidth=.5cm]{C-C}(3,0)(3,2)

Almost all the open curves let you include the arrows parameters as an

optional argument, enclosed in curly braces and before any other arguments

(except the optional parameters argument). E.g., instead of

1 \psline[arrows=<-,linestyle=dotted](3,4)

you can write

1 \psline[linestyle=dotted]{<-}(3,4)

The exceptions are a few streamlined macros that do not support the use of

arrows (these all begin with q).

The size of these line terminators is controlled by the following parame-

ters. In the description of the parameters, the width always refers to the

dimension perpendicular to the line, and length refers to a dimension in the

direction of the line.

arrowsize= dim ‘num’ Default: 1.5pt 2

The width of arrowheads is dim plus num times linewidth (if the

optional ‘num’ is inclued). See the diagram below.

arrowlength= num Default: 1.4

Length of arrowheads, as a fraction of the width, as shown below.

arrowinset= num Default: .4

Size of inset for arrowheads, as a fraction of the length, as shown

below.

Arrowheads and such 29

length

width

inset

arrowsize = dim num

width = num x linewidth + dim1

length = arrowlength x width

inset = arrowinset x height

tbarsize= dim ‘num’ Default: 2pt 5

The width of a t-bar, square bracket or rounded bracket is dim plus

num times linewidth (if the optional ‘num’ is included). linewidth ,

plus dim.

bracketlength= num Default: .15

The height of a square bracket is num times its width.

rbracketlength= num Default: .15

The height of a round bracket is num times its width.

arrowscale= arrowscale=num1 num2 Default: 1

Imagine that arrows and such point down. This scales the width of

the arrows by num1 and the length (height) by num2. If you only in-

clude one number, the arrows are scaled the same in both directions.

Changing arrowscale can give you special effects not possible by

changing the parameters described above. E.g., you can change the

width of lines used to draw brackets.

The size of dots is controlled by the dotsize parameter.

16 Custom styles

You can define customized versions of any macro that has parameter changes

as an optional first argument using the \newpsobject command:

\newpsobject{ name }{object }{par1=value1 ,… }

as in

Custom styles 30

1 \newpsobject{myline}{psline}{linecolor=green,linestyle=dotted}
2 \newpsobject{mygrid}{psgrid}{subgriddiv=1,griddots=10,
3 gridlabels=7pt}

The first argument is the name of the new command you want to define.

The second argument is the name of the graphics object. Note that both of

these arguments are given without the backslash. The third argument is the

special parameter values that you want to set.

With the above examples, the commands \myline and \mygrid work just

like the graphics object \psline it is based on, and you can even reset the

parameters that you set when defining \myline, as in:

1 \myline[linecolor=gray,dotsep=2pt](5,6)

Another way to define custom graphics parameter configurations is with the

\newpsstyle{ name }{par1=value1 ,… }

command. You can then set the style graphics parameter to name, rather

than setting the parameters given in the second argument of \newpsstyle .

For example,

1 \newpsstyle{mystyle}{linecolor=green,linestyle=dotted}
2 \psline[style=mystyle](5,6)

Custom styles 31

IV Custom graphics

17 The basics

PSTricks contains a large palette of graphics objects, but sometimes you

need something special. For example, you might want to shade the region

between two curves. The

\pscustom *[par]{commands }

command lets you “roll you own” graphics object.

Let’s review how PostScript handles graphics. A path is a line, in the math-

ematical sense rather than the visual sense. A path can have several discon-

nected segments, and it can be open or closed. PostScript has various oper-

ators for making paths. The end of the path is called the current point, but

if there is no path then there is no current point. To turn the path into some-

thing visual, PostScript can fill the region enclosed by the path (that is what

fillstyle and such are about), and stroke the path (that is what linestyle and

such are about).

At the beginning of \pscustom , there is no path. There are various com-

mands that you can use in \pscustom for drawing paths. Some of these

(the open curves) can also draw arrows. \pscustom fills and strokes the

path at the end, and for special effects, you can fill and stroke the path along

the way using \fill and \stroke (see below).

Driver notes: \pscustom uses \pstverb and \pstunit . There are system-dependent

limits on how long the argument of \special can be. You may run into this limit

using \pscustom because all the PostScript code accumulated by \pscustom is

the argument of a single \special command.

18 Parameters

You need to keep the separation between drawing, stroking and filling paths

in mind when setting graphics parameters. The linewidth and linecolor
parameters affect the drawing of arrows, but since the path commands do

not stroke or fill the paths, these parameters, and the linestyle , fillstyle and

related parameters, do not have any other effect (except that in some cases

Custom graphics 32

linewidth is used in some calculations when drawing the path). \pscus-
tom and \fill make use of fillstyle and related parameters, and \pscustom
and \stroke make use of plinestyle and related parameters.

For example, if you include

1 \psline[linewidth=2pt,linecolor=blue,fillstyle=vlines]{<-}(3,3)(4,0)

in \pscustom , then the changes to linewidth and linecolor will affect the

size and color of the arrow but not of the line when it is stroked, and the

change to fillstyle will have no effect at all.

The shadow , border , doubleline and showpoints parameters are dis-

abled in \pscustom , and the origin and swapaxes parameters only affect

\pscustom itself, but there are commands (described below) that let you

achieve these special effects.

The dashed and dotted line styles need to know something about the path

in order to adjust the dash or dot pattern appropriately. You can give this

information by setting the

linetype= int Default: 0

parameter. If the path contains more than one disconnected segment, there

is no appropriate way to adjust the dash or dot pattern, and you might as

well leave the default value of linetype . Here are the values for simple

paths:

Value Type of path

0 Open curve without arrows.

-1 Open curve with an arrow at the beginning.

-2 Open curve with an arrow at the end.

-3 Open curve with an arrow at both ends.

1 Closed curve with no particular symmetry.

n>1 Closed curve with n symmetric segments.

19 Graphics objects

You can use most of the graphics objects in \pscustom . These draw paths

and making arrows, but do not fill and stroke the paths.

There are three types of graphics objects:

Special Special graphics objects include \psgrid , \psdots , \qline and \qdisk .

You cannot use special graphics objects in \pscustom .

Graphics objects 33

Closed You are allowed to use closed graphics objects in \pscustom , but

their effect is unpredictable.7 Usually you would use the open curves

plus \closepath (see below) to draw closed curves.

Open The open graphics objects are the most useful commands for draw-

ing paths with \pscustom . By piecing together several open curves,

you can draw arbitrary paths. The rest of this section pertains to the

open graphics objects.

By default, the open curves draw a straight line between the current point,

if it exists, and the beginning of the curve, except when the curve begins

with an arrow. For example

0 1 2 3
0

1

2

3

1 \pscustom{%
2 \psarc(0,0){1.5}{5}{85}
3 \psarcn{->}(0,0){3}{85}{5}}

Also, the following curves make use of the current point, if it exists, as a

first coordinate:

\psline and \pscurve .

The plot commands, with the line or curve plotstyle .

\psbezier if you only include three coordinates.

For example:

0 1 2 3 4
0

1

2

3

1 \pscustom[linewidth=1.5pt]{%
2 \psplot[plotstyle=curve]{.67}{4}{2 x div}
3 \psline(4,3)}

We’ll see later how to make that one more interesting. Here is another

example

7The closed objects never use the current point as an coordinate, but typically they will

close any existing paths, and they might draw a line between the currentpoint and the closed

curved.

Graphics objects 34

0 1 2 3 4
0

1

2

3

1 \pscustom{%
2 \psline[linearc=.2]{|-}(0,2)(0,0)(2,2)
3 \psbezier{->}(2,2)(3,3)(1,0)(4,3)}

However, you can control how the open curves treat the current point with

the

liftpen= 0/1/2 Default: 0

parameter.

If liftpen=0 , you get the default behavior described above. For example

0 1 2 3 4
0

1

2

3

1 \pscustom[linewidth=2pt,fillstyle=solid,fillcolor=gray]{%
2 \pscurve(0,2)(1,2.5)(2,1.5)(4,3)
3 \pscurve(4,1)(3,0.5)(2,1)(1,0)(0,.5)}

If liftpen=1 , the curves do not use the current point as the first coordinate

(except \psbezier , but you can avoid this by explicitly including the first

coordinate as an argument). For example:

0 1 2 3 4
0

1

2

3

1 \pscustom[linewidth=2pt,fillstyle=solid,fillcolor=gray]{%
2 \pscurve(0,2)(1,2.5)(2,1.5)(4,3)
3 \pscurve[liftpen=1](4,1)(3,0.5)(2,1)(1,0)(0,.5)}

If liftpen=2 , the curves do not use the current point as the first coordinate,

and they do not draw a line between the current point and the beginning of

the curve. For example

0 1 2 3 4
0

1

2

3

1 \pscustom[linewidth=2pt,fillstyle=solid,fillcolor=gray]{%
2 \pscurve(0,2)(1,2.5)(2,1.5)(4,3)
3 \pscurve[liftpen=2](4,1)(3,0.5)(2,1)(1,0)(0,.5)}

Later we will use the second example to fill the region between the two

curves, and then draw the curves.

Graphics objects 35

20 Safe tricks

The commands described under this heading, which can only be used in

\pscustom , do not run a risk of PostScript errors (assuming your document

compiles without TEX errors).

Let’s start with some path, fill and stroke commands:

\newpath

Clear the path and the current point.

\moveto(coor)

This moves the current point to (x ,y).

\closepath

This closes the path, joining the beginning and end of each piece

(there may be more than one piece if you use \moveto).8

\stroke [par]

This strokes the path (non-destructively). \pscustom automatically

strokes the path, but you might want to stroke it twice, e.g., to add a

border. Here is an example that makes a double line and adds a border

(this example is kept so simple that it doesn’t need \pscustom at all):

0 1 2 3 4
0

1

2

3

1 \psline(0,3)(4,0)
2 \pscustom[linecolor=white,linewidth=1.5pt]{%
3 \psline(0,0)(4,3)
4 \stroke[linewidth=5\pslinewidth]
5 \stroke[linewidth=3\pslinewidth,linecolor=black]}

\fill [par]

This fills the region (non-destructively). \pscustom automatically

fills the region as well.

\gsave

This saves the current graphics state (i.e., the path, color, line width,

coordinate system, etc.) \grestore restores the graphics state. \gsave
and \grestore must be used in pairs, properly nested with respect to

TEX groups. You can have have nested \gsave -\grestore pairs.

8Note that the path is automatically closed when the region is filled. Use \closepath if

you also want to close the boundary.

Safe tricks 36

\grestore

See above.

Here is an example that fixes an earlier example, using \gsave and

\grestore :

1 \psline{<->}(0,3)(0,0)(4,0)
2 \pscustom[linewidth=1.5pt]{
3 \psplot[plotstyle=curve]{.67}{4}{2 x div}
4 \gsave
5 \psline(4,3)
6 \fill[fillstyle=solid,fillcolor=gray]
7 \grestore}

Observe how the line added by \psline(4,3) is never stroked, because

it is nested in \gsave and \grestore.

Here is another example:

0 1 2 3 4
0

1

2

3

1 \pscustom[linewidth=1.5pt]{
2 \pscurve(0,2)(1,2.5)(2,1.5)(4,3)
3 \gsave
4 \pscurve[liftpen=1](4,1)(3,0.5)(2,1)(1,0)(0,.5)
5 \fill[fillstyle=solid,fillcolor=gray]
6 \grestore}
7 \pscurve[linewidth=1.5pt](4,1)(3,0.5)(2,1)(1,0)(0,.5)

Note how I had to repeat the second \pscurve (I could have repeated

it within \pscustom , with liftpen=2), because I wanted to draw a

line between the two curves to enclose the region but I didn’t want

this line to be stroked.

The next set of commands modify the coordinate system.

\translate(coor)

Translate coordinate system by (x ,y). This shifts everything that

comes later by (x ,y), but doesn’t affect what has already been drawn.

\scale{ num1 num2}

Scale the coordinate system in both directions by num1, or horizon-

tally by num1 and vertically by num2.

\rotate{ angle }

Rotate the coordinate system by angle.

\swapaxes

Switch the x and y coordinates. This is equivalent to

Safe tricks 37

1 \rotate{-90}
2 \scale{-1 1 scale}

\msave

Save the current coordinate system. You can then restore it with

\mrestore . You can have nested \msave -\mrestore pairs. \msave
and \mrestore do not have to be properly nested with respect to TEX

groups or \gsave and \grestore . However, remember that \gsave
and \grestore also affect the coordinate system. \msave -\mrestore
lets you change the coordinate system while drawing part of a path,

and then restore the old coordinate system without destroying the

path. \gsave -\grestore , on the other hand, affect the path and all

other componments of the graphics state.

\mrestore

See above.

And now here are a few shadow tricks:

\openshadow [par]

Strokes a replica of the current path, using the various shadow pa-

rameters.

\closedshadow [par]

Makes a shadow of the region enclosed by the current path as if it

were opaque regions.

\movepath(coor)

Moves the path by (x ,y). Use \gsave -\grestore if you don’t want to

lose the original path.

21 Pretty safe tricks

The next group of commands are safe, as long as there is a current point!

\lineto(coor)

This is a quick version of \psline(<coor>).

\rlineto(coor)

This is like \lineto , but (x ,y) is interpreted relative to the current

point.

\curveto(x1,y1)(x2 ,y2)(x3 ,y3)

This is a quick version of \psbezier(x1,y1)(x2,y2)(x3,y3).

Pretty safe tricks 38

\rcurveto(x1,y1)(x2 ,y2)(x3 ,y3)

This is like \curveto , but (x1,y1), (x2,y2) and (x3,y3) are inter-

preted relative to the current point.

22 For hackers only

For PostScript hackers, there are a few more commands. Be sure to read

Appendix C before using these. Needless to say:

P
S Warning: Misuse of the commands in this section can cause

PostScript errors.

The PostScript environment in effect with \pscustom has one unit equal

to one TEX pt.

\code{ code }

Insert the raw PostScript code.

\dim{ dim }

Convert the PSTricks dimension to the number of pt’s, and inserts it

in the PostScript code.

\coor(x1,y1)(x2,y2)...(xn,yn)

Convert one or more PSTricks coordinates to a pair of numbers (us-

ing pt units), and insert them in the PostScript code.

\rcoor(x1,y1)(x2,y2)...(xn,yn)

Like \coor , but insert the coordinates in reverse order.

\file{ file }

This is like \code , but the raw PostScript is copied verbatim (except

comments delimited by %) from file.

\arrows{ arrows }

This defines the PostScript operators ArrowA and ArrowB so that

1 x2 y2 x1 y1 ArrowA
2 x2 y2 x1 y1 ArrowB

each draws an arrow(head) with the tip at (x1,y1) and pointing from

(x2,y2). ArrowA leaves the current point at end of the arrowhead,

where a connect line should start, and leaves (x2,y2) on the stack.

ArrowB does not change the current point, but leaves

1 x2 y2 x1’ y1’

For hackers only 39

on the stack, where (x1’ ,y1’) is the point where a connecting line

should join. To give an idea of how this work, the following is

roughly how PSTricks draws a bezier curve with arrows at the end:

0 1 2 3 4
0

1

2

3

1 \pscustom{
2 \arrows{|->}
3 \code{
4 80 140 5 5 ArrowA
5 30 -30 110 75 ArrowB
6 curveto}}

\setcolor{ color }

Set the color to color .

For hackers only 40

V Picture Tools

23 Pictures

The graphics objects and \rput and its variants do not change TEX’s current

point (i.e., they create a 0-dimensional box). If you string several of these

together (and any other 0-dimensional objects), they share the same coordi-

nate system, and so you can create a picture. For this reason, these macros

are called picture objects.

If you create a picture this way, you will probably want to give the whole

picture a certain size. You can do this by putting the picture objects in a

pspicture environment, as in:

\pspicture *[baseline](x0,y0)(x1,y1)
picture objects \endpspicture

The picture objects are put in a box whose lower left-hand corner is at

(x0,y0) (by default, (0,0)) and whose upper right-hand corner is at (x1,y1).

By default, the baseline is set at the bottom of the box, but the optional

argument [<baseline>] sets the baseline fraction baseline from the bottom.

Thus, baseline is a number, generally but not necessarily between 0 and 1.

If you include this argument but leave it empty ([]), then the baseline passes

through the origin.

Normally, the picture objects can extend outside the boundaries of the box.

However, if you include the *, anything outside the boundaries is clipped.

Besides picture objects, you can put anything in a \pspicture that does not

take up space. E.g., you can put in font declarations and use \psset , and

you can put in braces for grouping. PSTricks will alert you if you include

something that does take up space.9

LATEX users can type

9When PSTricks picture objects are included in a \pspicture environment, they gob-

ble up any spaces that follow, and any preceding spaces as well, making it less likely that

extraneous space gets inserted. (PSTricks objects always ignore spaces that follow. If you

also want them to try to neutralize preceding space when used outside the \pspicture en-

vironment (e.g., in a LATEX picture environment), then use the command \KillGlue . The

command \DontKillGlue turns this behavior back off.)

Picture Tools 41

\begin{pspicture} … \end{pspicture}

You can use PSTricks picture objects in a LATEX picture environment, and

you can use LATEX picture objects in a PSTricks pspicture environment.

However, the pspicture environment makes LATEX’s picture environment

obsolete, and has a few small advantages over the latter. Note that the argu-

ments of the pspicture environment work differently from the arguments

of LATEX’s picture environment (i.e., the right way versus the wrong way).

Driver notes: The clipping option (*) uses \pstVerb and \pstverbscale .

24 Placing and rotating whatever

PSTricks contains several commands for positioning and rotating an HR-

mode argument. All of these commands end in put, and bear some similar-

ity to LATEX’s \put command, but with additional capabilities. Like LATEX’s

\put and unlike the box rotation macros described in Section 29, these com-

mands do not take up any space. They can be used inside and outside

\pspicture environments.

Most of the PSTricks put commands are of the form:

\put*arg{<rotation>}(<coor>){<stuff>}

With the optional * argument, stuff is first put in a

1 \psframebox*[boxsep=false]{stuff }

thereby blotting out whatever is behind stuff . This is useful for positioning

text on top of something else.

arg refers to other arguments that vary from one put command to another,

The optional rotation is the angle by which stuff should be rotated; this

arguments works pretty much the same for all put commands and is de-

scribed further below. The (<coor>) argument is the coordinate for posi-

tioning stuff , but what this really means is different for each put command.

The (<coor>) argument is shown to be obligatory, but you can actually omit

it if you include the rotation argument.

The rotation argument should be an angle, as described in Section 4, but the

angle can be preceded by an *. This causes all the rotations (except the box

rotations described in Section 29) within which the \rput command is be

nested to be undone before setting the angle of rotation. This is mainly use-

ful for getting a piece of text right side up when it is nested inside rotations.

For example,

Placing and rotating whatever 42

stuff

1 \rput{34}{%
2 \psframe(-1,0)(2,1)
3 \rput[br]{*0}(2,1){\emph{stuff}}}

There are also some letter abbreviations for the command angles. These

indicate which way is up:

Letter Short for Equiv. to

U Up 0

L Left 90

D Down 180

R Right 270

Letter Short for Equiv. to

N North *0

W West *90

S South *180

E East *270

This section describes just a two of the PSTricks put commands. The most

basic one command is

\rput *[refpoint]{rotation}(x ,y){stuff }

refpoint determines the reference point of stuff , and this reference point is

translated to (x ,y).

By default, the reference point is the center of the box. This can be changed

by including one or two of the following in the optional refpoint argument:

Horizontal Vertical

l Left t Top

r Right b Bottom

B Baseline

Visually, here is where the reference point is set of the various combinations

(the dashed line is the baseline):

t

b

B
l

Bl

bl

tl

r
Br

br

tr

There are numerous examples of \rput in this documentation, but for now

here is a simple one:

H
er

e
is

a
m

ar
g
in

al
n
o
te

.

1 \rput[b]{90}(-1,0){Here is a marginal note.}

Placing and rotating whatever 43

One common use of a macro such as \rput is to put labels on things.

PSTricks has a variant of \rput that is especially designed for labels:

\uput *{labelsep}[refangle]{rotation}(x ,y){stuff }

This places stuff distance labelsep from (x ,y), in the direction refangle.

The default value of labelsep is the dimension register

\pslabelsep

You can also change this be setting the

labelsep= dim Default: 5pt

parameter (but remember that \uput does have an optional argument for

setting parameters).

Here is a simple example:

(1,1) 1 \qdisk(1,1){1pt}
2 \uput[45](1,1){(1,1)}

Here is a more interesting example where \uput is used to make a pie chart:

1 \psset{unit=1.2cm}
2 \pspicture(-2.2,-2.2)(2.2,2.2)
3 \pswedge[fillstyle=solid,fillcolor=gray]{2}{0}{70}
4 \pswedge[fillstyle=solid,fillcolor=lightgray]{2}{70}{200}
5 \pswedge[fillstyle=solid,fillcolor=darkgray]{2}{200}{360}
6 \SpecialCoor
7 \psset{framesep=1.5pt}
8 \rput(1.2;35){\psframebox*{\small\$9.0M}}
9 \uput{2.2}[45](0,0){Oreos}

10 \rput(1.2;135){\psframebox*{\small\$16.7M}}
11 \uput{2.2}[135](0,0){Heath}
12 \rput(1.2;280){\psframebox*{\small\$23.1M}}
13 \uput{2.2}[280](0,0){M\&M}
14 \endpspicture

Placing and rotating whatever 44

$9.0M

Oreos

$16.7M

Heath

$23.1M

M&M

You can use the following abbreviations for refangle, which indicate the

direction the angle points:1011

Letter Short for Equiv. to

r right 0

u up 90

l left 180

d down 270

Letter Short for Equiv. to

ur up-right 45

ul up-left 135

dl down-left 225

dr down-right 315

The first example could thus have been written:

(1,1) 1 \qdisk(1,1){1pt}
2 \uput[ur](1,1){(1,1)}

Driver notes: The rotation macros use \pstVerb and \pstrotate .

25 Repetition

The macro

10Using the abbreviations when applicable is more efficient.
11There is an obsolete command \Rput that has the same syntax as \uput and that works

almost the same way, except the refangle argument has the syntax of \rput ’s refpoint argu-

ment, and it gives the point in stuff that should be aligned with (x ,y). E.g.,

\qdisk(4,0){2pt}
(x, y)\Rput[tl](4,0){(x,y)}

Here is the equivalence between \uput ’s refangle abbreviations and \Rput ’s refpoint ab-

breviations:

\uput r u l d ur ul dr dl

\Rput l b r t bl br tr rl

Some people prefer \Rput ’s convention for specifying the position of stuff over \uput ’s.

Repetition 45

\multirput *[refpoint]{angle}(x0,y0)(x1,y1){int }{stuff }

is a variant of \rput that puts down int copies, starting at (x0,y0) and ad-

vancing by (x1,y1) each time. (x0,y0) and (x1,y1) are always interpreted

as Cartesian coordinates. For example:

* * * * * * * * * * * *
1 \multirput(.5,0)(.3,.1){12}{*}

If you want copies of pure graphics, it is more efficient to use

\multips {angle}(x0,y0)(x1,y1){int }{graphics }

graphics can be one or more of the pure graphics objects described in Part

II, or \pscustom . Note that \multips has the same syntax as \multirput ,

except that there is no refpoint argument (since the graphics are zero di-

mensional anyway). Also, unlike \multirput , the coordinates can be of

any type. An Overfull \hbox warning indicates that the graphics argument

contains extraneous output or space. For example:

1 \def\zigzag{\psline(0,0)(.5,1)(1.5,-1)(2,0)}%
2 \psset{unit=.25,linewidth=1.5pt}
3 \multips(0,0)(2,0){8}{\zigzag}

PSTricks can heavily benefit of a much more general loop macro, called

\multido . You must input the file multido.tex or multido.sty. See the docu-
multido mentation multido.doc for details. Here is a sample of what you can do:

1 \begin{pspicture}(-3.4,-3.4)(3.4,3.4)
2 \newgray{mygray}{0} % Initialize ‘mygray’ for benefit
3 \psset{fillstyle=solid,fillcolor=mygray} % of this line.
4 \SpecialCoor
5 \degrees[1.1]
6 \multido{\n=0.0+.1}{11}{%
7 \newgray{mygray}{\n}
8 \psset{fillcolor=mygray}%
9 \rput{\n}{\pswedge{3}{-.05}{.05}}

10 \uput{3.2}[\n](0,0){\small\n}}
11 \end{pspicture}

Repetition 46

0.0

0.1

0.2
0.3

0.4

0.5

0.6

0.7

0.8
0.9

1.0

All of these loop macros can be nested.

26 Axes

The axes command described in this section is defined in pst-plot.tex /
pst-plot pst-plot.sty, which you must input first. pst-plot.tex, in turn, will automat-

ically input multido.tex, which is used for putting the labels on the axes.

The macro for making axes is:

\psaxes *[par]{arrows}(x0,y0)(x1,y1)(x2 ,y2)

The coordinates must be Cartesian coordinates. They work the same way

as with \psgrid . That is, if we imagine that the axes are enclosed in a

rectangle, (x1,y1) and (x2,y2) are opposing corners of the rectangle. (I.e.,

the x-axis extends from x1 to x2 and the y-axis extends from y1 to y2.) The

axes intersect at (x0,y0). For example:

0 1 2 3 4
0

1

2

3

(x2,y2)
(x0,y0)

(x1,y1)

1 \psaxes[linewidth=1.2pt,labels=none,
2 ticks=none]{<->}(2,1)(0,0)(4,3)

If (x0,y0) is omitted, then the origin is (x1,y1). If both (x0,y0) and (x1,y1)
are omitted, (0,0) is used as the default. For example, when the axes enclose

a single orthont, only (x2,y2) is needed:

Axes 47

0 1 2 3
0

1
1 \psaxes{->}(4,2)

Labels (numbers) are put next to the axes, on the same side as x1 and y1.

Thus, if we enclose a different orthont, the numbers end up in the right

place:

0 1 2 3
0

1
1 \psaxes{->}(4,-2)

Also, if you set the arrows parameter, the first arrow is used for the tips at

x1 and y1, while the second arrow is used for the tips at x2 and y2. Thus, in

the preceding examples, the arrowheads ended up in the right place too.12

When the axes don’t just enclose an orthont, that is, when the origin is not at

a corner, there is some discretion as to where the numbers should go. The

rules for positioning the numbers and arrows described above still apply,

and so you can position the numbers as you please by switching y1 and y2,

or x1 and x2. For example, compare

0 1 212

1

2

1 \psaxes{<->}(0,0)(-2.5,0)(2.5,2.5)

with what we get when x1 and x2 are switched:

012 1 2

1

2

1 \psaxes{<->}(0,0)(2.5,0)(-2.5,2.5)

\psaxes puts the ticks and numbers on the axes at regular intervals, using

the following parameters:

12Including a first arrow in these examples would have had no effect because arrows are

never drawn at the origin.

Axes 48

Horitontal Vertical Dflt Description

Ox=num Oy=num 0 Label at origin.

Dx=num Dy=num 1 Label increment.

dx=dim dy=dim 0pt Dist btwn labels.

When dx is 0, Dx\psxunit is used instead, and similarly for dy . Hence, the

default values of 0pt for dx and dy are not as peculiar as they seem.

You have to be very careful when setting Ox, Dx, Oy and Dy to non-integer

values. multido.tex increments the labels using rudimentary fixed-point

arithmetic, and it will come up with the wrong answer unless Ox and Dx,

or Oy and Dy, have the same number of digits to the right of the decimal.

The only exception is that Ox or Oy can always be an integer, even if Dx
or Dy is not. (The converse does not work, however.)13

Note that \psaxes ’s first coordinate argument determines the physical po-

sition of the origin, but it doesn’t affect the label at the origin. E.g., if the

origin is at (1,1), the origin is still labeled 0 along each axis, unless you

explicitly change Ox and Oy. For example:

2 1 0 1 2
0

1

2

3

1 \psaxes[Ox=-2](-2,0)(2,3)

The ticks and labels use a few other parameters as well:

labels= all/x/y/none Default: all

To specify whether labels appear on both axes, the x-axis, the y-axis,

or neither.

showorigin= true/false Default: true

If true, then labels are placed at the origin, as long as the label doesn’t

end up on one of the axes. If false, the labels are never placed at the

origin.

ticks= all/x/y/none Default: all

To specify whether ticks appear on both axes, the x-axis, the y-axis,

or neither.

13For example, Ox=1.0 and Dx=1.4 is okay, as is Ox=1 and Dx=1.4, but Ox=1.4 and

Dx=1, or Ox=1.4 and Dx=1.15, is not okay. If you get this wrong, PSTricks won’t com-

plain, but you won’t get the right labels either.

Axes 49

tickstyle= full/top/bottom Default: full

For example, if tickstyle=top , then the ticks are only on the side of

the axes away from the labels. If tickstyle=bottom , the ticks are on

the same side as the labels. full gives ticks extending on both sides.

ticksize= dim Default: 3pt

Ticks extend dim above and/or below the axis.

The distance between ticks and labels is \pslabelsep , which you can change

with the labelsep parameter.

The labels are set in the current font (ome of the examples above were

preceded by \small so that the labels would be smaller). You can do fancy

things with the labels by redefining the commands:

\pshlabel
\psvlabel

E.g., if you want change the font of the horizontal labels, but not the vertical

labels, try something like

1 \def\pshlabel#1{\small #1}

You can choose to have a frame instead of axes, or no axes at all (but you

still get the ticks and labels), with the parameter:

axesstyle= axes/frame/none Default: axes

The usual linestyle , fillstyle and related paremeters apply.

For example:

00.51.01.5
0

1

2

3

1 \psaxes[Dx=.5,dx=1,tickstyle=top,axesstyle=frame](-3,3)

The \psaxes macro is pretty flexible, but PSTricks contains some other

tools for making axes from scratch. E.g., you can use \psline and \psframe
to draw axes and frames, respectively, \multido to generate labels (see the

documentation for multido.tex), and \multips to make ticks.

Axes 50

VI Text Tricks

27 Framed boxes

The macros for framing boxes take their argument, put it in an \hbox, and

put a PostScript frame around it. (They are analogous to LATEX’s \fbox).

Thus, they are composite objects rather than pure graphics objects. In addi-

tion to the graphics parameters for \psframe , these macros use the follow-

ing parameters:

framesep= dim Default: 3pt

Distance between each side of a frame and the enclosed box.

boxsep= true/false Default: true

When true, the box that is produced is the size of the frame or what-

ever that is drawn around the object. When false, the box that is

produced is the size of whatever is inside, and so the frame is “trans-

parent” to TEX. This parameter only applies to \psframebox , \pscir-
clebox , and \psovalbox .

Here are the three box-framing macros:

\psframebox *[par]{stuff }

A simple frame (perhaps with rounded corners) is drawn using \ps-
frame . The * option is of particular interest. It generates a solid

frame whose color is fillcolor (rather than linecolor , as with the

closed graphics objects). Recall that the default value of fillcolor is

white, and so this has the effect of blotting out whatever is behind the

box. For example,

Label

1 \pspolygon[fillcolor=gray,fillstyle=crosshatch*](0,0)(3,0)
2 (3,2)(2,2)
3 \rput(2,1){\psframebox*[framearc=.3]{Label}}

\psdblframebox *[par]{stuff }

This draws a double frame. It is just a variant of \psframebox , de-

fined by

Text Tricks 51

1 \newpsobject{psdblframebox}{psframebox}{doublesep=\pslinewidth}

For example,

1 \psdblframebox[linewidth=1.5pt]{%
2 \parbox[c]{6cm}{\raggedright A double frame is drawn
3 with the gap between lines equal to \texttt{doublesep}}}

A double frame is drawn with the gap

between lines equal to doublesep

\psshadowbox *[par]{stuff }

This draws a single frame, with a shadow.

Great Idea!! 1 \psshadowbox{\textbf{Great Idea!!}}

You can get the shadow with \psframebox just be setting the shad-
owsize parameter, but with \psframebox the dimensions of the box

won’t reflect the shadow (which may be what you want!).

\pscirclebox *[par]{stuff }

This draws a circle. With boxsep=true , the size of the box is close

to but may be larger than the size of the circle. For example:

You are

here
1 \pscirclebox{\begin{tabular}{c} You are \\ here \end{tabular}}

is distributed with

\cput *[par]{angle}(x,y) {stuff }

This combines the functions of \pscirclebox and \rput . It is like

1 \rput{angle}(x0,y0){\pscirclebox*[par]{stuff }}

but it is more efficient. Unlike the \rput command, there is no ar-

gument for changing the reference point; it is always the center of

the box. Instead, there is an optional argument for changing graphics

parameters. For example

0 1 2
0

1

K1 1 \cput[doubleline=true](1,.5){\large K_1}

Framed boxes 52

\psovalbox *[par]{stuff }

This draws an ellipse. If you want an oval with square sides and

rounded corners, then use \psframebox with a positive value for

rectarc or linearc (depending on whether cornersize is relative or

absolute). Here is an example that uses boxsep=false :

At the introductory

price of $13.99, it pays

to act now!

1 At the introductory price of
2 \psovalbox[boxsep=false,linecolor=darkgray]{\$13.99},
3 it pays to act now!

\psdiabox *[par]{stuff }

\psdiabox draws a diamond.

Happy? 1 \psdiabox[shadow=true]{\Large\textbf{Happy?}}

\pstribox *[par]{stuff }

\pstribox draws a triangle.

Begin 1 \pstribox[trimode=R,framesep=5pt]{\Large\textbf{Begin}}

The triangle points in the direction:

trimode= *U/D/R/L Default: U

If you include the optional *, then an equilateral triangle is drawn,

otherwise, you get the minimum-area isosceles triangle.

Begin

1 \pstribox[trimode=*U]{\Huge Begin}

You can define variants of these box framing macros using the \newpsob-
ject command.

If you want to control the final size of the frame, independently of the ma-

terial inside, nest stuff in something like LATEX’s \makebox command.

Framed boxes 53

28 Clipping

The command

\clipbox [dim]{stuff }

puts stuff in an \hbox and then clips around the boundary of the box, at a

distance dim from the box (the default is 0pt).

The \pspicture environment also lets you clip the picture to the boundary.

The command

\psclip{ graphics } … \endpsclip

sets the clipping path to the path drawn by the graphics object(s), until the

\endpsclip command is reached. \psclip and \endpsclip must be properly

nested with respect to TEX grouping. Only pure graphics (those described

in Part II and \pscustom) are permitted. An Overfull \hbox warning indi-

cates that the graphics argument contains extraneous output or space. Note

that the graphics objects otherwise act as usual, and the \psclip does not

otherwise affect the surrounded text. Here is an example:

“One of the best new plays I

have seen all year: cool, po-

etic, ironic … ” proclaimed The

Guardian upon the London pre-

miere of this extraordinary play

about a Czech director and his

1 \parbox{4.5cm}{%
2 \psclip{\psccurve[linestyle=none](-3,-2)
3 (0.3,-1.5)(2.3,-2)(4.3,-1.5)(6.3,-2)(8,-1.5)(8,2)(-3,2)}
4 “One of the best new plays I have seen all year: cool, poetic,
5 ironic \ldots” proclaimed \emph{The Guardian} upon the London
6 premiere of this extraordinary play about a Czech director and
7 his actress wife, confronting exile in America.\vspace{-1cm}
8 \endpsclip}

If you don’t want the outline to be painted, you need to include linestyle=none
in the parameter changes. You can actually include more than one graphics

object in the argument, in which case the clipping path is set to the inter-

section of the paths.

\psclip can be a useful tool in picture environments. For example, here it

is used to shade the region between two curves:

Clipping 54

0 1 2 3 4
0

1

2

3

4
1 \psclip{%
2 \pscustom[linestyle=none]{%
3 \psplot{.5}{4}{2 x div}
4 \lineto(4,4)}
5 \pscustom[linestyle=none]{%
6 \psplot{0}{3}{3 x x mul 3 div sub}
7 \lineto(0,0)}}
8 \psframe*[linecolor=gray](0,0)(4,4)
9 \endpsclip

10 \psplot[linewidth=1.5pt]{.5}{4}{2 x div}
11 \psplot[linewidth=1.5pt]{0}{3}{3 x x mul 3 div sub}
12 \psaxes(4,4)

Driver notes: The clipping macros use \pstverbscale and \pstVerb . Don’t be

surprised if PSTricks’s clipping does not work or causes problem—it is never ro-

bust. \endpsclip uses initclip. This can interfere with other clipping operations,

and especially if the TEX document is converted to an Encapsulated PostScript

file. The command \AltClipMode causes \psclip and \endpsclip to use gsave
and grestore instead. This bothers some drivers, especially if \psclip and \endp-
sclip do not end up on the same page.

29 Rotation and scaling boxes

There are versions of the standard box rotation macros:

\rotateleft{ stuff }
\rotateright{ stuff }
\rotatedown{ stuff }

stuff is put in an \hbox and then rotated or scaled, leaving the appropriate

amount of spaces. Here are a few uninteresting examples:

L
ef

t

Down

R
ig

h
t

1 \Large\bfseries \rotateleft{Left} \rotatedown{Down} \rotateright{Right}

There are also two box scaling macros:

\psscalebox{ num1 num2}{stuff }

If you give two numbers in the first argument, num1 is used to scale

horizontally and num2 is used to scale vertically. If you give just one

number, the box is scaled by the same in both directions. You can’t

scale by zero, but negative numbers are OK, and have the effect of

flipping the box around the axis. You never know when you need to

do something like this (\psscalebox{-1 1}{this}).

Rotation and scaling boxes 55

\psscaleboxto(x ,y){stuff }

This time, the first argument is a (Cartesian) coordinate, and the box

is scaled to have width x and height (plus depth) y . If one of the

dimensions is 0, the box is scaled by the same amount in both direc-

tions. For example:

Big and long 1 \psscaleboxto(4,2){Big and long}

PSTricks defines LR-box environments for all these box rotation and scal-

ing commands:

1 \pslongbox{Rotateleft}{\rotateleft}
2 \pslongbox{Rotateright}{\rotateright}
3 \pslongbox{Rotatedown}{\rotatedown}
4 \pslongbox{Scalebox}{\psscalebox}
5 \pslongbox{Scaleboxto}{\psscaleboxto}

Here is an example where we \Rotatedown for the answers to exercises:

Question: How do

Democrats organize a

firing squad?

Answer:Firsttheygetin

acircle,…

1 Question: How do Democrats organize a firing squad?
2

3 \begin{Rotatedown}
4 \parbox{\hsize}{Answer: First they get in a circle, \ldots\hss}%
5 \end{Rotatedown}

See the documentation of the fancybox package for tips on rotating a LATEX

table or figure environment, and other boxes.

Rotation and scaling boxes 56

VII Nodes and Node Connections

All the commands described in this part are contained in the file pst-node.tex
pst-node / pst-node.sty.

The node and node connection macros let you connect information and

place labels, without knowing the exact position of what you are connecting

or of where the lines should connect. These macros are useful for making

graphs and trees, mathematical diagrams, linguistic syntax diagrams, and

connecting ideas of any kind. They are the trickiest tricks in PSTricks!

The node and node connection macros let you connect information and

place labels, without knowing the exact position of what you are connecting

or where the lines should connect. These macros are useful for making

graphs and trees, mathematical diagrams, linguistic syntax diagrams, and

connecting ideas of any kind. They are the trickiest tricks in PSTricks!

There are three components to the node macros:

Node definitions The node definitions let you assign a name and shape to

an object. See Section 30.

Node connections The node connections connect two nodes, identified by

their names. See Section 31.

Node labels The node label commands let you affix labels to the node con-

nections. See Section 32.

You can use these macros just about anywhere. The best way to position

them depends on the application. For greatest flexibility, you can use the

nodes in a \pspicture , positioning and rotating them with \rput . You can

also use them in alignment environments. pst-node.tex contains a spe-

cial alignment environment, \psmatrix , which is designed for positioning

nodes in a grid, such as in mathematical diagrams and some graphs. \ps-
matrix is described in Section 35. pst-node.tex also contains high-level

macros for trees. These are described in Part VIII.

But don’t restrict yourself to these more obvious uses. For example:

Nodes and Node Connections 57

I made the file symbol a

node. Now I can draw an

arrow so that you know

what I am talking about.

1 \rnode{A}{%
2 \parbox{4cm}{\raggedright
3 I made the file symbol a node. Now I can draw an
4 arrow so that you know what I am talking about.}}
5 \ncarc[nodesep=8pt]{->}{A}{file}

30 Nodes

Nodes have a name. a boundary and a center.

P
S

Warning: The name is for refering to the node when making

node connections and labels. You specify the name as an ar-

gument to the node commands. The name must contain only

letters and numbers, and must begin with a letter. Bad node

names can cause PostScript errors.

The center of a node is where node connections point to. The boundary

is for determining where to connect a node connection. The various nodes

differ in how they determine the center and boundary. They also differ in

what kind of visable object they create.

Here are the nodes:

\rnode [refpoint]{name }{stuff }

\rnode puts stuff in a box. The center of the node is refpoint , which

you can specify the same way as for \rput .

\Rnode *[par]{name }{stuff }

\Rnode also makes a box, but the center is set differently. If you

align \rnode ’s by their baseline, differences in the height and depth

of the nodes can cause connecting lines to be not quite parallel, such

as in the following example:

sp Bit
1 \Large
2 \rnode{A}{sp} \hskip 2cm \rnode{B}{Bit}
3 \ncline{A}{B}

With \Rnode , the center is determined relative to the baseline:

sp Bit
1 \Large
2 \Rnode{A}{sp} \hskip 2cm \Rnode{B}{Bit}
3 \ncline{A}{B}

You can usually get by without fiddling with the center of the node,

but to modify it you set the

Nodes 58

href= num Default: 0
vref= dim Default: .7ex

parameters. In the horizontal direction, the center is located fraction

href from the center to the edge. E.g, if href=-1 , the center is on

the left edge of the box. In the vertical direction, the center is located

distance vref from the baseline. The vref parameter is evaluated each

time \Rnode is used, so that you can use ex units to have the distance

adjust itself to the size of the current font (but without being sensitive

to differences in the size of letters within the current font).

\pnode (x ,y){name }

This creates a zero dimensional node at (x ,y).

\cnode *[par](x ,y){radius }{name }

This draws a circle. Here is an example with \pnode and \cnode :

1 \cnode(0,1){.25}{A}
2 \pnode(3,0){B}
3 \ncline{<-}{A}{B}

\Cnode *[par](x ,y){name }

This is like \cnode , but the radius is the value of

radius= dim Default: .25cm

This is convenient when you want many circle nodes of the same

radius.

\circlenode *[par]{name }{stuff }

This is a variant of \pscirclebox that gives the node the shape of the

circle.

\cnodeput *[par]{angle}(x ,y){name }{stuff }

This is a variant of \cput that gives the node the shape of the circle.

That is, it is like

1 \rput{angle}(x ,y){\circlenode{name}{stuff }}

\ovalnode *[par]{name }{stuff }

This is a variant of \psovalbox that gives the node the shape of an

ellipse. Here is an example with \circlenode and \ovalnode :

Circle and Oval
1 \circlenode{A}{Circle} and \ovalnode{B}{Oval}
2 \ncbar[angle=90]{A}{B}

Nodes 59

\dianode *[par]{name }{stuff }

This is like \diabox .

\trinode *[par]{name }{stuff }

This is like \tribox .

Diamond

Triangle

1 \rput[tl](0,3){\dianode{A}{Diamond}}
2 \rput[br](4,0){\trinode[trimode=L]{B}{Triangle}}
3 \nccurve[angleA=-135,angleB=90]{A}{B}

\dotnode *[par](x ,y){name }

This is a variant of \psdot . For example:

u

+

1 \dotnode[dotstyle=triangle*,dotscale=2 1](0,0){A}
2 \dotnode[dotstyle=+](3,2){B}
3 \ncline[nodesep=3pt]{A}{B}

\fnode *[par](x ,y){name }

The f stands for “frame”. This is like, but easier than, putting a \ps-
frame in an \rnode .

1 \fnode{A}
2 \fnode*[framesize=1 5pt](2,2){B}
3 \ncline[nodesep=3pt]{A}{B}

There are two differences between \fnode and \psframe :

• There is a single (optional) coordinate argument, that gives the

center of the frame.

• The width and height of the frame are set by the

framesize= dim1 ‘dim2’ Default: 10pt
parameter. If you omit dim2, you get a square frame.

31 Node connections

All the node connection commands begin with nc, and they all have the

same syntax:14,15

14The node connections can be used with \pscustom . The beginning of the node con-

nection is attached to the current point by a straight line, as with \psarc .
15See page 104 if you want to use the nodes as coordinates in other PSTricks macros.

Node connections 60

1 \nodeconnection[par]{arrows}{nodeA}{nodeB}

A line of some sort is drawn from nodeA to nodeB. Some of the node con-

nection commands are a little confusing, but with a little experimentation

you will figure them out, and you will be amazed at the things you can do.

When we refer to the A and B nodes below, we are referring only to the

order in which the names are given as arguments to the node connection

macros.16

The node connections use many of the usual graphics parameters, plus a

few special ones. Let’s start with one that applies to all the node connec-

tions:

nodesep= dim Default: 0pt

nodesep is the border around the nodes that is added for the purpose of

determining where to connect the lines.

For this and other node connection parameters, you can set different values

for the two ends of the node connection. Set the parameter nodesepA for

the first node, and set nodesepB for the second node.

The first two node connections draw a line or arc directly between the two

nodes:

\ncline *[par]{arrows}{nodeA }{nodeB }

This draws a straight line between the nodes. For example:

Idea 1

Idea 2

1 \rput[bl](0,0){\rnode{A}{Idea 1}}
2 \rput[tr](4,3){\rnode{B}{Idea 2}}
3 \ncline[nodesep=3pt]{<->}{A}{B}

\ncarc *[par]{arrows}{nodeA }{nodeB }

This connects the two nodes with an arc.

X

Y
1 \cnodeput(0,0){A}{X}
2 \cnodeput(3,2){B}{Y}
3 \psset{nodesep=3pt}
4 \ncarc{->}{A}{B}
5 \ncarc{->}{B}{A}

16When a node name cannot be found on the same page as the node connection command,

you get either no node connection or a nonsense node connection. However, TEX will not

report any errors.

Node connections 61

The angle between the arc and the line between the two nodes is17

arcangle= angle Default: 8

\ncline and \ncarc both determine the angle at which the node connections

join by the relative position of the two nodes. With the next group of node

connections, you specify one or both of the angles in absolute terms, by

setting the

angle= angle Default: 0

(and angleA and angleB) parameter.

You also specify the length of the line segment where the node connection

joins at one or both of the ends (the “arms”) by setting the

arm=dim Default: 10pt

(and armA and armB) parameter.

These node connections all consist of several line segments, including the

arms. The value of linearc is used for rounding the corners.

Here they are, starting with the simplest one:

\ncdiag *[par]{arrows}{nodeA }{nodeB }

An arm is drawn at each node, joining at angle angleA or angleB ,

and with a length of armA or armB . Then the two arms are con-

nected by a straight line, so that the whole line has three line seg-

ments. For example:

Node A

Node B

1 \rput[tl](0,3){\rnode{A}{\psframebox{Node A}}}
2 \rput[br](4,0){\ovalnode{B}{Node B}}
3 \ncdiag[angleA=-90, angleB=90, arm=.5, linearc=.2]{A}{B}

You can also set one or both of the arms to zero length. For example,

if you set arm=0 , the nodes are connected by a straight line, but you

get to determine where the line connects (whereas the connection

point is determined automatically by \ncline). Compare this use of

\ncdiag with \ncline in the following example:

17Rather than using a true arc, \ncarc actually draws a bezier curve. When connecting

two circular nodes using the default parameter values, the curve will be indistinguishable

from a true arc. However, \ncarc is more flexible than an arc, and works right connecting

nodes of different shapes and sizes. You can set arcangleA and arcangleB separately, and

you can control the curvature with the ncurv parameter, which is described on page ??.

Node connections 62

Root

XX

YY

1 \rput[r](4,1){\ovalnode{R}{Root}}
2 \cnodeput(1,2){A}{XX}
3 \cnodeput(1,0){B}{YY}
4 \ncdiag[angleB=180, arm=0]{<-}{A}{R}
5 \ncline{<-}{B}{R}

(Note that in this example, the default value angleA=0 is used.)

\ncdiagg *[par]{arrows}{nodeA }{nodeB }

\ncdiagg is similar to \ncdiag , but only the arm for node A is drawn.

The end of this arm is then connected directly to node B. Compare

\ncdiagg with \ncdiag when armB=0 :

H

T

\ncdiagg

\ncdiag

1 \cnode(0,0){12pt}{a}
2 \rput[l](3,1){\rnode{b}{H}}
3 \rput[l](3,-1){\rnode{c}{T}}
4 \ncdiagg[angleA=180, armA=1.5, nodesepA=3pt]{b}{a}
5 \ncdiag[angleA=180, armA=1.5, armB=0, nodesepA=3pt]{c}{a}

You can use \ncdiagg with armA=0 if you want a straight line that

joins to node A at the angle you specify, and to node B at an angle

that is determined automatically.

\ncbar *[par]{arrows}{nodeA }{nodeB }

This node connection consists of a line with arms dropping “down”,

at right angles, to meet two nodes at an angle angleA . Each arm is at

least of length armA or armB , but one may be need to be longer.

Connect some words!

1 \rnode{A}{Connect} some \rnode{B}{words}!
2 \ncbar[nodesep=3pt,angle=-90]{<-**}{A}{B}
3 \ncbar[nodesep=3pt,angle=70]{A}{B}

Generally, the whole line has three straight segments.

\ncangle *[par]{arrows}{nodeA }{nodeB }

Now we get to a more complicated node connection. \ncangle typ-

ically draws three line segments, like \ncdiag . However, rather than

fixing the length of arm A, we adjust arm A so that the line joining

the two arms meets arm A at a right angle. For example:

Node A

Node B

1 \rput[tl](0,3){\rnode{A}{\psframebox{Node A}}}
2 \rput[br](4,0){\ovalnode{B}{Node B}}
3 \ncangle[angleA=-90,angleB=90,armB=1cm]{A}{B}

Node connections 63

Now watch what happens when we change angleA :

Node A

angleA

Node B

}armB

1 \rput[tl](0,3){\rnode{A}{\psframebox{Node A}}}
2 \rput[br](4,0){\ovalnode{B}{Node B}}
3 \ncangle[angleA=-70,angleB=90,armB=1cm,linewidth=1.2pt]{A}{B}

\ncangle is also a good way to join nodes by a right angle, with just

two line segments, as in this example:

Node A

Node B

1 \rput[tl](0,2){\rnode{A}{\psframebox{Node A}}}
2 \rput[br](4,0){\ovalnode{B}{Node B}}
3 \ncangle[angleB=90, armB=0, linearc=.5]{A}{B}

\ncangles *[par]{arrows}{nodeA }{nodeB }

\ncangles is similar to \ncangle , but the length of arm A is fixed

by he armA parameter. Arm A is connected to arm B by two line

segments that eet arm A and each other at right angles. The angle

at which they join arm B, and the length of the connecting segments,

depends on the positions of the two arms. \ncangles generally draws

a total of four line segments.18 For example:

Node A

Node B

1 \rput[tl](0,4){\rnode{A}{\psframebox{Node A}}}
2 \rput[br](4,0){\ovalnode{B}{Node B}}
3 \ncangles[angleA=-90, armA=1cm, armB=.5cm, linearc=.15]{A}{B}

Let’s see what happens to the previous example when we change

angleB :

18Hence there is one more angle than \ncangle , and hence the s in \ncangles .

Node connections 64

Node A

Node B

angleAarmA{

angleB
armB

1 \rput[tl](0,4){\rnode{A}{\psframebox{Node A}}}
2 \rput[br](4,0){\ovalnode{B}{Node B}}
3 \ncangles[angleA=-90, angleB=135, armA=1cm, armB=.5cm,
4 linearc=.15]{A}{B}

\ncloop *[par]{arrows}{nodeA }{nodeB }

\ncloop is also in the same family as \ncangle and \ncangles , but

now typically 5 line segments are drawn. Hence, \ncloop can reach

around to opposite sides of the nodes. The lengths of the arms are

fixed by armA and armB . Starting at arm A, \ncloop makes a 90

degree turn to the left, drawing a segment of length

loopsize= dim Default: 1cm

This segment connects to arm B the way arm A connects to arm B

with \ncline ; that is, two more segments are drawn, which join the

first segment and each other at right angles, and then join arm B. For

example:

A looplo
op

si
ze

1 \rnode{a}{\psframebox{\Huge A loop}}
2 \ncloop[angleB=180,loopsize=1,arm=.5,linearc=.2]{->}{a}{a}

In this example, node A and node B are the same node! You can do

this with all the node connections (but it doesn’t always make sense).

Here is an example where \ncloop connects two different nodes:

Begin End

lo
op

si
ze

1 \parbox{3cm}{%
2 \rnode{A}{\psframebox{\large\textbf{Begin}}}
3 \vspace{1cm}\hspace*{\fill}
4 \rnode{B}{\psframebox{\large\textbf{End}}}
5 \ncloop[angleA=180,loopsize=.9,arm=.5,linearc=.2]{->}{A}{B}}

The next two node connections are a little different from the rest.

\nccurve *[par]{arrows}{nodeA }{nodeB }

\nccurve draws a bezier curve between the nodes.

Node A

Node B

1 \rput[bl](0,0){\rnode{A}{\psframebox{Node A}}}
2 \rput[tr](4,3){\ovalnode{B}{Node B}}
3 \nccurve[angleB=180]{A}{B}

Node connections 65

You specify the angle at which the curve joins the nodes by setting

the angle (and angleA and angleB) parameter. The distance to the

control points is set with the

ncurv= num Default: .67

(and ncurvA and ncurvB) parameter. A lower number gives a tighter

curve. (The distance between the beginning of the arc and the first

control point is one-half ncurvA times the distance between the two

endpoints.)

\nccircle *[par]{arrows}{node }{ radius }

\nccircle draws a circle, or part of a circle, that, if complete, would

pass through the center of the node counterclockwise, at an angle of

angleA .

back

1 \rnode{A}{\textbf{back}}
2 \nccircle[nodesep=3pt]{->}{A}{.7cm}
3 \kern 5pt

\nccircle can only connect a node to itself; it is the only node con-

nection with this property. \nccircle is also special because it has an

additional argument, for specifying the radius of the circle.

The last two node connections are also special. Rather than connecting the

nodes with an open curve, they enclose the nodes in a box or curved box.

You can think of them as variants of \ncline and \ncarc . In both cases, the

half the width of the box is

boxsize= dim Default: .4cm

You have to set this yourself to the right size, so that the nodes fit inside the

box. The boxsize parameter actually sets the boxheight and boxdepth
parameters. The ends of the boxes extend beyond the nodes by nodesepA
and nodesepB .

\ncbox *[par]{nodeA }{nodeB }

\ncbox encloses the nodes in a box with straight sides. For example:

Idea 1

Idea 2
1 \rput[bl](.5,0){\rnode{A}{Idea 1}}
2 \rput[tr](3.5,2){\rnode{B}{Idea 2}}
3 \ncbox[nodesep=.5cm,boxsize=.6,linearc=.2,
4 linestyle=dashed]{A}{B}

Node connections 66

\ncarcbox *[par]{nodeA }{nodeB }

\ncarcbox encloses the nodes in a curved box that is arcangleA
away from the line connecting the two nodes.

1

2
1 \rput[bl](.5,0){\rnode{A}{1}}
2 \rput[tr](3.5,2){\rnode{B}{2}}
3 \ncarcbox[nodesep=.2cm,boxsize=.4,linearc=.4,
4 arcangle=50]{<->}{A}{B}

The arc is drawn counterclockwise from node A to node B.

There is one other node connection parameter that applies to all the node

connections, except \ncarcbox :

offset= dim Default: 0pt

(You can also set offsetA and offsetB independently.) This shifts the point

where the connection joins up by dim (given the convention that connec-

tions go from left to right).

There are two main uses for this parameter. First, it lets you make two

parallel lines with \ncline , as in the following example:

X

Y
1 \cnodeput(0,0){A}{X}
2 \cnodeput(3,2){B}{Y}
3 \psset{nodesep=3pt,offset=4pt,arrows=->}
4 \ncline{A}{B}
5 \ncline{B}{A}

Second, it lets you join a node connection to a rectangular node at a right

angle, without limiting yourself to positions that lie directly above, below,

or to either side of the center of the node. This is useful, for example, if

you are making several connections to the same node, as in the following

example:

Word1 and Word2 and Word3

1 \rnode{A}{Word1} and \rnode{B}{Word2} and \rnode{C}{Word3}
2 \ncbar[offsetB=4pt,angleA=-90,nodesep=3pt]{->}{A}{B}
3 \ncbar[offsetA=4pt,angleA=-90,nodesep=3pt]{->}{B}{C}

Sometimes you might be aligning several nodes, such as in a tree, and you

want to ends or the arms of the node connections to line up. This won’t

happen naturally if the nodes are of different size, as you can see in this

example:

Node connections 67

H a

1 \Huge
2 \cnode(1,3){4pt}{a}
3 \rput[B](0,0){\Rnode{b}{H}}
4 \rput[B](2,0){\Rnode{c}{a}}
5 \psset{angleA=90,armA=1,nodesepA=3pt}
6 \ncdiagg{b}{a}
7 \ncdiagg{c}{a}

If you set the nodesep or arm parameter to a negative value, PSTricks

will measure the distance to the beginning of the node connection or to the

end of the arm relative to the center of the node, rather than relative to the

boundary of the node or the beginning of the arm. Here is how we fix the

previous example:

H a

1 \Huge
2 \cnode(1,3){4pt}{a}
3 \rput[B](0,0){\Rnode{b}{H}}
4 \rput[B](2,0){\Rnode{c}{a}}
5 \psset{angleA=90,armA=1,YnodesepA=12pt}
6 \ncdiagg{b}{a}
7 \ncdiagg{c}{a}

Note also the use of \Rnode .

One more parameter trick: By using the border parameter, you can create

the impression that one node connection passes over another.

The node connection commands make interesting drawing tools as well, as

an alternative to \psline for connecting two points. There are variants of

the node connection commands for this purpose. Each begins with pc (for

“point connection”) rather than nc. E.g.,

1 \pcarc{<->}(3,4)(6,9)

gives the same result as

1 \pnode(3,4){A}
2 \pnode(6,9){B}
3 \pcarc{<->}{A}{B}

Only \nccircle does not have a pc variant:

Node connections 68

Command Corresponds to:

\pcline {arrows}(x1,y1)(x2 ,y2) \ncline

\pccurve {arrows}(x1,y1)(x2 ,y2) \nccurve

\pcarc {arrows}(x1,y1)(x2 ,y2) \ncarc

\pcbar {arrows}(x1,y1)(x2 ,y2) \ncbar

\pcdiag {arrows}(x1,y1)(x2 ,y2) \ncdiag

\pcdiagg {arrows}(x1,y1)(x2 ,y2) \ncdiagg

\pcangle {arrows}(x1,y1)(x2 ,y2) \ncangle

\pcangles {arrows}(x1,y1)(x2 ,y2) \ncangles

\pcloop {arrows}(x1,y1)(x2 ,y2) \ncloop

\pcbox(x1,y1)(x2 ,y2) \ncbox

\pcarcbox(x1,y1)(x2 ,y2) \ncarcbox

32 Node connections labels: I

Now we come to the commands for attaching labels to the node connec-

tions. The label command must come right after the node connection to

which the label is to be attached. You can attach more than one label to a

node connection, and a label can include more nodes.

The node label commands must end up on the same TEX page as the node

connection to which the label corresponds.

There are two groups of connection labels, which differ in how they select

the point on the node connection. In this section we describe the first group:

\ncput *[par]{stuff }
\naput *[par]{stuff }
\nbput *[par]{stuff }

These three command differ in where the labels end up with respect to the

line:

\ncput on the line

\naput above the line

\nbput below the line

(using the convention that node connections go from left to right).

Here is an example:

Node connections labels: I 69

above

on

below

1 \cnode(0,0){.5cm}{root}
2 \cnode*(3,1.5){4pt}{A}
3 \cnode*(3,0){4pt}{B}
4 \cnode*(3,-1.5){4pt}{C}
5 \psset{nodesep=3pt}
6 \ncline{root}{A}
7 \naput{above}
8 \ncline{root}{B}
9 \ncput*{on}

10 \ncline{root}{C}
11 \nbput{below}

\naput and \nbput use the same algorithm as \uput for displacing the la-

bels, and the distance beteen the line and labels is labelsep (at least if the

lines are straight).

\ncput uses the same system as \rput for setting the reference point. You

change the reference point by setting the

ref= ref Default: c

parameter.

Rotation is also controlled by a graphics parameter:

nrot= rot Default: 0

rot can be in any of the forms suitable for \rput , and you can also use the

form

1 {:angle}

The angle is then measured with respect to the node connection. E.g., if the

angle is {:U}, then the label runs parallel to the node connection. Since the

label can include other put commands, you really have a lot of control over

the label position.

The next example illustrates the use {:<angle>}, the offset parameter, and

\pcline :

Length 1 \pspolygon(0,0)(4,2)(4,0)
2 \pcline[offset=12pt]{|-|}(0,0)(4,2)
3 \ncput*[nrot=:U]{Length}

Here is a repeat of an earlier example, now using {:<angle>}:

Node connections labels: I 70

above

on

below

1 \cnode(0,0){.5cm}{root}
2 \cnode*(3,1.5){4pt}{A}
3 \cnode*(3,0){4pt}{B}
4 \cnode*(3,-1.5){4pt}{C}
5 \psset{nodesep=3pt,nrot=:U}
6 \ncline{root}{A}
7 \naput{above}
8 \ncline{root}{B}
9 \ncput*{on}

10 \ncline{root}{C}
11 \nbput{below}

The position on the node connection is set by the

npos= num Default:

parameter, roughly according to the following scheme: Each node connec-

tion has potentially one or more segments, including the arms and con-

necting lines. A number npos between 0 and 1 picks a point on the first

segment from node A to B (fraction npos from the beginning to the end

of the segment), a number between 1 and 2 picks a number on the second

segment, and so on.

Each node connection has its own default value of npos . If you leave the

npos parameter value empty (e.g., [npos=]), then the default is substituted.

This is the default mode.

Here are the details for each node connection:

Connection Segments Range Default

\ncline 1 0≤ pos≤ 1 0.5

\nccurve 1 0≤ pos≤ 1 0.5

\ncarc 1 0≤ pos≤ 1 0.5

\ncbar 3 0≤ pos≤ 3 1.5

\ncdiag 3 0≤ pos≤ 3 1.5

\ncdiagg 2 0≤ pos≤ 2 0.5

\ncangle 3 0≤ pos≤ 3 1.5

\ncangles 4 0≤ pos≤ 4 1.5

\ncloop 5 0≤ pos≤ 5 2.5

\nccircle 1 0≤ pos≤ 1 0.5

\ncbox 4 0≤ pos≤ 4 0.5

\ncarcbox 4 0≤ pos≤ 4 0.5

Here is an example:

Node connections labels: I 71

Node A

Node B

d

p
ar

1 \rput[tl](0,3){\rnode{A}{\psframebox{Node A}}}
2 \rput[br](3.5,0){\ovalnode{B}{Node B}}
3 \ncangles[angleA=-90,arm=.4cm,linearc=.15]{A}{B}
4 \ncput*{d}
5 \nbput[nrot=:D,npos=2.5]{par}

With \ncbox and \ncarcbox , the segments run counterclockwise, starting

with the lower side of the box. Hence, with \nbput the label ends up outside

the box, and with \naput the label ends up inside the box.

1

2

set

II
1 \rput[bl](.5,0){\rnode{A}{1}}
2 \rput[tr](3.5,2){\rnode{B}{2}}
3 \ncarcbox[nodesep=.2cm,boxsize=.4,linearc=.4,
4 arcangle=50,linestyle=dashed]{<->}{A}{B}
5 \nbput[nrot=:U]{set}
6 \nbput[npos=2]{II}

If you set the parameter

shortput= none/nab/tablr/tab Default: none

to nab, then immediately following a node connection or another node con-

nection label you can use ^ instead of \naput and _ instead of \nbput .

x

y

1 \cnode(0,0){.5cm}{root}
2 \cnode*(3,1.5){4pt}{A}
3 \cnode*(3,-1.5){4pt}{C}
4 \psset{nodesep=3pt,shortput=nab}
5 \ncline{root}{A}^{x}
6 \ncline{root}{C}_{y}

You can still have parameter changes with the short ^ and _ forms. Another

example is given on page 76.

If you have set shortput=nab , and then you want to use a true ^ or _
character right after a node connection, you must precede the ^ or _ by {}
so that PSTricks does not convert it to \naput or \nbput.

You can change the characters that you use for the short form with the

\MakeShortNab{ char1 }{char2 }

command.19

19You can also use \MakeShortNab if you want to use ^ and _ with non-standard cate-

gory codes. Just invoke the command after you have made your \catcode changes.

Node connections labels: I 72

The shortput=tablr and shortput=tab options are described on pages 74

and ??, respectively.

33 Node connection labels: II

Now the second group of node connections:

\tvput *[par]{stuff }
\tlput *[par]{stuff }
\trput *[par]{stuff }
\thput *[par]{stuff }
\taput *[par]{stuff }
\tbput *[par]{stuff }

The difference between these commands and the \n*put commands is that

these find the position as an intermediate point between the centers of the

nodes, either in the horizontal or vertical direction. These are good for

trees and mathematical diagrams, where it can sometimes be nice to have

the labels be horizontally or vertically aligned. The t stands for “tree”.

You specify the position by setting the

tpos= num Default: .5

parameter.

\tvput , \tlput and \trput find the position that lies fraction tpos in the ver-

tical direction from the upper node to the lower node. \thput , \taput and

\tbput find the position that lies fraction tpos in the horizontal direction

from the left node to the right node. Then the commands put the label on

or next to the line, as follows:

Command Direction Placement

\tvput vertical middle

\tlput vertical left

\trput vertical right

\thput horizontal middle

\taput horizontal above

\tbput horizontal below

Here is an example:

1 \[
2 \setlength{\arraycolsep}{1.1cm}
3 \begin{array}{cc}
4 \Rnode{a}{(X-A)} & \Rnode{b}{A} \\[1.5cm]

Node connection labels: II 73

5 \Rnode{c}{x} & \Rnode{d}{\tilde{X}}
6 \end{array}
7 \psset{nodesep=5pt,arrows=->}
8 \everypsbox{\scriptstyle}
9 \ncline{a}{c}\tlput{r}

10 \ncline{a}{b}\taput{u}
11 \ncline[linestyle=dashed]{c}{d}\tbput{b}
12 \ncline{b}{d}\trput{s}
13 \]

(X A) A

x X̃

r

u

b

s

(X A) a

x X̃

r

u

b

s

On the left is the diagram with \tlput , \trput \tbput and \Rnode , as shown

in the code. On the right is the same diagram, but with \naput \nbput and

\rnode .

These do not have a rotation argument or parameter. However, you can

rotate stuff in 90 degree increments using box rotations (e.g., \rotateleft).

If you set shortput=tablr , then you can use the following single-character

abbreviations for the t put commands:

Char. Short for:

^ \taput

_ \tbput

< \tlput

> \trput

You can change the character abbreviations with

\MakeShortTablr{ char1 }{char2 }{char3 }{char4 }

The t put commands, including an example of shortput=tablr , will be

shown further when we get to mathematical diagrams and trees.

Driver notes: The node macros use \pstVerb and \pstverbscale .

34 Attaching labels to nodes

The command

\nput *[par]{refangle }{name }{stuff }

Attaching labels to nodes 74

affixes stuff to node name. It is positioned distance labelsep from the

node, in the direction refangle from the center of the node. The algorithm

is the same as for \uput . If you want to rotate the node, set the

rot= rot Default: 0

parameter, where rot is a rotation that would be valid for \rput .20 The posi-

tion of the label also takes into account the offsetA parameter. If labelsep
is negative, then the distance is from the center of the node rather than from

the boundary, as with nodesep .

Here is how I used \nput to mark an angle in a previous example:

Node B

Node A

angleA

1 \rput[br](4,0){\ovalnode{B}{Node B}}
2 \rput[tl](0,3){\rnode{A}{\psframebox{Node A}}}
3 \nput[labelsep=0]{-70}{A}{%
4 \psarcn(0,0){.4cm}{0}{-70}
5 \uput{.4cm}[-35](0,0){\texttt{angleA}}}
6 \ncangle[angleA=-70,angleB=90,armB=1cm,linewidth=1.2pt]{A}{B}
7 \ncput[nrot=:U,npos=1]{\psframe[dimen=middle](0,0)(.35,.35)}

35 Mathematical diagrams and graphs

For some applications, such as mathematical diagrams and graphs, it is

useful to arrange nodes on a grid. You can do this with alignment environ-

ments, such as TEX’s \halignprimitive, LATEX’s tabular environment, and

AMS-TEX’s \matrix, but PSTricks contains its own alignment environment

that is especially adapted for this purpose:

\psmatrix{} ... \endpsmatrix

Here is an example

A

B E C

D

1 $
2 \psmatrix[colsep=1cm,rowsep=1cm]
3 & A \\
4 B & E & C \\
5 & D &
6 \endpsmatrix
7 $

As an alignment environment, \psmatrix is similar to AMS-TEX’s \matrix.

There is no argument for specifying the columns. Instead, you can just use

as many columns as you need. The entries are horizontally centered. Rows

are ended by \\. \psmatrix can be used in or out of math mode.

20Not to be confused with the nput parameter.

Mathematical diagrams and graphs 75

Our first example wasn’t very interesting, because we didn’t make use of

the nodes. Actually, each entry is a node. The name of the node in row

row and column col is {<row>,<col>}, with no spaces. Let’s see some node

connections:

X

Y Z

f g

h

1 $
2 \psmatrix[colsep=1cm]
3 & X \\
4 Y & Z
5 \endpsmatrix
6 \everypsbox{\scriptstyle}%
7 \psset{nodesep=3pt,arrows=->}
8 \ncline{1,2}{2,1}
9 \tlput{f}

10 \ncline{1,2}{2,2}
11 \trput{g}
12 \ncline[linestyle=dotted]{2,1}{2,2}
13 \tbput{h}
14 $

You can include the node connections inside the \psmatrix , in the last en-

try and right before \endpsmatrix . One advantage to doing this is that

shortput=tab is the default within a \psmatrix .

U

X ×Z Y X

Y Z

y

x

q

p

f

g

1 $
2 \begin{psmatrix}
3 U \\
4 & X\times_Z Y & X \\
5 & Y & Z
6 \psset{arrows=->,nodesep=3pt}
7 \everypsbox{\scriptstyle}
8 \ncline{1,1}{2,2}_{y}
9 \ncline[doubleline=true,linestyle=dashed]{-}{1,1}{2,3}^{x}

10 \ncline{2,2}{3,2}<{q}
11 \ncline{2,2}{2,3}_{p}
12 \ncline{2,3}{3,3}>{f}
13 \ncline{3,2}{3,3}_{g}
14 \end{psmatrix}
15 $

You can change the kind of nodes that are made by setting the

mnode= type Default: R

parameter. Valid types are R, r, C, f, p, circle, oval, dia, tri, dot and

none, standing for \Rnode , \rnode , \Cnode , \fnode , \pnode , \circlen-
ode , \ovalnode , \dotnode and no node, respectively. Note that for circles,

you use mnode=C and set the radius with the radius parameter.

For example:

Mathematical diagrams and graphs 76

A

B E C

D

a

b

c
d

ef

g

1 \psmatrix[mnode=circle,colsep=1]
2 & A \\
3 B & E & C \\
4 & D &
5 \endpsmatrix
6 \psset{shortput=nab,arrows=->,labelsep=3pt}
7 \small
8 \ncline{2,2}{2,3}^[npos=.75]{a}
9 \ncline{2,2}{2,1}^{b}

10 \ncline{3,2}{2,1}^{c}
11 \ncarc[arcangle=-40,border=3pt]{3,2}{1,2}
12 _[npos=.3]{d}^[npos=.7]{e}
13 \ncarc[arcangle=12]{1,2}{2,1}^{f}
14 \ncarc[arcangle=12]{2,1}{1,2}^{g}

Note that a node is made only for the non-empty entries. You can also

specify a node for the empty entries by setting the

emnode= type Default: none

parameter.

You can change parameters for a single entry by starting this entry with

the parameter changes, enclosed in square brackets. Note that the changes

affect the way the node is made, but not contents of the entry (use \psset
for this purpose). For example:

X

Y Z

1 $
2 \psmatrix[colsep=1cm]
3 & [mnode=circle] X \\
4 Y & Z
5 \endpsmatrix
6 \psset{nodesep=3pt,arrows=->}
7 \ncline{1,2}{2,1}
8 \ncline{1,2}{2,2}
9 \ncline[linestyle=dotted]{2,1}{2,2}

10 $

If you want your entry to begin with a [that is not meant to indicate param-

eter changes, the precede it by {}.

You can assign your own name to a node by setting the

name=name Default:

parameter at the beginning of the entry, as described above. You can still

refer to the node by {<row>,<col>}, but here are a few reasons for giving

your own name to a node:

• The name may be easier to keep track of;

Mathematical diagrams and graphs 77

• Unlike the {<row>,<col>} names, the names you give remain valid

even when you add extra rows or columns to your matrix.

• The names remain valid even when you start a new \psmatrix that

reuses the {<row>,<col>} names.

Here a few more things you should know:

• The baselines of the nodes pass through the centers of the nodes.

\psmatrix achieves this by setting the

nodealign= true/false Default: false

parameter to true. You can also set this parameter outside of \psma-
trix when you want this kind of alignment.

• You can left or right-justify the nodes by setting the

mcol= l/r/c Default: c

parameter. l, r and c stand for left, right and center, respectively.

• The space between rows and columns is set by the

rowsep= dim Default: 1.5cm
colsep= dim Default: 1.5cm

parameters.

• If you want all the nodes to have a fixed width, set

mnodesize= dim Default: -1pt

to a positive value.

• If \psmatrix is used in math mode, all the entries are set in math

mode, but you can switch a single entry out of math mode by starting

and ending the entry with $.

• The radius of the c mnode (corresponding to \cnode) is set by the

radius parameter.

• Like in LATEX, you can end a row with \\[<dim>] to insert an extra

space dim between rows.

• The command \psrowhookii is executed, if defined, at the beginning

of every entry in row ii (row 2), and the command \pscolhookv is

executed at athe beginning of every entry in column v (etc.). You

can use these hooks, for example, to change the spacing between two

columns, or to use a special mnode for all the entries in a particular

row.

• An entry can itself be a node. You might do this if you want an entry

to have two shapes.

Mathematical diagrams and graphs 78

• If you want an entry to stretch across several (int) columns, use the

\psspan{ int }

at the end of the entry. This is like Plain TEX’s \multispan , or

LATEX’s \multicolumn , but the template for the current column (the

first column that is spanned) is still used. If you want wipe out the

template as well, use \multispan{<int>} at the beginning of the entry

instead. If you just want to wipe out the template, use \omit before

the entry.

• \psmatrix can be nested, but then all node connections and other ref-

erences to the nodes in the {<row>,<col>} form for the nested matrix

must go inside the \psmatrix . This is how PSTricks decides which

matrix you are referring to. It is still neatest to put all the node con-

nections towards the end; just be sure to put them before \endpsma-
trix . Be careful also not to refer to a node until it actually appears.

The whole matrix can itself go inside a node, and node connections

can be made as usual. This is not the same as connecting nodes from

two different \psmatrix ’s. To do this, you must give the nodes names

and refer to them by these names.

36 Obsolete put commands

This is old documentation, but these commands will continue to be sup-

ported.

There is also an obsolete command \Lput for putting labels next to node

connections. The syntax is

1 \Lput{labelsep}[refpoint]{rotation}(pos){stuff }

It is a combination of \Rput and \lput , equivalent to

1 \lput(pos){\Rput{labelsep}[refpoint]{rotation}(0,0){stuff }}

\Mput is a short version of \Lput with no {<rotation>} or (<pos>) argument.

\Lput and \Mput remain part of PSTricks only for backwards compatibility.

Here are the node label commands:

\lput *[refpoint]{rotation}(pos){stuff }

The l stands for “label”. Here is an example illustrating the use of the

optional star and :<angle> with \lput , as well as the use of the offset
parameter with \pcline :

Obsolete put commands 79

Length 1 \pspolygon(0,0)(4,2)(4,0)
2 \pcline[offset=12pt]{|-|}(0,0)(4,2)
3 \lput*{:U}{Length}

(Remember that with the put commands, you can omit the coordinate

if you include the angle of rotation. You are likely to use this feature

with the node label commands.)

With \lput and \rput , you have a lot of control over the position of

the label. E.g.,

label
1 \pcline(0,0)(4,2)
2 \lput{:U}{\rput[r]{N}(0,.4){label}}

puts the label upright on the page, with right side located .4 cen-

timeters “above” the position .5 of the node connection (above if the

node connection points to the right). However, the \aput and \bput
commands described below handle the most common cases without

\rput .21

\aput *[labelsep]{angle}(pos){stuff }

stuff is positioned distance \pslabelsep above the node connection,

given the convention that node connections point to the right. \aput
is a node-connection variant of \uput . For example:

Hypotenuse
1 \pspolygon(0,0)(4,2)(4,0)
2 \pcline[linestyle=none](0,0)(4,2)
3 \aput{:U}{Hypotenuse}

\bput *[labelsep]{angle}(pos){stuff }

This is like \aput , but stuff is positioned below the node connection.

21There is also an obsolete command \Lput for putting labels next to node connections.

The syntax is

1 \Lput{labelsep}[refpoint]{rotation}(pos){stuff }

It is a combination of \Rput and \lput , equivalent to

1 \lput(pos){\Rput{labelsep}[refpoint]{rotation}(0,0){stuff }}

\Mput is a short version of \Lput with no {<rotation>} or (<pos>) argument. \Lput and

\Mput remain part of PSTricks only for backwards compatibility.

Obsolete put commands 80

It is fairly common to want to use the default position and rotation with

these node connections, but you have to include at least one of these argu-

ments. Therefore, PSTricks contains some variants:

\mput *[refpoint]{stuff }
\Aput *[labelsep]{stuff }
\Bput *[labelsep]{stuff }

of \lput , \aput and \bput , respectively, that have no angle or positioning

argument. For example:

1

1 \cnode*(0,0){3pt}{A}
2 \cnode*(4,2){3pt}{B}
3 \ncline[nodesep=3pt]{A}{B}
4 \mput*{1}

Here is another:

Label
1 \pcline{<->}(0,0)(4,2)
2 \Aput{Label}

Obsolete put commands 81

VIII Trees

37 Overview

The node and node connections are perfect tools for making trees, but posi-
pst-tree tioning the nodes using \rput would be rather tedious.22 The file pstree.tex

/ pstree.sty contains a high-level interface for making trees.

The tree commands are

\pstree{ root }{successors }
\psTree{ root } successors \endpsTree

These do the same thing, but just have different syntax. \psTree is the

“long” version.23 These macros make a box that encloses all the nodes, and

whose baseline passes through the center of the root.

Most of the nodes described in Section 30 has a variant for use within a

tree. These variants are called tree nodes, and are described in Section ??.

Trees and tree nodes are called tree objects. The root of a tree should be a

single tree object, and the successors should be one or more tree objects.

Here is an example with only nodes:

root

1 \pstree[radius=3pt]{\Toval{root}}{\TC* \TC* \TC* \TC*}

There is no difference between a terminal node and a root node, other than

their position in the \pstree command.

Here is an example where a tree is included in the list of successors, and

hence becomes subtree:

22Unless you have a computer program that generates the coordinates.
23LATEX purists can write \begin{psTree} and \end{psTree} instead.

Trees 82

1 \pstree[radius=3pt]{\Tp}{%
2 \TC*
3 \pstree{\TC}{\TC* \TC*}
4 \TC*}

38 Tree Nodes

For most nodes described in Section 30, there is a variant for use in trees,

called a tree node. In each case, the name of the tree node is formed by

omitting node from the end of the name and adding T at the beginning. For

example, \ovalnode becomes \Toval. Here is the list of such tree nodes:

\Tp*[par]
\Tc*[par]{dim }
\TC*[par]
\Tf*[par]
\Tdot *[par]
\Tr*[par]{stuff }
\TR*[par]{stuff }
\Tcircle *[par]{stuff }
\TCircle *[par]{stuff }
\Toval *[par]{stuff }
\Tdia*[par]{stuff }
\Ttri *[par]{stuff }

The syntax of a tree node is the same as of its corresponding “normal” node,

except that:

• There is always an optional argument for setting graphics parameters,

even if the original node did not have one;

• There is no argument for specifying the name of the node;

• There is never a coordinate argument for positioning the node; and

• To set the reference point with \Tr, set the ref parameter.

Figure 1 gives a reminder of what the nodes look like.

The difference between \Tr and \TR (variants of \rnode and \Rnode, respec-

tively) is important with trees. Usually, you want to use \TR with vertical

trees because the baselines of the text in the nodes line up horizontally. For

example:

Tree Nodes 83

1 \small
2 \psset{armB=1cm, levelsep=3cm, treesep=-3mm,
3 angleB=-90, angleA=90, nodesepA=3pt}
4 \def\s#1{#1~{\tt\string#1}}
5 \def\b#1{#1{\tt\string#1}}
6 \def\psedge#1#2{\ncangle{#2}{#1}}
7 \psTree[treenodesize=1cm]{\Toval{Tree nodes}}
8 \s\Tp
9 \Tc{.5}~{\tt\string\Tc}

10 \s\TC
11 \psTree[levelsep=4cm,armB=2cm]{\Tp[edge=\ncline]}
12 \b\Tcircle
13 \s\Tdot
14 \TCircle[radius=1.2]{\tt\string\TCircle}
15 \Tn
16 \b\Toval
17 \b\Ttri
18 \b\Tdia
19 \endpsTree
20 \s\Tf
21 \b\Tr
22 \b\TR
23 \endpsTree

Tree nodes

\Tp

\Tc
\TC

\Tcircle b

\Tdot
\TCircle \Toval \Ttri \Tdia

\Tf

\Tr \TR

Figure 1: The tree nodes.

Tree Nodes 84

X

˜̃X x y

1 $
2 \pstree[nodesepB=3pt]{\Tcircle{X}}{%
3 \TR{\tilde{\tilde{X}}}
4 \TR{x}
5 \TR{y}}
6 $

Compare with this example, which uses \Tr:

X

˜̃X x y

1 $
2 \pstree[nodesepB=3pt]{\Tcircle{X}}{%
3 \Tr{\tilde{\tilde{X}}}
4 \Tr{x}
5 \Tr{y}}
6 $

There is also a null tree node:

\Tn

It is meant to be just a place holder. Look at the tree in Figure page 84. The

bottom row has a node missing in the middle. \Tn was used for this missing

node.

There is also a special tree node that doesn’t have a “normal” version and

that can’t be used as the root node of a whole tree:

\Tfan*[par]

This draws a triangle whose base is

fansize= dim Default: 1cm

and whose opposite corner is the predecessor node, adjusted by the value

of nodesepA and offsetA . For example:

11

Å

Å

Å

1 \pstree[dotstyle=oplus,dotsize=8pt,nodesep=2pt]{\Tcircle{11}}{%
2 \Tdot
3 \pstree{\Tfan}{\Tdot}
4 \pstree{\Tdot}{\Tfan[linestyle=dashed]}}

Tree Nodes 85

39 Tree orientation

Trees can grow down, up, right or left, depending on the

treemode= D/U/R/L Default: D

parameter.

Here is what the previous example looks like when it grows to the right:

11

Å

Å

Å

1 \pstree[dotstyle=oplus,dotsize=8pt,nodesep=2pt,treemode=R]
2 {\Tcircle{11}}{%
3 \Tdot
4 \pstree{\Tfan}{\Tdot}
5 \pstree{\Tdot}{\Tfan[linestyle=dashed]}}

You can change the treemode in the middle of the tree. For example, here

is a tree that grows up, and that has a subtree which grows to the left:

b

Ä

1

2

Ä

3 4

1 \footnotesize
2 \pstree[treemode=U,dotstyle=otimes,dotsize=8pt,nodesep=2pt]
3 {\Tdot}{%
4 \pstree[treemode=L]{\Tdot}{\Tcircle{1} \Tcircle{2}}
5 \pstree{\Tdot}{\Tcircle{3} \Tcircle{4}}}

Since you can change a tree’s orientation, it can make sense to include

a tree (treeB) as a root node (of treeA). This makes a single logical tree,

whose root is the root of treeB, and that has successors going off in different

directions, depending on whether they appear as a successor to treeA or to

treeB.

rootB

A1 A2

1 \pstree{\pstree[treemode=L]{\Tcircle{root}}{\Tr{B}}}{%
2 \Tr{A1}
3 \Tr{A2}}

On a semi-related theme, note that any node that creates an LR-box can

contain a tree. However, nested trees of this kind are not related in any way

to the rest of the tree. Here is an example:

Tree orientation 86

b

a b

1 \psTree{\Tcircle{%
2 \pstree[treesep=0.4,levelsep=0.6,
3 nodesepB=-6pt]{\Tdot}{%
4 \TR{a} \TR{b}}}}
5 \TC
6 \TC
7 \endpsTree

When the tree grows up or down, the successors are lined up from left to

right in the order they appear in \pstree . When the tree grows to the left or

right, the successors are lined up from top to bottom. As an afterthought,

you might want to flip the order of the nodes. The

treeflip= true/false Default: false

let’s you do this. For example:

b

Ä
1

2

Ä

34

1 \footnotesize
2 \pstree[treemode=U,dotstyle=otimes,dotsize=8pt,
3 nodesep=2pt,treeflip=true]{\Tdot}{%
4 \pstree[treemode=R]{\Tdot}{\Tcircle{1} \Tcircle{2}}
5 \pstree{\Tdot}{\Tcircle{3} \Tcircle{4}}}

Note that I still have to go back and change the treemode of the subtree

that used to grow to the left.

40 The distance between successors

The distance between successors is

treesep= dim Default: .75cm

The rest of this section describes ways to fine-tune the spacing between

successors.

You can change the method for calculating the distance between subtrees

by setting the

treefit= tight/loose Default: tight

parameter. Here are the two methods:

tight When treefit=tight , which is the default, treesep is the minimum

distance between each of the levels of the subtrees.

The distance between successors 87

loose When treefit=loose , treesep is the distance between the subtrees’

bounding boxes. Except when you have large intermediate nodes,

the effect is that the horizontal distance (or vertical distance, for hor-

izontal trees) between all the terminal nodes is the same (even when

they are on different levels).24

Compare:

With treefit=loose , trees take up more space, but sometimes the structure

of the tree is emphasized.

Sometimes you want the spacing between the centers of the nodes to be

regular even though the nodes have different sizes. If you set

treenodesize= dim Default: -1pt

to a non-negative value, then PSTricks sets the width (or height+depth for

vertical trees) to treenodesize , for the purpose of calculating the distance

between successors.

For example, ternary trees look nice when they are symmetric, as in the

following example:

x = y x1 = y1 x11 = y11

1 \pstree[nodesepB=-8pt,treenodesize=.85]{\Tc{3pt}}{%
2 \TR{$x=y$}
3 \TR{$x_1=y_1$}
4 \TR{$x_{11}=y_{11}$}}%$

Compare with this example, where the spacing varies with the size of the

nodes:

24When all the terminal nodes are on the same level, and the intermediate nodes are not

wider than the base of their corresponding subtrees, then there is no difference between the

two methods.

The distance between successors 88

x = y x1 = y1 x11 = y11

1 \pstree[nodesepB=-8pt]{\Tc{3pt}}{%
2 \TR{$x=y$}
3 \TR{$x_1=y_1$}
4 \TR{$x_{11}=y_{11}$}}%$

Finally, if all else fails, you can adjust the distance between two successors

by inserting

\tspace{ dim }

between them:

foo and bar

1 \pstree{\Tc{3pt}}{%
2 \Tdia{foo}
3 \tspace{-0.5}
4 \Toval{and}
5 \Ttri{bar}}

41 Spacing between the root and successors

The distance between the center lines of the tree levels is:

levelsep= *dim Default: 2cm

If you want the spacing between levels to vary with the size of the levels,

use the * convention. Then levelsep is the distance between the bottom

of one level and the top of the next level (or between the sides of the two

levels, for horizontal trees).

Note: PSTricks has to write some information to your .aux file if using

LATEX, or to \jobname.pst otherwise, in order to calculate the spacing. You

have to run your input file a few times before PSTricks gets the spacing

right.

trees. Compare the following example:

1 \def\psedge#1#2{\ncdiagg[nodesep=3pt,angleA=180,armA=0]{#2}{#1}}
2 \pstree[treemode=R,levelsep=*1cm]
3 {\Tr{George Alexander Kopf VII}}{%
4 \pstree{\Tr{Barry Santos}}{\Tr{James Kyle} \Tr{Ann Ada}}
5 \pstree{\Tr{Terri Maloney}}{\Tr{Uwe Kopf} \Tr{Vera Kan}}}

Spacing between the root and successors 89

George Alexander Kopf VII

Barry Santos

James Kyle

Ann Ada

Terri Maloney

Uwe Kopf

Vera Kan

with this one, were the spacing between levels is fixed:

1 \def\psedge#1#2{\ncdiagg[nodesep=3pt,angleA=180,armA=0]{#2}{#1}}
2 \pstree[treemode=R,levelsep=3cm]
3 {\Tr{George Alexander Kopf VII}}{%
4 \pstree{\Tr{Barry Santos}}{\Tr{James Kyle} \Tr{Ann Ada}}
5 \pstree{\Tr{Terri Maloney}}{\Tr{Uwe Kopf} \Tr{Vera Kan}}}

George Alexander Kopf VII

Barry Santos

James Kyle

Ann Ada

Terri Maloney

Uwe Kopf

Vera Kan

42 Edges

Right after you use a tree node command, \pssucc is equal to the name

of the node, and \pspred is equal to the name of the node’s predecessor.

Therefore, you can draw a line between the node and its predecessor by

inserting, for example,

1 \ncline{\pspred}{\pssucc}

To save you the trouble of doing this for every node, each tree node executes

1 \psedge{\pspred}{\pssucc}

The default definition of \psedge is \ncline, but you can redefine it as you

please with \def or LATEX’s \renewcommand.

For example, here I use \ncdiag , with armA=0 , to get all the node connec-

tions to emanate from the same point in the predecessor:25

25LATEX users can instead type:

1 \renewcommand{\psedge}{\ncdiag[armA=0,angleB=180,armB=1cm]}

Edges 90

1 \def\psedge{\ncdiag[armA=0,angleB=180,armB=1cm]}
2 \pstree[treemode=R,levelsep=3.5cm,framesep=2pt]
3 {\Tc{6pt}}{%
4 \small \Tcircle{K} \Tcircle{L} \Tcircle{M} \Tcircle{N}}

K

L

M

N

Here is an example with \ncdiagg . Note the use of a negative armA value

so that the corners of the edges are vertically aligned, even though the nodes

have different sizes:

1 $
2 \def\psedge#1#2{%
3 \ncdiagg[angleA=180, armA=-3cm,nodesep=4pt]{#2}{#1}}
4 % Or: \renewcommand{\psedge}[2]{ ... }
5 \pstree[treemode=R, levelsep=5cm]{\Tc{3pt}}{%
6 \Tr{z_1\leq y}
7 \Tr{z_1<y\leq z_2}
8 \Tr{z_2<y\leq x}
9 \Tr{x<y}}

10 $

z1≤ y

z1 < y≤ z2

z2 < y≤ x

x < y

Another way to define \psedge is with the

edge=command Default: \ncline

parameter. Be sure to enclose the value in braces {} if it contains commas

or other parameter delimiters. This gets messy if your command is long,

and you can’t use arguments like in the preceding example, but for simple

changes it is useful. For example, if I want to switch between a few node

Edges 91

connections frequently, I might define a command for each node connec-

tion, and then use the edge parameter.

1 \def\dedge{\ncline[linestyle=dashed]}
2 \pstree[treemode=U,radius=2pt]{\Tc{3pt}}{%
3 \TC*[edge=\dedge]
4 \pstree{\Tc{3pt}}{\TC*[edge=\dedge] \TC*}
5 \TC*}

You can also set edge=none to suppress the node connection.

If you want to draw a node connection between two nodes that are not direct

predecessor and successor, you have to give the nodes a name that you can

refer to, using the name parameter. For example, here I connect two nodes

on the same level:

nature

1 \pstree[nodesep=3pt,radius=2pt]{\Toval{nature}}{%
2 \pstree{\Tc[name=top]{3pt}}{\TC* \TC*}
3 \pstree{\Tc[name=bot]{3pt}}{\TC* \TC*}}
4 \ncline[linestyle=dashed]{top}{bot}

We conclude with the more examples.

root

X

Y

Z

1 \def\psedge{\nccurve[angleB=180, nodesepB=3pt]}
2 \pstree[treemode=R, treesep=1.5, levelsep=3.5]%
3 {\Toval{root}}{\Tr{X} \Tr{Y} \Tr{Z}}

root

x y z

1 \pstree[nodesepB=3pt, arrows=->, xbbl=15pt,
2 xbbr=15pt, levelsep=2.5cm]{\Tdia{root}}{%
3 $
4 \TR[edge={\ncbar[angle=180]}]{x}
5 \TR{y}
6 \TR[edge=\ncbar]{z}
7 $}

Edges 92

root

1 \psset{armB=1cm, levelsep=3cm, treesep=1cm,
2 angleB=-90, angleA=90, arrows=<-, nodesepA=3pt}
3 \def\psedge#1#2{\ncangle{#2}{#1}}
4 \pstree[radius=2pt]{\Ttri{root}}{\TC* \TC* \TC* \TC*}

43 Edge and node labels

Right after a node, an edge has typically been drawn, and you can attach

labels using \ncput \tlput , etc.

With \tlput , \trput , \taput and \tbput , you can align the labels vertically or

horizontally, just like the nodes. This can look nice, at least if the slopes of

the node connections are not too different.

k r

j i

m

1 \pstree[radius=2pt]{\Tp}{%
2 \psset{tpos=.6}
3 \TC* \tlput{k}
4 \pstree{\Tc{3pt} \tlput[labelsep=3pt]{r}}{%
5 \TC* \tlput{j}
6 \TC* \trput{i}}
7 \TC* \trput{m}}

Within trees, the tpos parameter measures this distance from the predeces-

sor to the successor, whatever the orientation of the true. (Outside of trees

it measures the distance from the top to bottom or left to right nodes.)

PSTricks also sets shortput=tab within trees. This is a special shortput
option that should not be used outside of trees. It implements the following

abbreviations, which depend of the orientation of the true:

Short for:

Char. Vert. Horiz.

^ \tlput \taput

_ \trput \tbput

(The scheme is reversed if treeflip=true .)

Edge and node labels 93

above

left right

above

below

1 \psset{tpos=.6}
2 \pstree[treemode=R, thistreesep=1cm,
3 thislevelsep=3cm,radius=2pt]{\Tc{3pt}}{%
4 \pstree[treemode=U, xbbr=20pt]{\Tc{3pt}^{above}}{%
5 \TC*^{left}
6 \TC*_{right}}
7 \TC*^{above}
8 \TC*_{below}}

You can change the character abbreviations with

\MakeShortTab{ char1 }{char2 }

The \n*put commands can also give good results:

above

above

below

1 \psset{npos=.6,nrot=:U}
2 \pstree[treemode=R, thistreesep=1cm,
3 thislevelsep=3cm]{\Tc{3pt}}{%
4 \Tc{3pt}\naput{above}
5 \Tc*{2pt}\naput{above}
6 \Tc*{2pt}\nbput{below}}

You can put labels on the nodes using \nput . However, \pstree won’t take

these labels into account when calculating the bounding boxes.

There is a special node label option for trees that does keep track of the

bounding boxes:

~*[par]{stuff }

Call this a “tree node label”.

Put a tree node label right after the node to which it applies, before any node

connection labels (but node connection labels, including the short forms,

can follow a tree node label). The label is positioned directly below the

node in vertical trees, and similarly in other trees. For example:

root

h i j k

1 \pstree[radius=2pt]{\Tc{3pt}\nput{45}{\pssucc}{root}}{%
2 \TC*~{h} \TC*~{i} \TC*~{j} \TC*~{k}}

Note that there is no “long form” for this tree node label. However, you can

change the single character used to delimit the label with

Edge and node labels 94

\MakeShortTnput{ char1 }

If you find it confusing to use a single character, you can also use a com-

mand sequence. E.g.,

1 \MakeShortTnput{\tnput}

You can have multiple labels, but each successive label is positioned relative

to the bounding box that includes the previous labels. Thus, the order in

which the labels are placed makes a difference, and not all combinations

will produce satisfactory results.

You will probably find that the tree node label works well for terminal

nodes, without your intervention. However, you can control the tree node

labels be setting several parameters.

To position the label on any side of the node (left, right, above or below),

set:

tnpos= l/r/a/b Default:

root

h i

1 \psframebox{%
2 \pstree{\Tc{3pt}~[tnpos=a,tndepth=0pt,radius=4pt]{root}}{%
3 \TC*~[tnpos=l]{h}
4 \TC*~[tnpos=r]{i}}}

When you leave the argument empty, which is the default, PSTricks chooses

the label position is automatically.

To change the distance between the node and the label, set

tnsep= dim Default:

When you leave the argument empty, which is the default, PSTricks uses

the value of labelsep . When the value is negative, the distance is measured

from the center of the node.

When labels are positioned below a node, the label is given a minimum

height of

tnheight= dim Default: \ht\strutbox

Thus, if you add labels to several nodes that are horizontally aligned, and

if either these nodes have the same depth or tnsep is negative, and if the

height of each of the labels is no more than tnheight , then the labels will

also be aligned by their baselines. The default is \ht\strutbox, which in most

Edge and node labels 95

TEX formats is the height of a typical line of text in the current font. Note

that the value of tnheight is not evaluated until it is used.

The positioning is similar for labels that go below a node. The label is given

a minimum depth of

tndepth= dim Default: \dp\strutbox

For labels positioned above or below, the horizontal reference point of the

label, i.e., the point in the label directly above or below the center of the

node, is set by the href parameter.

When labels are positioned on the left or right, the right or left edge of the

label is positioned distance tnsep from the node. The vertical point that is

aligned with the center of the node is set by

tnyref= num Default:

When you leave this empty, vref is used instead. Recall that vref gives the

vertical distance from the baseline. Otherwise, the tnyref parameter works

like the yref parameter, giving the fraction of the distance from the bottom

to the top of the label.

44 Details

PSTricks does a pretty good job of positioning the nodes and creating a box

whose size is close to the true bounding box of the tree. However, PSTricks

does not take into account the node connections or labels when calculating

the bounding boxes, except the tree node labels.

If, for this or other reasons, you want to fine tune the bounding box of the

nodes, you can set the following parameters:

bbl= dim Default:

bbr= dim Default:

bbh= dim Default:

bbd= dim Default:

xbbl= dim Default:

xbbr= dim Default:

xbbh= dim Default:

xbbd= dim Default:

The x versions increase the bounding box by dim, and the others set the

bounding box to dim. There is one parameter for each direction from the

center of the node, left, right, height, and depth.

These parameters affect trees and nodes, and subtrees that switch directions,

but not subtrees that go in the same direction as their parent tree (such

Details 96

subtrees have a profile rather than a bounding box, and should be adjusted

by changing the bounding boxes of the constituent nodes).

Save any fiddling with the bounding box until you are otherwise finished

with the tree.

You can see the bounding boxes by setting the

showbbox= true/false Default: false

parameter to true. To see the bounding boxes of all the nodes in a tree, you

have to set this parameter before the tree.

In the following example, the labels stick out of the bounding box:

foo

left

bar

right
1 \psset{tpos=.6,showbbox=true}
2 \pstree[treemode=U]{\Tc{5pt}}{%
3 \TR{foo}^{left}
4 \TR{bar}_{right}}

Here is how we fix it:

foo

left

bar

right
1 \psset{tpos=.6,showbbox=true}
2 \pstree[treemode=U,xbbl=8pt,xbbr=14pt]{\Tc{5pt}}{%
3 \TR{foo}^{left}
4 \TR{bar}_{right}}

Now we can frame the tree:

foo

left

bar

right

1 \psframebox[fillstyle=solid,fillcolor=lightgray,framesep=14pt,
2 linearc=14pt,cornersize=absolute,linewidth=1.5pt]{%
3 \psset{tpos=.6,border=1pt,nodesepB=3pt}
4 \pstree[treemode=U,xbbl=8pt,xbbr=14pt]{%
5 \Tc[fillcolor=white,fillstyle=solid]{5pt}}{%
6 \TR*{foo}^{left}
7 \TR*{bar}_{right}}}

We would have gotten the same result by changing the bounding box of the

two terminal nodes.

To skip levels, use

\skiplevel *[par]{nodes or subtrees }
\skiplevels *[par]{int } nodes or subtrees \endskiplevels

These are kind of like subtrees, but with no root node.

Details 97

1 \pstree[treemode=R,levelsep=1.8,radius=2pt]{\Tc{3pt}}{%
2 \skiplevel{\Tfan}
3 \pstree{\Tc{3pt}}{%
4 \TC*
5 \skiplevels{2}
6 \pstree{\Tc{3pt}}{\TC* \TC*}
7 \TC*
8 \endskiplevels
9 \pstree{\Tc{3pt}}{\TC* \TC*}}}

The profile at the missing levels is the same as at the first non-missing level.

You can adjust this with the bounding box parameters. You get greatest

control if you use nested \skiplevel commands instead of \skiplevels .

1 \large
2 \psset{radius=6pt, dotsize=4pt}
3 \pstree[thislevelsep=0,edge=none,levelsep=2.5cm]{\Tn}{%
4 \pstree{\TR{Player 1}}{\pstree{\TR{Player 2}}{\TR{Player 3}}}
5 \psset{edge=\ncline}
6 \pstree
7 {\pstree[treemode=R]{\TC}{\Tdot ~{(0,0,0)} ^{N}}}{%
8 \pstree{\TC[name=A] ^{L}}{%
9 \Tdot ~{(-10,10.-10)} ^{l}

10 \pstree{\TC[name=C] _{r}}{%
11 \Tdot ~{(3,8,-4)} ^{c}
12 \Tdot ~{(-8,3,4)} _{d}}}
13 \pstree{\TC[name=B] _{R}}{%
14 \Tdot ~{(10,-10.0)} ^{l}
15 \pstree{\TC[name=D]_{r}}{%
16 \Tdot ~{(4,8,-3)} ^{c}
17 \Tdot ~{(0,-5,0)} _{d}}}}}
18 \ncbox[linearc=.3,boxsize=.3,linestyle=dashed,nodesep=.4]{A}{B}
19 \ncarcbox[linearc=.3,boxsize=.3,linestyle=dashed,
20 arcangle=25,nodesep=.4]{D}{C}

Details 98

Player 1

Player 2

Player 3

b (0,0,0)
N

L

b

(-10,10.-10)

l r

b

(3,8,-4)

c

b

(-8,3,4)

d

R

b

(10,-10.0)

l r

b

(4,8,-3)

c

b

(0,-5,0)

d

45 The scope of parameter changes

edge is the only parameter which, when set in a tree node’s parameter

argument, affects the drawing of the node connection (e.g., if you want to

change the nodesep , your edge has to include the parameter change, or

you have to set it before the node).

As noted at the beginning of this section, parameter changes made with

\pstree affect all subtrees. However, there are variants of some of these

parameters for making local changes, i.e, changes that affects only the cur-

rent level:

thistreesep= dim Default:

thistreenodesize= dim Default:

thistreefit= tight/loose Default:

thislevelsep= dim Default:

For example:

1 \pstree[thislevelsep=.5cm,thistreesep=2cm,radius=2pt]{\Tc*{3pt}}{%
2 \pstree{\TC*}{\TC* \TC*}
3 \pstree{\TC*}{\TC* \TC*}}

There are some things you may want set uniformly across a level in the tree,

such as the levelsep . At level n, the command \pstreehook<roman(n)>

The scope of parameter changes 99

(e.g., \pstreehookii) is executed, if it is defined (the root node of the whole

tree is level 0, the successor tree objects and the node connections from the

root node to these successors is level 1, etc.). In the following example,

the levelsep is changed for level 2, without having to set the thislevelsep
parameter for each of the three subtrees that make of level 2:

1 \[
2 \def\pstreehookiii{\psset{thislevelsep=3cm}}
3 \pstree[treemode=R,levelsep=1cm,radius=2pt]{\Tc{4pt}}{%
4 \pstree{\TC*}{%
5 \pstree{\TC*}{\Tr{X_1} \Tr{X_2}}
6 \pstree{\TC*}{\Tr{Y_1} \Tr{Y_2}}}
7 \pstree{\TC*}{%
8 \pstree{\TC*}{\Tr{K_1} \Tr{K_2}}
9 \pstree{\TC*}{\Tr{J_1} \Tr{J_2}}}}

10 \]

X1

X2

Y1

Y2

K1

K2

J1

J2

The scope of parameter changes 100

IX Filling and Tiling

46 Overview

The...
pst-fill

Filling and Tiling 101

X Three Dimensional Graphics

47 Overview

The...
pst-3d

Three Dimensional Graphics 102

XI Special Tricks

48 Coils and zigzags

The file pst-coil.tex/pst-coil.sty (and optionally the header file pst-coil.pro)
pst-coil defines the following graphics objects for coils and zigzags:

\pscoil *[par]{arrows}(x0,y0)(x1,y1)
\psCoil *[par]{angle1 }{angle2 }
\pszigzag *[par]{arrows}(x0,y0)(x1,y1)

These graphics objects use the following parameters:

coilwidth= dim Default: 1cm
coilheight= num Default: 1
coilarm= dim Default: .5cm
coilaspect= angle Default: 45
coilinc= angle Default: 10

All coil and zigzag objects draw a coil or zigzag whose width (diameter)

is coilwidth , and with the distance along the axes for each period (360

degrees) equal to

coilheight x coilwidth .

Both \pscoil and \psCoil draw a “3D” coil, projected onto the xz-axes.

The center of the 3D coil lies on the yz-plane at angle pcoilaspect to the

z-axis. The coil is drawn with PostScript’s lineto, joining points that lie at

angle coilinc from each other along the coil. Hence, increasing coilinc
makes the curve smoother but the printing slower. \pszigzag does not use

the coilaspect and coilinc parameters.

\pscoil and \pszigzag connect (x0,y0) and (x1,y1), starting and ending

with straight line segments of length coilarmA and coilarmB , resp. Set-

ting coilarm is the same as setting coilarmA and coilarmB .

Here is an example of \pscoil :

1 \pscoil[coilarm=.5cm,linewidth=1.5pt,coilwidth=.5cm]{<-|}(4,2)

Special Tricks 103

Here is an example of \pszigzag :

1 \pszigzag[coilarm=.5,linearc=.1]{<->}(4,0)

Note that \pszigzag uses the linearc parameters, and that the beginning

and ending segments may be longer than coilarm to take up slack.

\psCoil just draws the coil horizontally from angle1 to angle2. Use \rput
to rotate and translate the coil, if desired. \psCoil does not use the coilarm
parameter. For example, with coilaspect=0 we get a sine curve:

1 \psCoil[coilaspect=0,coilheight=1.33,
2 coilwidth=.75,linewidth=1.5pt]{0}{1440}

pst-coil.tex also contains coil and zigzag node connections. You must also
pst-node load pst-node.tex / pst-node.sty to use these. The node connections are:

\nccoil *[par]{arrows}{nodeA }{nodeB }
\nczigzag *[par]{arrows}{nodeA }{nodeB }
\pccoil *[par]{arrows}(x1,y1)(x2 ,y2)
\pczigzag *[par]{arrows}(x1,y1)(x2 ,y2)

The end points are chosen the same as for \ncline and \pcline , and other-

wise these commands work like \pscoil and \pszigzag . For example:

1 \cnode(.5,.5){.5}{A}
2 \cnode[fillstyle=solid,fillcolor=lightgray](3.5,2.5){.5}{B}
3 \nccoil[coilwidth=.3]{<->}{A}{B}

49 Special coordinates

The command

\SpecialCoor

enables a special feature that lets you specify coordinates in a variety of

ways, in addition to the usual Cartesian coordinates.26 Processing is slightly

26There is an obsolete command \Polar that causes coordinates in the form (<r>,<a>)
to be interpreted as polar coordinates. The use of \Polar is not recommended because it

Special coordinates 104

slower and less robust, which is why this feature is available on demand

rather than by default, but you probably won’t notice the difference.

Here are the coordinates you can use:

(x ,y) The usual Cartesian coordinate. E.g., (3,4).

(r ;a) Polar coordinate, with radius r and angle a. The default unit for r is

unit . E.g., (3;110).

(node) The center of node. E.g., (A).

([par]node) The position relative to node determined using the angle ,

nodesep and offset parameters. E.g., ([angle=45]A).

(!ps) Raw PostScript code. ps should expand to a coordinate pair. The

units xunit and yunit are used. For example, if I want to use a polar

coordinate (3, 110) that is scaled along with xunit and yunit , I can

write

1 (!3 110 cos mul 3 110 sin mul)

(coor1 |coor2) The x coordinate from coor1 and the y coordinate from

coor2. coor1 and coor2 can be any other coordinates for use with

\SpecialCoor . For example, (A|1in;30).

\SpecialCoor also lets you specify angles in several ways:

num A number, as usual, with units given by the \degrees command.

(coor) A coordinate, indicating where the angle points to. Be sure to in-

clude the (), in addition to whatever other delimiters the angle argu-

ment uses. For example, the following are two ways to draw an arc

of .8 inch radius from 0 to 135 degrees:

1 \SpecialCoor
2 \psarc(0,0){.8in}{0}{135}
3 \psarc(0,0){.8in}{0}{(-1,1)}

does not allow one to mix Cartesian and polar coordinates the way \SpecialCoor does, and

because it is not as apparent when examining an input file whether, e.g., (3,2) is a Cartesian

or polar coordinate. The command for undoing \Polar is \Cartesian . It has an optional

argument for setting the default units. I.e.,

1 \Cartesian(x ,y)

has the effect of

1 \psset{xunit=x ,yunit=y }

\Cartesian can be used for this purpose without using \Polar .

Special coordinates 105

!ps Raw PostScript code. ps should expand to a number. The same units

are used as with num.

The command

\NormalCoor

disables the \SpecialCoor features.

50 Overlays

Overlays are mainly of interest for making slides, and the overlay macros

described in this section are mainly of interest to TEX macro writers who

want to implement overlays in a slide macro package. For example, the

seminar.sty package, a LATEX style for notes and slides, uses PSTricks to

implement overlays.

Overlays are made by creating an \hbox and then outputting the box several

times, printing different material in the box each time. The box is created

by the commands

\overlaybox stuff \endoverlaybox

LATEX users can instead write:

1 \begin{overlaybox} stuff \end{overlaybox}

The material for overlay string should go within the scope of the command

\psoverlay{ string }

string can be any string, after expansion. Anything not in the scope of any

\psoverlay command goes on overlay main, and material within the scope

of \psoverlay{all} goes on all the overlays. \psoverlay commands can be

nested and can be used in math mode.

The command

\putoverlaybox{ string }

then prints overlay string.

Here is an example:

1 \overlaybox
2 \psoverlay{all}
3 \psframebox[framearc=.15,linewidth=1.5pt]{%
4 \psoverlay{main}

Overlays 106

5 \parbox{3.5cm}{\raggedright
6 Foam Cups Damage Environment {\psoverlay{one} Less than
7 Paper Cups,} Study Says.}}
8 \endoverlaybox
9

10 \putoverlaybox{main} \hspace{.5in} \putoverlaybox{one}

Foam Cups Damage

Environment

Study Says.

Less

than Paper Cups,

Driver notes: Overlays use \pstVerb and \pstverbscale .

51 The gradient fill style

The file pst-grad.tex/pst-grad.sty, along with the PostScript header file
pst-grad pst-grad.pro, defines the gradient fillstyle , for gradiated shading. This

fillstyle uses the following parameters:

gradbegin= color Default: gradbegin

The starting and ending color.

gradend= color Default: gradend

The color at the midpoint.

gradlines= int Default: 500

The number of lines. More lines means finer gradiation, but slower

printing.

gradmidpoint= num Default: .9

The position of the midpoint, as a fraction of the distance from top to

bottom. num should be between 0 and 1.

gradangle= angle Default: 0

The image is rotated by angle.

gradbegin and gradend should preferably be rgb colors, but grays and

cmyk colors should also work. The definitions of the colors gradbegin and

gradend are:

The gradient fill style 107

1 \newrgbcolor{gradbegin}{0 .1 .95}
2 \newrgbcolor{gradend}{0 1 1}

Here are two ways to change the gradient colors:

1 \newrgbcolor{gradbegin}{1 .4 0}

and

1 \psset{gradbegin=blue}

Try this example:

1 \psframe[fillstyle=gradient,gradangle=45](10,-20)

52 Typesetting text along a path

The file pst-text.tex/pst-text.sty defines the command \pstextpath , for type-
pst-text setting text along a path. It is a remarkable trick, but there are some caveats:

• pst-text.tex only works with certain DVI-to-PS drivers. Here is what

is currently known:

– It works with Rokicki’s dvips.

– “Does not work” means that it has no effect, for better or for

worse.

– This may work with other drivers. The requirement is that the

driver only use PostScript’s show operator, unbound and un-

loaded, to show characters.

• You must also have installed the PostScript header file pst-text.pro,

and \pstheader must be properly defined in pstricks.con for your

driver.

• Like other PSTricks that involve rotating text, this works best with

PostScript (outline) fonts.

• PostScript rendering with pst-text.tex is slow.

Because of all this, no samples are shown here. However, there is a test

file tp-test.tex and PostScript output tp-test.ps that are distributed with

PSTricks.

Here is the command:

Typesetting text along a path 108

\pstextpath [pos](x,y){graphics object }{ text }

text is placed along the path, from beginning to end, defined by the PSTricks

graphics object. (This object otherwise behaves normally. Set linestyle=none
if you don’t want it to appear.)

text can only contain characters. No TeX rules, no PSTricks, and no other

\special’s. (These things don’t cause errors; they just don’t work right.)

Math mode is OK, but math operators that are built from several characters

(e.g., large integral signs) may break. Entire boxes (e.g., \parbox) are OK

too, but this is mainly for amusement.

pos is either

l justify on beginning of path

c center on path

r justify on end of path.

The default is l.

(<x>,<y>) is an offset. Characters are shifted distance x along path, and

are shifted up by y . “Up” means with respect to the path, at whatever

point on the path corresponding to the middle of the character. (<x>,<y>)
must be Cartesian coordinates. Both coordinates use \psunit as the default.

The default coordinate is (0,\TPoffset), where \TPoffset a command whose

default value is -.7ex. This value leads to good spacing of the characters.

Remember that ex units are for the font in effect when \pstextpath occurs,

not inside the text argument.

More things you might want to know:

• Like with \rput and the graphics objects, it is up to you to leave space

for \pstextpath.

• Results are unpredictable if text is wider than length of path.

• \pstextpath leaves the typesetting to TEX. It just intercepts the show
operator to remap the coordinate system.

53 Stroking and filling character paths

The file pst-char.tex/pst-char.sty defines the command:
pst-char

\pscharpath *[par]{text }

It strokes and fills the text character paths using the PSTricks linestyle and

fillstyle .

Stroking and filling character paths 109

The restrictions on DVI-to-PS drivers listed on page 108 for \pstextpath
apply to \pscharpath. Furthermore, only outline (PostScript) fonts are af-

fected.

Sample input and output files chartest.tex and chartest.ps are distributed

with PSTricks.

With the optional *, the character path is not removed from the PostScript

environment at the end. This is mainly for special hacks. For example,

you can use \pscharpath* in the first argument of \pstextpath, and thus

typeset text along the character path of some other text. See the sample file

denis1.tex. (However, you cannot combine \pscharpath and \pstextpath
in any other way. E.g., you cannot typeset character outlines along a path,

and then fill and stroke the outlines with \pscharpath.)

The command

\pscharclip *[par]{text } ... \endpscharclip

works just like \pscharpath , but it also sets the clipping path to the char-

acter path. You may want to position this clipping path using \rput inside

\pscharclip ’s argument. Like \psclip and \endpsclip , \pscharclip and

\endpscharclip should come on the same page and should be properly

nested with respect to TEX groups (unless \AltClipMode is in effect). The

file denis2.tex contains a sample of \pscharclip .

54 Importing EPS files

PSTricks does not come with any facility for including Encapsulated PostScript

files, because there are other very good and well-tested macros for exactly

that, specially the graphicx package for LATEX, usable also with TEX.

What PSTricks is good for is embellishing your EPS picture. You can in-

clude an EPS file in in the argument of \rput , as in

1 \rput(3,3){\epsfbox{myfile.eps}}

and hence you can include an EPS file in the \pspicture environment. Turn

on \psgrid , and you can find the coordinates for whatever graphics or text

you want to add. This works even when the picture has a weird bounding

box, because with the arguments to \pspicture you control the bounding

box from TEX’s point of view.

This isn’t always the best way to work with an EPS file, however. If the

PostScript file’s bounding box is the size you want the resulting picture to

be, after your additions, then try

1 \hbox{picture objects \includegraphics{file.eps}

Importing EPS files 110

This will put all your picture objects at the lower left corner of the EPS file.

If you need to determine the bounding box of an EPS file, then you can

try of the automatic bounding box calculating programs, such as bbfig
(distributed with Rokicki’s dvips). However, all such programs are eas-

ily fooled; the only sure way to determine the bounding box is visually.

\psgrid is a good tool for this.

55 Exporting EPS files

You must load pst-eps.tex or pst-eps.sty to use the PSTricks macros de-
pst-eps scribed in this section.

If you want to export an EPS file that contains both graphics and text, then

you need to be using a DVI-to-PS driver that suports such a feature. If

you just want to export pure graphics, then you can use the \PSTricksEPS
command. Both of these options are described in this section.

Newer versions of Rokicki’s dvips support an -E option for creating EPS

files from TEX .dvi files. E.g.,

dvipsfoo.dvi E ofoo.eps

Your document should be a single page. dvips will find a tight bounding

box that just encloses the printed characters on the page. This works best

with outline (PostScript) fonts, so that the EPS file is scalable and resolution

independent.

There are two inconvenient aspects of this method. You may want a differ-

ent bounding box than the one calculated by dvips (in particular, dvips ig-

nores all the PostScript generated by PSTricks when calculating the bound-

ing box), and you may have to go out of your way to turn off any headers

and footers that would be added by output routines.

PSTricks contains an environment that tries to get around these two prob-

lems:

\TeXtoEPS
stuff

\endTeXtoEPS

This is all that should appear in your document, but headers and whatever

that would normally be added by output routines are ignored. dvips will

again try to find a tight bounding box, but it will treat stuff as if there was

a frame around it. Thus, the bounding box will be sure to include stuff , but

might be larger if there is output outside the boundaries of this box. If the

bounding box still isn’t right, then you will have to edit the

1 %%BoundingBox llx lly urx ury

Exporting EPS files 111

specification in the EPS file by hand.

If your goal is to make an EPS file for inclusion in other documents, then

dvips -E is the way to go. However, it can also be useful to generate an EPS

file from PSTricks graphics objects and include it in the same document,27

rather than just including the PSTricks graphics directly, because TEX gets

involved with processing the PSTricks graphics only when the EPS file is

initially created or updated. Hence, you can edit your file and preview the

graphics, without having to process all the PSTricks graphics each time you

correct a typo. This speed-up can be significant with complex graphics such

as \pslistplot’s with a lot of data.

To create an EPS file from PSTricks graphics objects, use

\PSTtoEPS [par]{file }{graphics objects }

The file is created immediately, and hence you can include it in the same

document (after the \PSTtoEPS command) and as many times as you want.

Unlike with dvips -E, only pure graphics objects are processed (e.g., \rput
commands have no effect).

\PSTtoEPS cannot calculate the bounding box of the EPS file. You have

to specify it yourself, by setting the following parameters:

bbllx= dim Default: 0pt
bblly= dim Default: 0pt
bburx= dim Default: 0pt
bbury= dim Default: 0pt

Note that if the EPS file is only to be included in a PSTricks picture with

\rput you might as well leave the default bounding box.

\PSTricksEPS also uses the following parameters:

makeeps= none/new/all/all* Default: new

This parameter determines which \PSTtoEPS commands just skip

over their arguments, and which create files, as follows:

none No files are created.

new Only those files not found anywhere on the system are created.

all All files are created.

all* All files are created, but you are asked for approval before exist-

ing files are deleted.

headerfile= files Default:

This parameter is for specifying PostScript header files that are to be

included in the EPS file. The argument should contain one or more

27See the preceding section on importing EPS files.

Exporting EPS files 112

file names, separated by commas. If you have more than one file,

however, the entire list must be enclosed in braces {}.

headers= none/all/user Default: none

When none, no header files are included. When all, the header files

used by PSTricks plus the header files specified by the headerfile
parameter are included. When user, only the header files specified

by the headerfile parameter are included. If the EPS file is to be

included in a TEX document that uses the same PSTricks macros and

hence loads the relevant PSTricks header files anyway (in particular,

if the EPS file is to be included in the same document), then headers
should be none or user.

Exporting EPS files 113

Help

A Boxes

Many of the PSTricks macros have an argument for text that is processed

in restricted horizontal mode (in LATEX parlance, LR-mode) and then trans-

formed in some way. This is always the macro’s last argument, and it is

written {<stuff>} in this User’s Guide. Examples are the framing, rotating,

scaling, positioning and node macros. I will call these “LR-box” macros,

and use framing as the leading example in the discussion below.

In restricted horizontal mode, the input, consisting of regular characters and

boxes, is made into one (long or short) line. There is no line-breaking, nor

can there be vertical mode material such as an entire displayed equation.

However, the fact that you can include another box means that this isn’t

really a restriction.

For one thing, alignment environments such as \halign or LATEX’s tabular
are just boxes, and thus present no problem. Picture environments and the

box macros themselves are also just boxes. Actually, there isn’t a single

PSTricks command that cannot be put directly in the argument of an LR-

box macro. However, entire paragraphs or other vertical mode material

such as displayed equations need to be nested in a \vbox or LATEX \parbox
or minipage. LATEX users should see fancybox.sty and its documentation,

fancybox.doc, for extensive tips and trick for using LR-box commands.

The PSTricks LR-box macros have some features that are not found in most

other LR-box macros, such as the standard LATEX LR-box commands.

With LATEX LR-box commands, the contents is always processed in text

mode, even when the box occurs in math mode. PSTricks, on the other

hand, preserves math mode, and attempts to preserve the math style as

well. TEX has four math styles: text, display, script and scriptscript. Gen-

erally, if the box macro occurs in displayed math (but not in sub- or su-

perscript math), the contents are processed in display style, and otherwise

the contents are processed in text style (even here the PSTricks macros

can make mistakes, but through no fault of their own). If you don’t get

the right style, explicitly include a \textstyle, \displaystyle, \scriptstyle or

\scriptscriptstyle command at the beginning of the box macro’s argument.

In case you want your PSTricks LR-box commands to treat math in the

same as your other LR-box commands, you can switch this feature on and

off with the commands

\psmathboxtrue

Help 114

\psmathboxfalse

You can have commands (such as, but not restricted to, the math style com-

mands) automatically inserted at the beginning of each LR-box using the

\everypsbox{ commands }

command.28

If you would like to define an LR-box environment name from an LR-box

command cmd , use

\pslongbox{ name }{cmd }

For example, after

1 \pslongbox{MyFrame}{\psframebox}

you can write

1 \MyFrame <stuff>\endMyFrame

instead of

1 \psframebox{<stuff>}

Also, LATEX users can write

1 \begin{MyFrame} <stuff>\end{MyFrame}

It is up to you to be sure that cmd is a PSTricks LR-box command; if it

isn’t, nasty errors can arise.

Environments like have nice properties:

• The syntax is clearer when stuff is long.

• It is easier to build composite LR-box commands. For example, here

is a framed minipage environment for LATEX:

1 \pslongbox{MyFrame}{\psframebox}
2 \newenvironment{fminipage}%
3 {\MyFrame\begin{minipage}}%
4 {\end{minipage}\endMyFrame}

• You include verbatim text and other \catcode tricks in stuff .

28This is a token register.

Boxes 115

The rest of this section elaborates on the inclusion of verbatim text in LR-

box environments and commands, for those who are interested. fancybox.sty
also contains some nice verbatim macros and tricks, some of which are use-

ful for LR-box commands.

The reason that you cannot normally include verbatim text in an LR-box

commands argument is that TEX reads the whole argument before process-

ing the \catcode changes, at which point it is too late to change the category

codes. If this is all Greek to you,29 then just try this LATEX example to see

the problem:

1 \psframebox{\verb+\foo{bar}+}

The LR-box environments defined with \pslongbox do not have this prob-

lem because stuff is not processed as an argument. Thus, this works:

1 \pslongbox{MyFrame}{\psframebox}
2 \MyFrame \verb+\foo{bar}+\endMyFrame

\foo{bar}

The commands

\psverbboxtrue
\psverbboxfalse

switch into and out of, respectively, a special PSTricks mode that lets you

include verbatim text in any LR-box command. For example:

1 \psverbboxtrue
2 \psframebox{\verb+\foo{bar}+}

\foo{bar}

However, this is not as robust. You must explicitly group color commands

in stuff , and LR-box commands that usually ignore spaces that follow

{<stuff>} might not do so when \psverbboxtrue is in effect.

B Tips and More Tricks

1 How do I rotate/frame this or that with LATEX?

See fancybox.sty and its documentation.

29Incidentally, many foreign language macros, such as greek.tex, use \catcode tricks

which can cause problems in LR-box macros.

Tips and More Tricks 116

2 How can I suppress the PostScript so that I can use my document
with a non-PostScript dvi driver?

Put the command

\PSTricksOff

at the beginning of your document. You should then be able to print or

preview drafts of your document (minus the PostScript, and perhaps pretty

strange looking) with any dvi driver.

3 How can I improve the rendering of halftones?

This can be an important consideration when you have a halftone in the

background and text on top. You can try putting

1 \pstverb{106 45 {dup mul exch dup mul add 1.0 exch sub} setscreen}

before the halftone, or in a header (as in headers and footers, not as in

PostScript header files), if you want it to have an effect on every page.

setscreen is a device-dependent operator.

4 What special characters can be active with PSTricks?

C Including PostScript code

To learn about the PostScript language, consult Adobe’s PostScript Lan-

guage Tutorial and Cookbook (the “Blue Book”), or Henry McGilton and

Mary Campione’s PostScript by Example (1992). Both are published by

Addison-Wesley. You may find that the Appendix of the Blue Book, plus

an understanding of how the stack works, is all you need to write simple

code for computing numbers (e.g., to specify coordinates or plots using

PostScript).

You may want to define TEX macros for including PostScript fragments in

various places. All TEX macros are expanded before being passed on to

PostScript. It is not always clear what this means. For example, suppose

you write

1 \SpecialCoor
2 \def\mydata{23 43}
3 \psline(!47 \mydata add)
4 \psline(!47 \mydata\ add)
5 \psline(!47 \mydata~add)
6 \psline(!47 \mydata{} add)

Including PostScript code 117

You will get a PostScript error in each of the \psline commands. To see

what the argument is expanding to, try use TEX’s \edef and \show. E.g.,

1 \def\mydata{23 43}
2 \edef\temp{47 \mydata add}
3 \show\temp
4 \edef\temp{47 \mydata\ add}
5 \show\temp
6 \edef\temp{47 \mydata~add}
7 \show\temp
8 \edef\temp{47 \mydata{} add}
9 \show\temp

TEX expands the code, assigns its value to \temp, and then displays the

value of \temp on your console. Hit return to procede. You fill find that the

four samples expand, respectively, to:

1 47 23 43add
2 47 23 43\ add
3 47 23 43\penalty \@M \ add
4 47 23 43{} add

All you really wanted was a space between the 43 and add. The command

\space will do the trick:

1 \psline(!47 \mydata\space add)

You can include balance braces { }; these will be passed on verbatim to

PostScript. However, to include an unbalanced left or right brace, you have

to use, respectively,

\pslbrace
\psrbrace

Don’t bother trying \} or \{.

Whenever you insert PostScript code in a PSTricks argument, the dictio-

nary on the top of the dictionary stack is tx@Dict, which is PSTrick’s main

dictionary. If you want to define you own variables, you have two options:

Simplest Always include a @ in the variable names, because PSTricks

never uses @ in its variables names. You are at a risk of overflow-

ing the tx@Dict dictionary, depending on your PostScript interpreter.

You are also more likely to collide with someone else’s definitions,

if there are multiple authors contributing to the document.

Safest Create a dictionary named TDict for your scratch computations. Be

sure to remove it from the dictionary stack at the end of any code you

insert in an argument. E.g.,

Including PostScript code 118

1 TDict 10 dict def TDict begin <your code> end

D Troubleshooting

1 Why does the document bomb in the printer when the first item in a
LATEX file is a float?

When the first item in a LATEX file is a float, \special’s in the preamble are

discarded. In particular, the \special for including PSTricks’s header file is

lost. The workaround is to but something before the float, or to include the

header file by a command-line option with your dvi-to-ps driver.

2 I converted a .dvi file to PostScript, and then mailed it to a colleague.
It prints fine for me but bombs on her printer.

Here is the most likely (but not the only) cause of this problem. The

PostScript files you get when using PSTricks can contain long lines. This

should be acceptable to any proper PostScript interpreter, but the lines can

get chopped when mailing the file. There is no way to fix this in PSTricks,

but you can make a point of wrapping the lines of your PostScript files

when mailing them. E.g., on UNIX you can use uuencode and uudecode,

or you can use the following AWK script to wrap the lines:

1 #! /bin/sh
2 # This script wraps all lines
3 # Usage (if script is named wrap):
4 # wrap < infile > outfile
5 awk ’
6 BEGIN {
7 N = 78 # Max line length
8 }
9 { if (length($0)<=N)

10 print
11 else {
12 currlength = 0
13 for (i = 1; i <=NF; i++) {
14 if ((currlength = currlength + length($i) + 1) > N) {
15 printf printf currlength = length($i)
16 }
17 else
18 printf \ %s }
19 printf }
20 } ’

Troubleshooting 119

3 The color commands cause extraneous vertical space to be inserted.

For example, this can happen if you start a LATEX \parbox or a p{} column

with a color command. The solution usually is to precede the color com-

mand with \leavevmode.

4 The color commands interfere with other color macros I use.

Try putting the command \altcolormode at the beginning of your docu-

ment. This may or may not help. Be extra careful that the scope of color

commands does not extend across pages. This is generally a less robust

color scheme.

5 How do I stop floats from being the same color as surrounding ma-
terial?

That’s easy: Just put an explicit color command at the beginning of the

float, e.g., \black .

6 When I use some color command in box macros or with \setbox, the
colors get all screwed up.

If \mybox is a box register, and you write

1 \green Ho Hum.
2 \setbox\mybox=\hbox{Foo bar \blue fee fum}
3 Hi Ho. \red Diddley-dee
4 \box\mybox hum dee do

then when \mybox is inserted, the current color is red and so Foo bar
comes out red (rather than green, which was the color in effect when the

box was set). The command that returns from \blue to the current color

green, when the box is set, is executed after the \hbox is closed, which

means that Hi Ho is green, but hum dee do is still blue.

This odd behavior is due to the fact that TEX does not support color in-

ternally, the way it supports font commands. The first thing to do is to

explicitly bracket any color commands inside the box. Second, be sure that

the current color is black when setting the box. Third, make other explicit

color changes where necessary if you still have problems. The color scheme

invoked by \altcolormode is slightly better behaved if you follow the first

two rules.

Note that various box macros use \setbox and so these anomalies can arise

unexpectedly.

Troubleshooting 120

Index
\AltClipMode 55, 110

\altcolormode 120, 120

angle (parameter) 62, 66, 105

angleA (parameter) 62–64, 66

angleB (parameter) 62, 64, 66

\Aput .81

\aput 80, 80, 81

arcangle (parameter) 62

arcangleA (parameter) 62, 67

arcangleB (parameter) 62

arcsep (parameter)13, 14

arcsepA (parameter) 13, 13, 14

arcsepB (parameter) 13, 13, 14

arm (parameter) 62, 62, 68

armA (parameter) . . . 62–65, 90, 91

armB (parameter) 62, 63, 65

arrowinset (parameter) 29, 30

arrowlength (parameter) 29, 30

\arrows .39

arrows (parameter) . . 8, 10, 20, 28,

28, 29, 48

arrowscale (parameter)30, 30

arrowsize (parameter) 29

axesstyle (parameter) 50

bbd (parameter) 96

bbh (parameter) 96

bbl (parameter)96

bbllx (parameter) 112

bblly (parameter) 112

bbr (parameter) 96

bburx (parameter) 112

bbury (parameter) 112

\black . 120

\blue . 120

border (parameter) . . 25, 25, 33, 68

bordercolor (parameter) 25, 25

boxdepth (parameter) 66

boxheight (parameter) 66

boxsep (parameter) 51, 52, 53

boxsize (parameter) 66, 66

\Bput .81

\bput 80, 80, 81

bracketlength (parameter)30

\Cartesian 105, 105

\circlenode 59, 59, 76

\clipbox . 54

\closedshadow 38

\closepath 34, 36, 36

\Cnode 59, 76

\cnode 59, 59, 78

\cnodeput . 59

\code . 39, 39

coilarm (parameter) . 103, 103, 104

coilarmA (parameter) 103

coilarmB (parameter) 103

coilaspect (parameter) . . .103, 103,

104

coilheight (parameter)103, 103

coilinc (parameter) 103, 103

coilwidth (parameter) 103, 103

colsep (parameter) 78

\coor . 39, 39

cornersize (parameter) . .10, 10, 53

\cput . 52, 59

curvature (parameter) 15

\curveto 38, 39

dash (parameter) 24

dashed (parameter) 33

\dataplot 21, 21, 22

\degrees7, 7, 105

edge=none 92

\diabox . 60

\dianode . 60

\dim . 39

dimen (parameter) 14, 26

\DontKillGlue 41

dotangle (parameter) 17

\dotnode 60, 76

dotscale (parameter) 17

dotsep (parameter) 25

dotsize (parameter) 17, 30

dotstyle (parameter) 16

dotted (parameter) 33

doublecolor (parameter) 25, 25

doubleline (parameter) . . 25, 25, 33

doublesep (parameter) 25, 25

INDEX 121

Dx (parameter) 48, 49

dx (parameter) 48, 49

Dy (parameter) 48, 49

dy (parameter) 48, 49

edge (parameter) 91, 92, 99

emnode (parameter)77

\endoverlaybox 106

\endpscharclip 110, 110

\endpsclip 54, 54, 55, 110

\endpsmatrix 76, 79

\endpspicture41

\endpsTree 82

\endTeXtoEPS 111

\everypsbox 115

fansize (parameter) 85

\file . 39

\fileplot 20, 20, 21

\fill . 32, 33, 36

fillcolor (parameter) . . 8, 17, 27, 27,

51

fillstyle (parameter) . . 8, 27, 27, 32,

33, 50, 107, 109

\fnode 60, 60, 76

framearc (parameter)10, 10

framesep (parameter) 51

framesize (parameter) 60

gangle (parameter) 11

gradangle (parameter) 107

gradbegin (parameter) . . . 107, 107

gradend (parameter) 107, 107

gradlines (parameter)107

gradmidpoint (parameter) 107

\gray . 4

\grestore 36, 37, 37, 38

gridcolor (parameter) 18

griddots (parameter) 18, 19

gridlabelcolor (parameter)19

gridlabels (parameter) 19

gridwidth (parameter) 18

\gsave 36, 36–38

hatchangle (parameter) 27, 27

hatchcolor (parameter) 27

hatchsep (parameter) 27

hatchwidth (parameter) 27

headerfile (parameter) . . . 112, 113

headers (parameter) 113, 113

href (parameter) 59, 59, 96

inner (parameter) 14

\KillGlue .41

labels (parameter) 49

labelsep (parameter) 44, 50, 70, 75,

95

levelsep (parameter) . . . 89, 89, 99,

100

liftpen (parameter) 35, 35, 37

linearc (parameter) . 10, 10, 20, 22,

53, 62, 104

linecolor (parameter) . . 8, 8, 24, 27,

32, 33, 51

linestyle (parameter) 24, 25, 27, 32,

50, 54, 109

\lineto . 38, 38

linetype (parameter)33, 33

linewidth (parameter) . .8, 8, 11, 17,

24, 27–30, 32, 33

\listplot 20, 21, 21, 22

loopsize (parameter)65

\Lput79, 79, 80, 80

\lput 79, 79–81

makeeps (parameter)112

\MakeShortNab 72, 72

\MakeShortTab 94

\MakeShortTablr 74

\MakeShortTnput 95

mcol (parameter) 78

middle (parameter) 14

mnode (parameter) 76, 76, 78

mnodesize (parameter) 78

\movepath .38

\moveto36, 36

\Mput 79, 79, 80, 80

\mput . 81

\mrestore 38, 38

\msave 38, 38

\multicolumn 79

\multido 46, 50

\multips 46, 46, 50

\multirput 46, 46

INDEX 122

\multispan . 79

name (parameter)77, 92

\naput 69, 69, 70, 72, 74

\nbput 69, 69, 70, 72, 74

\ncangle 63, 63–65, 69, 71

\ncangles 64, 64, 65, 69, 71

\ncarc 61, 62, 66, 69, 71

\ncarcbox 67, 67, 69, 71, 72

\ncbar 63, 69, 71

\ncbox 66, 66, 69, 71, 72

\nccircle 66, 66, 68, 71

\nccoil . 104

\nccurve 65, 65, 69, 71

\ncdiag62, 62, 63, 69, 71, 90

\ncdiagg 63, 63, 69, 71, 91

\ncline . . 61, 62, 65–67, 69, 71, 104

\ncloop 65, 65, 69, 71

\ncput 69, 69, 70, 93

ncurv (parameter) 62, 66

ncurvA (parameter) 66

ncurvB (parameter) 66

\nczigzag 104

\newcmykcolor5

\newgray . 4

\newhsbcolor 5

\newpath . 36

\newpsobject 30, 30, 53

\newpsstyle 31, 31

\newrgbcolor 5

nodealign (parameter) 78

nodesep (parameter) . . . 61, 61, 68,

75, 99, 105

nodesepA (parameter) . . 61, 66, 85

nodesepB (parameter) 61, 66

\NormalCoor 106

npos (parameter) 71, 71

\nput 74, 75, 94

nrot (parameter) 70

offset (parameter) . . 67, 70, 79, 105

offsetA (parameter) 67, 75, 85

offsetB (parameter) 67

\openshadow 38

origin (parameter) 24, 33

outer (parameter) 14

\ovalnode 59, 59, 76

\overlaybox106

Ox (parameter) 48, 49

Oy (parameter) 48, 49

\parabola 14, 14

parameters:

Dx 48, 49

Dy 48, 49

Ox 48, 49

Oy 48, 49

angleA 62–64, 66

angleB 62, 64, 66

angle 62, 66, 105

arcangleA 62, 67

arcangleB 62

arcangle 62

arcsepA 13, 13, 14

arcsepB 13, 13, 14

arcsep13, 14

armA 62–65, 90, 91

armB 62, 63, 65

arm 62, 62, 68

arrowinset 29, 30

arrowlength 29, 30

arrowscale30, 30

arrowsize 29

arrows 8, 10, 20, 28, 28, 29, 48

axesstyle 50

bbd . 96

bbh . 96

bbllx . 112

bblly . 112

bbl .96

bbr . 96

bburx 112

bbury 112

bordercolor 25, 25

border 25, 25, 33, 68

boxdepth 66

boxheight 66

boxsep 51, 52, 53

boxsize 66, 66

bracketlength30

coilarmA 103

coilarmB 103

coilarm 103, 103, 104

coilaspect103, 103, 104

INDEX 123

coilheight103, 103

coilinc 103, 103

coilwidth 103, 103

colsep 78

cornersize10, 10, 53

curvature 15

dashed 33

dash . 24

dimen 14, 26

dotangle 17

dotscale 17

dotsep 25

dotsize 17, 30

dotstyle 16

dotted 33

doublecolor 25, 25

doubleline 25, 25, 33

doublesep 25, 25

dx . 48, 49

dy . 48, 49

edge 91, 92, 99

emnode77

fansize 85

fillcolor 8, 17, 27, 27, 51

fillstyle . . 8, 27, 27, 32, 33, 50,

107, 109

framearc10, 10

framesep 51

framesize 60

gangle 11

gradangle 107

gradbegin 107, 107

gradend 107, 107

gradlines107

gradmidpoint 107

gridcolor 18

griddots 18, 19

gridlabelcolor19

gridlabels 19

gridwidth 18

hatchangle 27, 27

hatchcolor 27

hatchsep 27

hatchwidth 27

headerfile 112, 113

headers 113, 113

href 59, 59, 96

inner . 14

labelsep 44, 50, 70, 75, 95

labels . 49

levelsep 89, 89, 99, 100

liftpen 35, 35, 37

linearc . 10, 10, 20, 22, 53, 62,

104

linecolor . . 8, 8, 24, 27, 32, 33,

51

linestyle 24, 25, 27, 32, 50, 54,

109

linetype33, 33

linewidth 8, 8, 11, 17, 24,

27–30, 32, 33

loopsize65

makeeps112

mcol . 78

middle 14

mnodesize 78

mnode 76, 76, 78

name77, 92

ncurvA 66

ncurvB 66

ncurv 62, 66

nodealign 78

nodesepA 61, 66, 85

nodesepB 61, 66

nodesep . . . 61, 61, 68, 75, 99,

105

npos 71, 71

nrot . 70

offsetA 67, 75, 85

offsetB 67

offset 67, 70, 79, 105

origin 24, 33

outer .14

plotpoints 23, 23

plotstyle 20, 20, 34

pspicture 41

radius 59, 76, 78

rbracketlength 30

rectarc 53

ref 70, 83

rot . 75

rowsep78

INDEX 124

runit . 7, 7

shadowangle 26, 26

shadowcolor 26, 26

shadowsize 26, 26, 52

shadow 26, 26, 33

shortput 72, 72–74, 76, 93

showbbox 97

showorigin 49

showpoints . .9, 13–16, 20, 22,

33

style . 31

subgridcolor 19

subgriddiv19

subgriddots 19

subgridwidth 19

swapaxes24, 33

tbarsize 17, 30

thislevelsep 99, 100

thistreefit 99

thistreenodesize 99

thistreesep 99

ticksize 50

tickstyle 50, 50

ticks . 49

tndepth 96

tnheight 95, 95, 96

tnpos . 95

tnsep 95, 95, 96

tnyref 96, 96

tpos 73, 93

treefit 87, 87, 88

treeflip87, 93

treemode 86, 86, 87

treenodesize 88, 88

treesep 87, 87, 88

trimode 53

unit6, 6, 7, 19, 105

vref 59, 59, 96

xbbd . 96

xbbh . 96

xbbl .96

xbbr . 96

xunit 7, 7, 18, 19, 105

yref . 96

yunit 7, 7, 18, 19, 105

\parametricplot 22, 23

\pcangle . 69

\pcangles . 69

\pcarc . 69

\pcarcbox . 69

\pcbar .69

\pcbox . 69

\pccoil . 104

\pccurve . 69

\pcdiag .69

\pcdiagg . 69

\pcline 69, 70, 79, 104

\pcloop .69

\pczigzag 104

plotpoints (parameter) 23, 23

plotstyle (parameter) 20, 20, 34

\pnode 59, 59, 76

\Polar 104, 104, 105

\psaddtolength7

\psarc 12, 13, 14, 60

\psarcn 13, 13

\psaxes 18, 47, 48–50

\psbezier14, 14, 34, 35

\psborder . 25

\psccurve 16, 19

\pscharclip110, 110

\pscharpath109, 110

\pscircle 12, 26

\pscircle* . 12

\pscirclebox 51, 52, 52, 59

\psclip 54, 54, 55, 110

\psCoil 103, 103, 104

\pscoil 103, 103, 104

\pscurve 15, 16, 19, 34, 37

\pscustom . . 13, 14, 32, 32–34, 36,

37, 39, 46, 54, 60

\psdblframebox 51

\psdiabox 53, 53

\psdiamond 11, 11

\psdot . 16, 60

\psdots 16, 19, 33

\psecurve 16, 19

\psedge . 91

\psellipse 12, 26

\psellipticarc 13, 14

\psellipticarcn 14, 14

INDEX 125

\psframe . 8, 10, 11, 11, 26, 50, 51,

60

\psframebox 51, 51–53

\psgrid 17, 17–19, 33, 47, 110, 111

\pshatchcolor 27

\pshlabel . 50

\pslabelsep 44, 50, 80

\pslbrace . 118

\psline 7, 10, 10, 11, 19, 22, 31, 34,

50, 68, 118

\pslinecolor . 8

\pslinewidth 8

\pslongbox115, 116

\psmathboxfalse 114

\psmathboxtrue114

\psmatrix 57, 75, 75, 76, 78, 79

\psovalbox 51, 53, 59

\psoverlay 106, 106

\pspicture . . . 18, 41, 41, 42, 54, 57,

110

pspicture (parameter) 41

\psplot 22, 22, 23

\pspolygon 10, 11, 19, 20

\psrbrace 118

\psrunit . 7

\psscalebox 55

\psscaleboxto 56

\psset 5, 5, 6, 11, 12, 41, 77

\pssetlength 7

\psshadowbox 52

\psspan . 79

\pstextpath 108, 109, 109

\pstheader 108

\psTree .82

\pstree 82, 82, 87, 94, 99

\pstriangle 11, 11

\pstribox 53, 53

\PSTricksEPS 111, 112

\PSTricksOff117

\pstrotate .45

\PSTtoEPS21, 112, 112

\pstunit . 32

\pstVerb 5, 42, 45, 55, 74, 107

\pstverb . 32

\pstverbscale42, 55, 74, 107

\psunit . 7, 109

\psverbboxfalse116

\psverbboxtrue 4, 116, 116

\psvlabel . 50

\pswedge 12, 26

\psxunit . 7, 20

\psyunit . 7, 20

\pszigzag 103, 103, 104

\putoverlaybox106

\qdisk .12, 33

\qline . 10, 33

\radians . 8

radius (parameter) 59, 76, 78

rbracketlength (parameter) 30

\rcoor . 39

\rcurveto . 39

\readdata 21, 21, 22

rectarc (parameter) 53

\red . 4

ref (parameter) 70, 83

\rlineto . 38

\Rnode58, 58, 59, 68, 74, 76

\rnode 58, 58, 60, 74, 76

rot (parameter) 75

\rotate . 37

\Rotatedown 56

\rotatedown 55

\rotateleft 55, 74

\rotateright 55

rowsep (parameter) 78

\Rput 45, 45, 79, 80

\rput . 41, 42, 43, 43–46, 52, 57, 58,

70, 75, 80, 104, 110, 112

runit (parameter) 7, 7

\savedata 21, 21

\scale . 37

\setcolor . 40

shadow (parameter) 26, 26, 33

shadowangle (parameter) . . 26, 26

shadowcolor (parameter) . . . 26, 26

shadowsize (parameter) 26, 26, 52

shortput (parameter) 72, 72–74, 76,

93

showbbox (parameter) 97

showorigin (parameter) 49

INDEX 126

showpoints (parameter) . 9, 13–16,

20, 22, 33

\skiplevel 97, 98

\skiplevels 97, 98

\SpecialCoor . . 7, 8, 104, 105, 106

\stroke 32, 33, 36

style (parameter) 31

subgridcolor (parameter) 19

subgriddiv (parameter)19

subgriddots (parameter) 19

subgridwidth (parameter) 19

\swapaxes .37

swapaxes (parameter)24, 33

\taput 73, 73, 74, 93

tbarsize (parameter) 17, 30

\tbput 73, 73, 74, 93

\TC . 83

\Tc .83

\TCircle . 83

\Tcircle .83

\Tdia . 83

\Tdot . 83

\TeXtoEPS 111

\Tf . 83

\Tfan . 85

thislevelsep (parameter) . . . 99, 100

thistreefit (parameter) 99

thistreenodesize (parameter) . . . 99

thistreesep (parameter) 99

\thput . 73, 73

ticks (parameter) 49

ticksize (parameter) 50

tickstyle (parameter) 50, 50

\tlput 73, 73, 74, 93

\Tn . 85, 85

tndepth (parameter) 96

tnheight (parameter) 95, 95, 96

tnpos (parameter) 95

tnsep (parameter) 95, 95, 96

tnyref (parameter)96, 96

\Toval . 83

\Tp . 83

\TPoffset . 109

tpos (parameter) 73, 93

\TR . 83

\Tr . 83, 83, 85

\translate . 37

treefit (parameter) 87, 87, 88

treeflip (parameter)87, 93

treemode (parameter) . . 86, 86, 87

treenodesize (parameter) . . . 88, 88

treesep (parameter) 87, 87, 88

\tribox . 60

trimode (parameter) 53

\trinode . 60

\trput 73, 73, 74, 93

\tspace .89

\Ttri . 83

\tvput . 73, 73

unit (parameter)6, 6, 7, 19, 105

\uput 44, 44, 45, 70, 75, 80

vref (parameter) 59, 59, 96

xbbd (parameter) 96

xbbh (parameter) 96

xbbl (parameter)96

xbbr (parameter) 96

xunit (parameter) . 7, 7, 18, 19, 105

yref (parameter) 96

yunit (parameter) . 7, 7, 18, 19, 105

INDEX 127

	Welcome to PSTricks
	Part I The Essentials
	Arguments and delimiters
	Color
	Setting graphics parameters
	Dimensions, coordinates and angles
	Basic graphics parameters

	Part II Basic graphics objects
	Lines and polygons
	Arcs, circles and ellipses
	Curves
	Dots
	Grids
	Plots

	Part III More graphics parameters
	Coordinate systems
	Line styles
	Fill styles
	Arrowheads and such
	Custom styles

	Part IV Custom graphics
	The basics
	Parameters
	Graphics objects
	Safe tricks
	Pretty safe tricks
	For hackers only

	Part V Picture Tools
	Pictures
	Placing and rotating whatever
	Repetition
	Axes

	Part VI Text Tricks
	Framed boxes
	Clipping
	Rotation and scaling boxes

	Part VII Nodes and Node Connections
	Nodes
	Node connections
	Node connections labels: I
	Node connection labels: II
	Attaching labels to nodes
	Mathematical diagrams and graphs
	Obsolete put commands

	Part VIII Trees
	Overview
	Tree Nodes
	Tree orientation
	The distance between successors
	Spacing between the root and successors
	Edges
	Edge and node labels
	Details
	The scope of parameter changes

	Part IX Filling and Tiling
	Overview

	Part X Three Dimensional Graphics
	Overview

	Part XI Special Tricks
	Coils and zigzags
	Special coordinates
	Overlays
	The gradient fill style
	Typesetting text along a path
	Stroking and filling character paths
	Importing EPS files
	Exporting EPS files
	Help
	Boxes
	Tips and More Tricks

	How do I rotate/frame this or that with LaTeX?

	How can I suppress the PostScript so that I can use my document with a non-PostScript dvi driver?
	How can I improve the rendering of halftones?
	What special characters can be active with PSTricks?
	Including PostScript code
	Troubleshooting

	Why does the document bomb in the printer when the first item in a LaTeX file is a float?
	I converted a .dvi file to PostScript, and then mailed it to a colleague. It prints fine for me but bombs on her printer.
	The color commands cause extraneous vertical space to be inserted.
	The color commands interfere with other color macros I use.
	How do I stop floats from being the same color as surrounding material?
	When I use some color command in box macros or with setbox , the colors get all screwed up.

