uml.sty, a package for writing UML diagrams in KTEX

Contents

1

Syntax for all the comma
1.1 Lengths
1.2 Angles
1.3 Node names
1.4 Reference points . . .
1.5 Colors
1.6 Linestyles.

uml.sty options
2.1 debug
2.2 index.

Object-oriented approach
3.1 Colors

3.2 Positions.

Drawable

4.1 Named options
4.1.1 import

Element

5.1 Named options
5.1.1 Reference . . .
5.1.2 Stereotype . . .
5.1.3 Subof
5.1.4 ImportedFrom
5.1.5 Comment . . .

Box

6.1 Named options concerni

6.2 Boxesin text

6.3 Named options concerni
6.3.1 grayness
6.3.2 border

Ellef Fange Gjelstad
March 17, 2010

nds

ng location Lo
ng visual appearance

SO OO Uttt

DO

6.3.3 borderLine . .

6.3.4 innerBorder L
6.4 Named options concerning size oL

7 Diagram
7.1 Exampleo

8 Stretchbox

8.1 Name, graphicalName and reference

9 Classifier

10 Compartment

10.1 Suppression
10.2 Name

11 Compartmentline

12 Feature

12.0.1 visibility
12.0.2 type

12.0.3 propertyString
13 Method
14 Attribute
15 Argument
16 Class

17 Schema

17.1 Example (Stack) . . .

18 Relation

18.1 Appearance of the connector
18.2 Geometry of the connector. oo Lo
18.3 Reference and placement of nodes oo

19 AssociationEnd
19.1 Placing of the symbol

20 Label
21 Symbol

22 Navigability

15
15

15
16

16
16
16
17
17

17
17
17
17

17

18

18

18

18
20

20
22
22
22

23
23

24

24

24

23 The different relations
23.0.1 Association
23.0.2 Subclass (generalization)
23.0.3 Inmerclass.
23.0.4 Instance
23.0.5 Aggregation
23.0.6 Composition
23.0.7 Application
23.1 Relations to Relations
23.1.1 AssociationClass
23.1.2 ArgumentRelation . . .

24 Package
24.1 Example
24.2 Connecting packages

25 Colors
25.1 Colorset
25.2 Using the color sets.

26 Positions
26.1 PlaceNode
26.2 Coordinates
26.2.1 Coordinate commands .

27 A large example (Abstract Data

28 Typesetting the implementation
28.1 The documentation driver file .

29 Introductory code
29.1 Identification
29.2 Processing of options
29.2.1 debug
29.2.2 index
29.2.3 Processing the options .
29.3 Using other packages

30 General syntax
30.1 Lengths
30.2 Angles

31 Drawable
31.1 Named options
31.2 Colors
31.3 The command.

32 Element

Structures)

NN
g

N DO

[N}
Ot Ot Ot Ot Ot Ot

[\

NN DN
S Oy O Ot

28
29
30

30
30
31

31
31
32
32

33

38
39

39
39
39
39
39
40
40

40
40
40

40
41
41
41

42

33 Box
33.1 Positioning
33.2 Boxesin text L
33.3 The visual appeareance e
334 Size . ..o e
33.5 Holding together all the named options.
33.6 The command e

34 Diagram
34.1 The command e

35 Stretchbox
36 Package
37 Classifier
38 Class

39 Schema

40 Compartment
40.1 Suppression
40.2 Compartment nameso e
40.3 The implementation L L

41 Compartmentline

42 Feature
42.1 Attribute
42.2 Method s
42.3 Argument

43 Relation
43.1 Node connection points Lo e
43.2 Arm geometry
43.3 Visual appeareanceo e e e e e e e
43.4 The macro. o o o e e
43.5 About the spesific relations Lo
43.6 Association
43.7 Subclass (generalization) Lo
43.8 Inner class L e
43.9 Instance oL e e
43.10Aggregation oL
43.11Compositiono e
43.12Application Lo
43.13ToRelation L e
43.14AssociationClass and AssociationSchema

47
48
49
49
50
50
51
51

52

53

43.15ArgumentRelation 62

44 AssociationEnd 62
44.1 Fraction e e e e e e 63
44.2 The command e 64
44.3 Label e 64
44.4 Symbol L 64
44.5 Navigability o 65

45 Colors 65
45.1 Colorset e 65
45.2 Using color sets 66

46 Positions 67
46.1 PlaceNode e 67

1 Syntax for all the commands

Most of the commands in uml. sty have the syntax \uml({Construct) [(Named options)]{Arguments).
(Construct) can be Diagram, Class, Method or other things.

(Named options) is a comma-separated list of (key)=(value) pairs. This is implemented by
keyval.sty. The entire [(Named options)] part is optional.

In this documentation, the = often is replaced with a -. This is due to an error in the
index generation process, which does not accept.

(Arguments) a number of arguments, typically enclosed in brackets ({}). Typical arguments
are a name and some interior of a box.

1.1 Lengths

Legal lengths are all PSTricks lengths, including TEX lengths. In PSTricks lengths, the unit is
optional; if no unit is present, the current PSTricks unit is used.

1.2 Angles

We distinguish between angles and rotations. An angle should be a number giving the angle
in degrees, by default. You can also change the units used for angles with the PSTricks
\degrees[num] command.

A rotation also expresses a direction, but can have different syntax forms:

An angle i.e. a number

An angle preceded by an asterisk This means the angle is to be interpreted absolute (rel-
ative to the page) and not to the underling text direction. This is useful when getting a
relation label right up, not in the direction of the relation

\umlIndexOn
\umlIndexOff

A letter One of

letter Short for Equiv. to | letter Short for Equiv. to
U Up 0| N North *0
L Left 90 | W West *90
D Down 180 | S South *180
R Right 270 | E East *270

When rotating along lines e.g. relations, you can precede an angle or one of ULDR with a
colon. This is to orientate the text relative to the line. This is useful when getting a
relation along the relation, not right up.

1.3 Node names

A node name is a name of a location on the page. Such a name must contain only letters and
numbers, and must begin with a letter. Also, the node names should be unique (at least, to
the page).

Node names are typically placed by means of the reference named option, but could be
placed using any PSTricks node command.

1.4 Reference points

A reference point is the point in a box which is to be placed. E.g., if the reference point is t1,
meaning top left, the top left corner is placed relative to whatever.

A reference point can be any of 1 (left), r (right), t (top), b (bottom) or B (baseline) or
reasonable combinations of them.

1.5 Colors

This is as in PSTricks. E.g., you can say \red Red gives and use the color red as
linecolor or fillcolor.
See also section 25 on page 30.

1.6 Line styles
As in PSTricks, e.g., solid, dashed, dotted or none.

2 uml.sty options

2.1 debug

2.2 index

By default, every named uml.sty construct (e.g., each Class and Attribute) makes an en-
try in the index of the form (name)!(type). This feature can be turned off with the option
noindex or on with index. The feature can also be turned on with \umlIndexOn and off with
\umlIndexOff.

Tip: It is possible to change the index entry format by changing \umlIndex. \umlIndex should

take two arguments: The name and the type. E.g., \renewcommand\umlIndex[2]{\index{#1 (#2)}}.

3 Object-oriented approach

When making an uml package for IMTEX, it seems natural to do the programming object-
oriented. While TEX has no direct support for object-oriented programming, it can be
simulated using command calls and keyval.sty.

Drawable
Drawable

Tmport : color
type : Stringquasi-static

[named options]
Contents

Drawable
Pages 12 and 40
import : color
type : Stringquasi-static

[named options]
Contents

Element
Pages 12 and 42
reference
stereotype
subof
abstract : bool
importedFrom
comment

[named options]
Contents

lﬁ

Box

Pages 13 and 42
Pos[XY | : position
posDelta[XY] : position

Stretchbox lr:iof:o‘:‘ttrue Diagram
5 = 5
Pages 15 and 47 cina[XY] + length Pages 15 and 46
name grayness : real 0—1 box — always true
aderaphicalVame fillcolorCommand : colorName — umlFillColor
[named options] border : length Size given
Name borderLine = solid contents placed
Claombomis outerBorder : length according to size
innerBorder : length

Size according to contents

i

Package
Pages 28 and 47

Figure 1: Main commands in uml.sty. This and the following class diagrams work as a short-
form documentation of uml.sty.

Each box in figure 1-5 corresponds to one IKTEX command (e.g., \umlDrawable and
\umlElement). Each attribute correspond to one IWTEX variable (e.g., \umlReference) and
often one named option (e.g., reference=).

The arguments of the commands are shown in the fourth compartment. Characteristics of
each command are shown in the sixth.

The subclass relation (e.g., between Box and Element) is implemented this way:

Command call The subclass-commando calls the superclass-commando. E.g., \umlBox calls

Drawable Element Box Stretchbox
From: main From: main From: main From: main
import : color reference pos name
type : Stringquasi-static stereotype posDelta - graphicalName
name : String < subof refpoint
_ abstract : bool box [named options]
[named options] importedFrom size Name
Contents comment grayness Contents
border Size according to contents|
innerBorder
borderLine
Compartmentline Compartment Classifier
Pages 17 and 52 Pages 16 and 50 Pages 16 and 48
3 suppress : boolean Object : boolean — false
Tt oiema) showName : boolean
Cloreiznis [named options]
Contents
Feature
Pages 17 and 52
visibility
type . Class Schema
propertyString Pages 18 and 49 Pages 18 and 49
initialValue
[named options] [named Options] [named options]
Name Name Name
Attributes Attributes
M Methods Methods
A Ji
: Constraints
Method Attribute Argument St
© _ ructure
Pages 17 and 54 Pages 18 and 53 Pages 18 and 54
multiplicity

[named options]
Name
Arguments

ordering
/multiplicityOrdering

[

d options]

Name

Name

[named options]

Figure 2: Classifier commands

\umlElement.

Variable sharing The variables of the superclass are also used by the subclass. \umlReference
is used by \umlBox as well as \umlElement. Of course, there is no support for namespaces
in ITEX, so this is easy and requires discipline at the same time.

Use of named options A list of named options is sent from the subclass-command to the
superclass-command. Ultimately, it is evaluated in \umlElement. Each command on the
road can add its own values in the named options; if it is placed last, it takes precedence,
if it placed first, it does not.

E.g., \umlClassifier sets grayness=0.85 first in its named options, meaning that the
default grayness is 0.85.

AssociationEnd
Pages 23 and 62

- /noderefFar

[named options]
Relation
Symbol

] A.E.UsePos

7 R

LabelA
Pages 24 and 64

SymbolA
Pages 24 and 64

IP

Navigability A
Pages 24 and 65

[named options]
Relation

Drawable
From: main

Element
From: main

import : color

type : Stringquasi-static

J—{subof

Trnamed options]
Contents

reference
stereotype

abstract : bool
importedFrom
comment

R

Association
Pages 25 and 58

Tramed options]
Node A
Node B

Relation
Pages 20 and 55

Inner class

offset : length = Opt posDelta[AB] : position Pages 25 and 58
pos : real+A+B-+C+From+To = To relationArmA : length

height : length relationAngleA : angle _
angle : angle relationArmAngleA : angle [named options]
posAngle : angle umllinestyle = solid K—| Node A

refpoint : ? relationcolor : color Node B

- type : Subc.indicator /linecolor : color

- /noderefClose | |hodesen : length

[named options]
Node A

Node B

Other contents

Composition
Pages 25 and 60

Trammed options]

Node A

VAl 7

Node B

Subclass ToRelation
Pages 25 and 58 Pages 26 and 61
posMeetLine : 0-1 = 0.5

Aggregation

Node A
Node B

ramed options]

Pages 25 and 60

[named options]
Node

[Tramed options] |

lﬁ

Generalization
Pages 25 and 58|

Pages 26 and 61

. Node A
Relation Node B
AssociationSchema Application

Pages 25 and 61

posMeetLine : 0-1 = 0.2

lﬁ

AssociationClass
Pages 26 and 61

Figure 3: Relation commands in uml.sty.

3.1 Colors

Colors are explained in figure 4. For more comments on that figure, see section 25 on page 30.

Drawable
From: Main|

1

Classifier
From: Main|

1

Diagram
From: Main|

Relation
From: Main|

umlDiagramFillcolor :

Colorset
Pages 30 and 65
umlColor : color ColorsDefault
umlLinecolor : color Oohs © Srayeales = O
umlFlllco_lor 8 .color umlLinecolor : graycolor = 0
umlClassifierFillcolor : Cfi’lor\umlFillcolor : graycolor = 1
color

umlClassifierFillcolor :
umlDiagramFillcolor :
umlRelationColor :

graycolor = 0.85
graycolor = 0.95
graycolor = 0

ColorsGray

umlColor :

graycolor = 0.4
umlLinecolor :
umlFillcolor :
umlClassifierFillcolor :
umlDiagramFillcolor :

graycolor = 0.4
graycolor = 1

graycolor = 0.90
graycolor = 0.98

umlLinecolor :
umlFillcolor :
umlClassifierFillcolor :
umlDiagramFillcolor :
umlRelationColor :

umlRelationColor : graycolor = 0
ColorsImport
umlColor : rgbcolor = {1 0 0}

rgbcolor = {1 0 0}

rgbcolor = {1 0.8 0.8}

rgbcolor = {1 0.85 0.85}
rgbcolor = {1 0.95 0.95}
rgbcolor = {1 0 0}

ColorsArgument

umlColor :

umlFillcolor :
umlClassifierFillcolor :
umlDiagramFillcolor :
umlRelationColor :

rgbcolor = {0 1 0}
umlLinecolor :

rghcolor = {0 1 0}

rgbcolor = {0.8 1 0.8}

rgbcolor = {0.85 1 0.85}
rgbcolor = {0.95 1 0.95}
rgbcolor = {0 1 0}

ColorsSub

ColorsRed

amlColor : rgbcolor — {0 0 17 umlColor : rgbcolor — {0 0 1}

umlLinecolor : rghcolor = {0 0 1} umlLinecolor : rgbcolor = {0 0 1}

umlFillcolor : rgbcolor = {0.8 0.8 1} umlFillcolor : rgbcolor = {0.8 0.8 1}
umlClassifierFillcolor : rgbcolor = {0.85 0.85 1}| JumlClassifierFillcolor : rgbcolor {0.85 0.85 1}
umlDiagramFillcolor : rgbcolor = {0.95 0.95 1} umlDiagramFillcolor : rgbcolor {0.95 0.95 1}
umlRelationColor : rgbcolor = {0 0 1} umlRelationColor : rgbcolor {001}

Figure 4: Color commands in uml.sty. The colors in this figure is for demonstration, and not
necessarily correct. See also 25 on page 30.

3.2 Positions

Positions are explained in figure 5. For more comments on that figure, see section 26 on page 31.
In figure 5, the blue stuff is imported from diagram 1. The red stuff is derived from the
PSTricks manual. Only the black classes is defined here.

10

TopLeft «primitive» Box
Pages 31 and 68| Coordinate From: main|
pos
node
posDflta
2
Relation «primitive» «primitive» «primitive» «primitive» «primitive» «primitive»
From: mallde[AB] Node [par]Node Polar !ps coorllcoor2 Cartesian
example example example example example example
[angle=45]A 3;110 !3 110 cos mul 2| |A|lin;30 R
arguments
«plafes» angle
PlaceNode nodesep : length

Pages 31 and 67

leftside : length = Opt
rightside : length = Opt
top : length = Opt
bottom : length = Opt
left : length = Opt
right : length = Opt
up : length = Opt
down : length = Opt
angle[XY] : angle
offset[XY] : offset
nodesep|[XY] : nodesep

[ramed options]
Node
New node name

offset

Figure 5: Position commands in uml.sty. See also 26 on page 31.

End of diagram

11

\umlDrawable

import-
noimport-

\umlElement

reference-

stereotype-

4 Drawable

A Drawable is an unspecified UML construct. It has no graphical appearance itself, but is a
common superclass for all uml.sty constructs.

The syntax of \umlDrawable is, as indicated in figure 1 on page 7, \umlDrawable[{named
options)1{Contents).

\umlDrawable is an “abstract command”, not ment to be used directly by users. But
\umlDrawable[import=]{Contents} would yield (the border around is added here
to emphasize the example).

4.1 Named options

The named options import= and noimport= are described under the next section.

4.1.1 import

The named options import and noimport indicate whether this construct are defined in another
diagram, and only imported here.

They take no options.

They make \umlColorsImport and \umlColorsDefault, henholdsvis, take effect on the con-
struct.

See also the variable Element.importedFrom (section 5.1.4).

5 Element

An element is an construct which can be referenced.

The syntax of \umlElement is exactly the same as that of \umlDrawable. However,
\umlElement has more named options.

\umlElement is abstract too. It does not itself use much of the information supplied by the

named options. \umlElement{Contents} would yield .

5.1 Named options
5.1.1 Reference

Each element has a reference. reference is used among other things when placing nodes.
Legal values are valid PSTricks node names (1.3 on page 6).

Default values differ between the constructs.

reference is also used by some commands to make several nodes with derived names. E.g.,
Aareference of a relation is one of the endpoints.

5.1.2 Stereotype

The variable stereotype indicates the stereotype of the construct. The value is not used by
every construct. Typically, the name is placed in «guillements» around or in the construct.
Legal values is any string. Default is no stereotype.

12

subof-

importedFrom-

comment-

pos-
posX-
posY-
posDelta-

posDeltaX-

5.1.3 Subof

The variable subof indicates the superconstruct (in standard UML parlance, the generaliza-
tion) of this construct. The value is not used by every construct, but is typically placed around
or in the construct.

Legal values is any string. Default is nothing.

The subof variable and the subclass relation (section 23.0.2) are different ways of expressing
the same thing.

5.1.4 ImportedFrom

The variable importedFrom indicates which package or digram this construct is imported
from. The value is not used by every construct, but is typically placed around or in the
construct.

Legal values is any string. Default is nothing.

5.1.5 Comment

The variable comment is a comment. The value is not used by every construct, but is typically
placed around or in the construct.
Legal values is any string. Default is nothing.

6 Box

Box is an UML construct drawn as a box, i.e. with some areal. Boxes has size, position and
possibly a border.
The syntax is \umlBox[{Named options)]1{{Contents)}.

\umlBox[box=,border=2pt,innerBorder=2pt]{Contents} would be typeset as
(The inner border is made by the box).

6.1 Named options concerning location

Boxes are positioned by various named options. The positioning mechanism starts at (pos),
given by the pos or posX and posY named potions. Then, it moves to (posDelta), given by
the posDelta or posDeltaX and posDeltaY keywords. The refpoint of that class (e.g. top left
corner), given by refpoint is placed at this point.

All the named options with names starting with pos have legal values coordinate pairs, as
described on page 32.

pos sets pos. Default is to look at the values set by posX and posY.

posX sets pos horizontally. Default is 0, 0.

posY sets pos vertically. Default is 0, 0.

posDelta sets posDelta. Default is to look at the values set by posDeltaX and posDeltay.

posDeltaX sets posDelta horizontally. Default is 0,0.

13

posDeltaY-

refpoint-

box-

grayness-

border-

borderLine-

innerBorder-

sizeX-

sizeY-

posDeltaY sets posDelta vertically. Default is 0,0.

refpoint which point in the class to be placed. Can be any of 1, r, t, b and B, meaning left,
right, top, bottom and baseline, or any reasonable combination of them.

E.g., if the named options are [pos=Car, posDelta={1,-1}, refpoint=tl], the top left
corner of the class are placed one unit to the right and one down from the node Car.

6.2 Boxes in text

Default, an box is placed inside a zero size hbox. While used in text, you want the class to be
put inside a hbox with the natural size of the box. This is done by means of the named option
box. Note that a = must be present, even if nothing follows it before the next ,. This option
overrides the location named options.

box normally, the class is put in a hbox of size (0,0), suitable for use in a diagram. With
box= set, it is put in a hbox with its natural size, suitable for use in text. The class

Class in text

, made by \umlClass[box=]{Class in text}{}{}, can serve as an

example.

6.3 Named options concerning visual appearance

6.3.1 grayness

The grayness in the background in the box, from 0 (black) to 1 (white). Default value without
named option is 1 (white), with named option .85 (still quite bright).

6.3.2 border

The width of the border. Legal values are lengths. Default value without named option is 0
(no border), default value with named option without value is 0.4 pt.

6.3.3 borderLine

The style of the border. Legal values are line styles (section 1.6). Default is solid.

6.3.4 innerBorder

The inner margin of the box. Legal values are lengths. Default value is 0.

6.4 Named options concerning size

Some boxes (not all) allow the user to specify the size of the interior of the box.
sizeX The horizontal size of the box. Must be a valid length.

sizeY The vertical size of the box. Must be a valid length.

The default size of the box is not specified here, but it normally is the natural size of (stuff).

14

\umlDiagram

\umlStretchbox

7 Diagram

A diagram is an area, with a coordinate system. Stuff like classes can be placed at the diagram.
The syntax of the \umlDiagram command is \umlDiagram[{named options)1{{stuff)}.
(stuff) is placed inside the diagram. It can be positioned in various ways, using mechanisms
from TEX or PSTricks or using named options in \umlClass or \umlSchema.

Some positioning mechanisms are very sensitive to “spurious spaces’, pushing some of the
(stuff) to the right. Line breaks (without a comment sign before) can create such mystical
spurious spaces. Using named options like posX and posY should eliminate this problem.
\umlDiagram is an \umlBox, and inherits all its named options.

Once, I discovered that \umlDiagram also works without the sizeX and sizeY options. Using
it that way, you typically want to use innerBorder on the diagram and box on the contents.
You may still use sizeX and sizeY as minimum size.

The named option box= is always set to true in \umlDiagram.

7.1 Example
The diagram in figure 6 is made by the code

\umlDiagram[box=,border,sizeX=7cm,sizeY=4cm]{%
\umlClass[refpoint=bl, pos={3,3}]{ClassName}{}{}}

ClassName

Figure 6: Example of a diagram

This creates a diagram which is 7 cm wide and 4 c¢cm high. It contains a class, with its bottom
left corner positioned at position (3,3).
Note that the class, as a stretchbox, determines its size on the basis of its contents, as opposed
to a diagram, which has its size given.

8 Stretchbox

A stretchbox is a box which determines its size on the basis of its contents. It also has a name.
The syntaxis \umlStretchbox[(named options)](name)(contents).

15

graphicalName

\umlClassifier

object-

\umlCompartment

8.1 Name, graphicalName and reference

\umlStretchbox takes a name as its second argument. Legal values is strings. The name is a
default reference. If the string contains spaces or something making it a non-valid node name,
remember to supply a reference with the reference= named option.

Subclasses of \umlStretchBox may make a graphicalName based on the name. The graphical
name is typically the string in a large font.

9 C(Classifier

A classifier is a stretchbox which can be instantiated. Classifier is direct superclass to Class.
It has the same syntax as \umlStretchbox. However, there is another named option:

object Makes the graphical name underlined.

Classifiers are typically divided in compartments, stacked on top of each other. Standard UML
classes are divided in three compartments.

10 Compartment

A compartment is a part (of a classifier). The compartments are stacked on top of each other.
The syntax is \umlCompartment[(Named options)]{Contents). Compartments are to be
placed inside classifiers. In the implementation, \umlClassifier is implemented as a table
and \umlCompartment as table lines.

\umlCompartment requires its contents to be ended by a linebreak (\\). This is typically given
by \umlCompartmentline.

Name

Example: IPtgis Ifme was made by

Second line

Compartment line

\umlClassifier[box=]{Name}{%
\umlCompartment{First line\\}
\umlCompartment{Second line\\}}
\umlCompartment{%

\umlCompartmentline{Compartment line}}

10.1 Suppression

By default, empty compartments are drawn, indicating that the compartment is empty. The
UML specification [UML1.4, 3.22.3| states that “a separator line is not drawn for a missing
compartment.”

Suppression is styrt by the boolean variable umlCompartmentSuppress. You can set this to
true (\umlCompartmentSuppresstrue) or false (\umlCompartmentSuppressfalse) whenever
you wish.

16

suppress- You can also use the named option suppress= on one compartment or something bigger (such
as a classifier). Legal values are true and false when used without value, default is true.

10.2 Name

name- You can set the name with the named option name=.
If the boolean value \umlCompartmentNameShow are true, the name is shown centered
bold in the top of the compartment. You may say \umlCompartmentNameShowtrue or
\umlCompartmentNameShowfalse when you wish.
showname You can also use the named option showname= on a construct. Legal values are true and false,
default is true.

11 Compartmentline

\umlCompartmentline Thisis a line in a compartment. It ends with a line feed. Subcommands of \umlCompartmentline
is \umlAttribute and \umlMethod.
The syntax is as usual \umlCompartmentline[(named options)]{Contents). For example, see
above. Note the space in front of the contents when using \umlCompartmentline, as opposed
to raw text.
All lines in compartments are required to end by a line break. \umlCompartmentline supplies
this.

12 Feature

\umlFeature A feature is a line in a compartment in a classifier, such as a method, attribute or argument.

12.0.1 visibility
visibility- Legal values for the visibility is Visibility is typically one of + (public), # (protected), -
(private) or ~ (package). Default is +.
\umlTilde The command \umlTilde writes a ~.

12.0.2 type

type- This is the type of an attribute or an argument, or the return type of a method.

12.0.3 propertyString

propertyString- An UML property string.

13 Method

\umlMethod \umlMethod is of the form \umlMethod[{options)1{{name)}{{arguments)}.
returntype- \umlMethod provides returntype as an alias for type.
\umlMethod[visibility=\#, returntype=reall{sqrt}{int arg} makes| #sqrt(int arg) : real |

17

\umlAttribute

\umlArgument

\umlClass

14 Attribute

\umlAttribute is of the form \umlAttribute[(options)]{{name)}.
\umlAttribute[visibility=\#, default=186, type=int]{height} makes| #height : int = 186 |

15 Argument

Arguments to classifiers are not a standard UML construct. However, we have included it
here.

\umlArgument is of the form \umlArgument[(options)]1{(name)}.

\umlArgument [type=Class]{nodetype} would be rendered as| nodetype : Class |

16 Class

The macro \umlClass draws an UML class. Its syntax is \umlClass[(named options)]{name){variables){methods).
The (variables) and (methods) parts are typically drawn using \umlVariable and \umlMethod.

Graphically, the class is divided in three compartments above each other. The upper com-

partment contains the class name. The middle one contains the variables, and the lower the

methods.

Example: Figure 7 on the following page is coded as:

\umlClass[box=,

reference=AmericanMan,

stereotype=Man,

import=,

importedFrom=America,

comment=A man from America

]{American Man}{%
\umlAttribute[visibility=\#, type=State]{State}
\umlAttribute[visibility=\#,

default=Mc Donalds]{Favourite burger}}{%

\umlMethod[visibility=]{Watch TV}{}
\umlMethod[visibility=-, returntype=int]{Vote}{Party party}

Also, see figure 12 on page 34 for a larger example.

17 Schema

Schema is not a standard UML construct. It is a generalization of class I find very useful. A
schema is a class which also can

e take arguments
e be instantiated freely into other schemas

e have an internal structure, typically using its arguments

18

\umlSchema

«Man»

American Man
From: America
A man from America
#State : State
#Favourite burger = Mc Donalds
Watch TV()
- Vote(Party party) : int

Figure 7: A class

Graphically, schemas look pretty much like classes, with attribute and method compartments.
In addition, it have more compartments. Here are they all:

Name compartment contains the name and possibly stereotype and other symbols, just like
in the Class symbol.

Attributes compartment contains the attributes, like in Class.
Methods compartment contains the methods, like in Class.

Arguments compartment contains the schema arguments. Each argument is another schema
(possibly an object).

Constraints compartment contains constraints.
Structure compartment typically contains a class diagram.

This corresponds to more arguments to \umlSchema. The spec is \umlSchema[(named
options) 1{(Name)}{ (Attributes) }{(Methods)}\

{{Arguments)}{{Constraints) }{(Structure)}. Almost everything said about \umlClass is also
true about \umlSchema. The two commands inherit the same named options.

\umlSchema is included for two reasons: Because I use them myself, and to show how you can
make your own classifiers yourself.

19

17.1 Example (Stack)

The figure to the right is a simple stack. To start with
the fourth compartment, the schema Stack takes an other
metaclass as argument (named type). If type is set to, say,
Procedure, we get a Stack of procedures. Stack has one
attribute, a private pointer to the first Node. This first
node is of type type. There are two procedures, the well-
known push and pop, both public; push takes an instance
of type as argument, pop returns a type. There is one
constraint, that a Stack should be equal to itself pushed
once and popped once.

The seventh compartment describes the internal structure of Stack. Here, we do not bother

Stack

- firstNode : type = null

-+ push(type x)
+pop() : type

type : Metaclass

S:Stack = S.push(x).pop()

Node
#data : type—‘

1

1

distinguishing between the interface and the internal implementation of Stack.

The IXTEX source is here:

\umlSchema[box=]{Stack}{%Attributes

\umlAttribute[visibility=-, type=\emph{type}, default=null,]{firstNode}

}{% Methods
\umlMethod[visibility]{push}{\emph{type} x}
\umlMethod[visibility, type=\emph{type}]l{pop}{}
}{% Arguments
\umlArgument[type=Metaclass]{type}

}{% Constraints

\umlCompartmentline{S:Stack = S.push(x).pop()}
H% Structure

\umlDiagram[box=,innerBorder=2mm, sizeX=1lem, sizeY=>5em,

ref=StackDiagram, outerBorder=2mm]{%
\umlClass[pos={.5,.5}, ref=stackNode]{Node}{

\umlAttribute[visibility=\#, type=\emph{type}]l{data}}{}%
\umlRelation[angleA=20, angleB=-20, armA=lem, armB=lem

J]{stackNode}{stackNode}{%

\umlLabelA[height=-1ex, fraction=1.5]{stackNodestackNode}{1}%
\umlLabelB[height=-1ex, fraction=1.5]{stackNodestackNode}{1}%

3
}% End of diagram

\cr}% End of Stack

18 Relation

Relations are all kinds of connections between classifiers (and other nodes). Examples of rela-
tions include common associations, the subclass (specialization) relation and the aggregation
relation. While these constructs are semantically very different, they can all be drawn as

connections between schemas.

20

\umlRelation

\umlRelation itself, like most of its subclasses, is of the form \umlRelation[(Named
options) 1{From)(To){Other contents), where (From) and (To) are references to nodes (e.g.
classes and nodes). (Other contents) typically contains labels etc which should have the same
colors etc as the relation. The argument (Other contents) are new since version 0.09. This
may cause errors if one tries to use \umlRelation with the old arguments.

Figure 8 shows some of the capabilities of uml.sty relations.

The source of figure 8 is:

\umlDiagram[box=,sizeX=7cm, sizeY=7cm, ref=relation]{%
\umlClass[pos=\umlBottomLeft{relation}, posDelta={1,1}, refpoint=bl,
reference=A]{Class A}{}{}%
\umlClass[pos=\umlTopRight{relation}, posDelta={-1,-1}, refpoint=tr,
reference=B]{Class B}{}{}%
\umlRelation{A}{B}{
\umlLabelA{AB}{=}
\umlLabelB{AB}{1}}
\umlLabel[fraction=.5,0ffset=0]{AB}{center}
\umlAssociationEnd[fraction=A, angle=U]J{AB}{A}
\umlAssociationEnd[fraction=B, angle=R]{AB}{B}
\umlSubclass[ref=ABsub, angleA=0, armA=5, armAngleA=0,
angleB=300, linecolor=blue,nodesep=1ex]{A}{B}
\umlComposition[reference=ABComp,
angleA=120, arm=4, armAngleA=80,
angleB=180, armAngleB=190]{A}{B}
\umlNavigabilityA{ABComp}
}

Class B

—_

center

Class A

Figure 8: Some relations (silly relations, but good example)

umllinestyle-

linecolor-

angle-

arm-

armAngle-

18.1 Appearance of the connector
The visual appearance of the connector is influenced by the following named option:
umllinestyle Aumllinestyle to draw the connector. Default is solid.

linecolor The color of the line.

18.2 Geometry of the connector

The connector consists of three line segments: A main part in the middle and two arms. By
default, the arms have zero length. The arms are sometimes referred to as A and B.

In the example, figure 8, the both arms of the middle relation and one of the blue one have
lengths zero.

Where the connector hits the node By default, the connector tries to be as short as
possible. With no named options, the connector will be a straight line between the nodes.
This can be overridden by the named option

angle, angleA and angleB Angle at which the connector hits the node. angleA affects
(From), angleB (To) and angle both of them.

The arms By default, there are no arms (they have lengths zero). This can be overridden
by the named options

arm, armA and armB The length of the arm. Default is Opt, which means there is no arm at
all.

armAngle, armAngleA and armAngleB The direction of the arm. Default is 0 (meaning right).

Nodesep It is possible to make a separation between the nodes and the connector by the
named options

nodesep, nodesepA and nodesepB Legal values are lengths, default is 0.

18.3 Reference and placement of nodes

As \umlElements, relations have references. Default is the concatenation of the references of
(From) and (To). This can as usual be overridden by the named option reference.
With the reference set as (reference), the following nodes are set:

o Aa(reference) Where the connector hits node A ({(From))

e Ba(reference) Where the connector hits node B ({70))

()

()

e Ab(reference) One line segment from Aa(reference).

e Bb(reference) One line segment from Ba(reference).
()

e Ac(reference) Where the main line segment hits arm or node A

22

\umlAssociationEnd

posAngle

pos-

Class B

Ba and B

Class A |

Figure 9: Placement of relation nodes. In this case, Both SymbolAb and SymbolBb is where
Ac is (one line segment from resp. nodes).

e Bc(reference) Where the main line segment hits arm or node B

The clever reader will understand that Ab{reference) will be the same location as Ac{reference)
(if there is an arm A) or as Bc(reference) (if there is not). In the latter case, Ac(reference) will
be the same location as Aa(reference). Similarly in the opposite direction.

Tip: The connector is drawn with \ncdiag. Just after making the relation, you can make your
own \pnode with something like \1put{:R}((a number 0-3)){\pnode{(your reference)}}.

19 AssociationEnd

An relation may have different attachments attached to it. It may have labels specifying
multiplicities and a end-symbol (such as a triangle in the subclass case). All this can be made
with \umlAssociationEnd.

Its syntax is \umlAssociationEnd[(named options)]{relation)(Symbol), where (relation) is
the reference of a relation and (symbol) is the symbol to be placed (e.g., an asterisk or a
triangle).

19.1 Placing of the symbol
The location of the symbol is determined this way:
e You pick the direction along the relation

e Relativeto this direction, you pick the direction determined by posAngle. But, since this
direction is :U, up, by default, you probably still move in the direction along the relation.
You probably don’t want to modify posAngle.

e In this direction, move the fraction specified by posof the relation. This is default 0. But
if you specify fraction=0.2, you move 20 % along the line. Legal values, in addition to

23

offset-

height-
refpoint-

angle-

\umlLabel

\umlLabelA

\umlSymbol
\umlSymbolA

\umlNavigabilityA

real numbers, are A and From, meaning near node A, and B and To, meaning you move
from node B to A.

e Still in this direction, move the length specified by offset. If you say offset=2ex, you
are 20 % of the line + 2 ex away from the node now.

e To the right of this direction, move the length specified by height.
e Here, place the point on the symbol specified by refpoint. This is default B (baseline).

e Rotate the symbol in the direction specified by angle. This is default U (up).

Much of the point in \umlLabel and \umlSymbol is to provide other defaults for different uses.
Common relations have their specialized commands (like \umlSubclass and \umlAggregation),
to be explained later on. These commands call \umlRelation and then \umlSymbol with the
appropriate symbol.

20 Label

This is an association end which new defaults: offset is 4 ex, height is 4 ex and direction is N
(north, absolute up). This is good defaults for label.

In labels, if pos is B or To, the height is inverted.

The command\umlLabelA is an \umlLabel with fraction=A. \umlLabelB is an \umlLabel
with fraction=B.

In figure 8, there are three labels: 1, * and “center”. “A” and “B” is implemented directly by
means of \umlAssociationEnd.

21 Symbol

Thisis an association end with new defaults. Refpoint is t (top).

The command\umlSymbolA is an \umlSymbol with fraction=A. \umlSymbolB is an \umlSymbol
with fraction=B.

In figure 8, there are two symbols (the diamond in the left one and the triangle in the right)

22 Nayvigability

Navigability indicates which direction the relation can be followed. Graphically, it looks like
an open arrow.

The syntax is \umlNavigability[(named options)](Relation). The symbol is predefined.
Navigability can also be drawn with the commands \umlNavigabilityA and \umlNavigabilityB.
In figure 8, there is one navigability symbol (towards Class A).

23 The different relations

There are several different relations; being semantically very different, they all are connectors
between nodes, and they all are implemented as subcommands of \umlRelation, with various
end symbols.

24

\umlAssociation

\umlSubclass
\umlGeneralization

T

\umlInner

N

\umlInstance

A

\umlAggregation

\umlComposition

\

\umlApplication

23.0.1 Association

\umlAssociation is only a wrapper to \umlReference. Graphically, an association is a refer-
ence without any fuzz. An example of an association (between nothing, though) is shown in
the left margin of this text.

23.0.2 Subclass (generalization)

This relation is in UML named generalization. We prefer to name it the subclass relation
(really, more relations are about generalization). However, for the sake of compatibility, the
commands \umlSubclass and \umlGeneralization are offered as equals.

The relation goes from the most special node to the most general one. Graphically, it is a solid
line with a triangle at the general end.

23.0.3 Inner class

The graphical notation for this is not part of standard UML, and not very well worked through
either. However, I find it very useful to have a notation for this (without drawing the classes
inside each other).

Bug: I have not been able to get rid of the gray thing borders made by \psClip.

I have not investigated the differences and similarities in the semantics of what I call Inner
Class, Java Inner Classes, Schemas which contain other classes and traditional UML compo-
sition.

The command is \umlInner.

23.0.4 Instance

This is the relation between a class and its metaclass. This is the real “is-a” relation. It is
the strongest kind of a generalization relationship, even if it is not called generalization in
standard UML. Its symbol is an open arrow on a dashed line.

The command is \umlInstance.

23.0.5 Aggregation

The target class (the upper class in the left margin) is an aggregate; therefore, the source class
is a part. This is the weak form of aggregation, indicated by a hollow diamond. The part may
be contained in other aggregates. The aggregation is optional, but not suppressible.

23.0.6 Composition

The strong form of aggregation, which requires that a part instance be included in at most one
composite at a time and that the composite object has sole responsibility for the disposition
of its parts. In other words, a part can be part of at most one composite.

23.0.7 Application

This is the relation between an abstraction (a schema taking arguments) and the application

25

\umlToRelation
posMeetLine-

\umlAssoc:A‘-"A‘m‘E‘s
\umlAssoci Ass.Cl. a

-

\umlArgument

Argument

/

(the schema with the arguments). Application, and the entire argument idea, is not part of
standard UML. For example, see the section about Argument on page 18.
\umlApplication places a node argument(reference) in addition to the usual ones.

23.1 Relations to Relations

Some constructs can be viewed as relations between a classifier and a relation. They are
implemented as subcommands of \umlToRelation.

\umlToRelationtakes the named option posMeetLine, a real number between 0.0 and 1.0,
which determines where at the target relation the relation shall hit. Default is 0.5, in the
middle of the relation.

The node ToRelation(reference of this relation) is placed where the lines meet.

23.1.1 AssociationClass

An association class is an association which also has attributes and methods. Similarly, we
can speak about an association schema. Graphically, the schema is drawn as an usual schema
with a dashed connector to the association.

23.1.2 ArgumentRelation

In this construct, we speak about three differenc classifiers:
e The abstraction (Stack in figure 10) is the schema which can take argument.

e The application (Stack of books) is the abstraction after applying the argument. The application
is more special than the abstraction.

e The argument (Book) is what is filled in.

Graphically, this is shown as two connectors: One solid with an arrow from the application to the
abstraction. It is made by \umlApplication. Then, a dotted from this line to the argument. It is
made by \umlArgument.

By default, the dotted line hits the solid one quite near the application, at about 20% of the main line
segment (position 1.2).

An example of this construct is shown in figure 10 on the following page. The I¥TEX source is here:

\umlDiagram[sizeX=10cm, sizeY=12cm,
ref=argumentDiagram,box=,border]{
\umlSchema[pos=\umlTopLeft{argumentDiagram}, posDelta={2ex, -2ex},

refpoint=tl]{Stack}{%Attributes

\umlAttribute[visibility=-, type=\emph{type}, default=null

1{firstNode}%

}H% Methods

\umlMethod[visibility=+]{push}{\emph{type} x}

\umlMethod[visibility=+, type=\emph{type}]{pop}{}

}{% Arguments

\umlArgument[type=Metaclass]{typel}%

H% Constraints

\umlCompartmentline{S:Stack = S.push(x).pop()}

H% Structure

\umlDiagram[ref=StackDiagramA, outerBorder,innerBorder=2mm,box=]{%

\umlClass[pos=\umlBottomLeft{StackDiagramA},

26

Stack
- firstNode : type = null
+push(type x)
+pop() : type
type : Metaclass
S:Stack = S.push(x).pop()

Node 1
+data : type—| L

_u"ty.pe

Stack of books

- firstNode : Book = null

Methods -+ push(Book x)
+pop() : Book

Arguments type = Book

Constraints

Node 1
Structure Tohie : Book

End of diagram

End of Stack

Book

+pages :

Integer

+read()

Figure 10

diagram

: Example of abstraction and application

27

End of main

posDelta={lex, lex}, box=,
ref=stackNode]{Node}{%
\umlAttribute[visibility, type=\emph{type}]{data}}{}%
\umlRelation[angleA=20, angleB=-20, armA=lem, armB=lem]{stackNode}{stackNode}{%
\umlLabelA[height=-1ex, fraction=1.5]{stackNodestackNode}{1}%
\umlLabelB[height=-1ex, fraction=1.5]{stackNodestackNode}{1}}%
}\cr% End of diagram
}% End of Stack
\umlSchema[refpoint=br, posY=\umlBottom{Stack},
posX=\umlRight{argumentDiagram},
posDelta={-2ex,0}]{%
Book}{% Attributes
\umlAttribute[visibility, type=Integer]{pages}
}H% Methods
\umlMethod[visibility]{read}{}
}{% Arguments
% Constraints
H% Structure
}% End of Book
\umlSchema[pos=\umlBottomLeft{argumentDiagram}, posDelta={2ex, 2ex}, refpoint=bl,
reference=StackofBooks]{Stack of books}{%Attributes
\umlAttribute[visibility=-, type=Book, default=null,]{firstNode}
H% Methods
\umlMethod[visibility=+]{push}{Book x}
\umlMethod[visibility=+, type=Book]{pop}{}
}{% Arguments
\umlCompartmentline{\emph{type} = Book}
}{% Constraints
H% Structure
\umlDiagram[innerBorder=2mm, box=, innerBorder=2mm, outerBorder]{%
\umlClass[posDelta={lex, lex}, ref=stackNode,box=]{Node}{
\umlAttribute[visibility, type=Book]{data}}{}%
\umlRelation[angleA=20, angleB=-20, armA=lem, armB=lem]{stackNode}{stackNode}{%
\umlLabelA[height=-1ex, fraction=1.5]{stackNodestackNode}{1}%
\umlLabelB[height=-1ex, fraction=1.5]{stackNodestackNode}{1}}%
F\cr% End of diagram
}% End of Stack
\umlApplication[reference=ssb]{StackofBooks}{Stack}
\umlArgumentRelation{Book}{ssb}
\umlLabel[fraction=0.7]{Bookssb}{\emph{type}}
}% End of main diagram

24 Package

A package is a collection of classes, relations and other elements. It is simply a grouping of different
elements.

The graphic symbol consists of two rectangles above each other: The upper one is small and contains
the name. The lower one is typically large and contains the elements. The lower rectangle typically
contains an \umlDiagram.

28

In uml.sty, packages are drawn by the command \umlPackage[{named options)]{(name)3}{(stuff)}.
\umlPackage is an \umlBox, and inherits all its named options.

24.1 Example

In figure 11, the package “Package” contains four classes, four usual associations and one subclass
relation.

«stereoy»

Package
From: From
comment

Sub of: subof]

House |lives in Person
End of package
s in
reads
Book ritten Author
End of diagram|

Figure 11: Example of package

The source:

\umlPackage[border=,box=,
subof=subof, stereotype=stereo, importedFrom=From,
comment=comment] {Package}{%
\umlDiagram[sizeX=7cm, sizeY=5cm,box=,ref=pack]{
\umlClass[pos=\umlBottomLeft{pack}, posDelta={2ex, 2ex},
refpoint=bl]{Book}{}{}
\umlClass[pos=\umlTopLeft{pack}, posDelta={2ex, -2ex},
refpoint=t1]{House}{}{}
\umlClass[pos=\umlTopRight{pack}, posDelta={-2ex,-2ex},
refpoint=tr]{Person}{}{}
\umlClass[pos=\umlBottomRight{pack}, posDelta={-2ex, 2ex},
refpoint=br]{Author}{}{}
\umlAssociation[]{Book}{House}
\umlLabelB{BookHouse}{is in}
\umlAssociation[]{Book}{Person}
\umlLabelA{BookPerson}{reads}
\umlSubclass{Author}{Person}
\umlAssociation{Book}{Author}

29

\umlLabelA[height=.5ex]{BookAuthor}{written}
\umlAssociation{House}{Person}
\umlLabelA{HousePerson}{lives in}
}% End of diagram

}% End of package

24.2 Connecting packages

Two packages can be connected in the same way, and using the same function, as two classes. Symbols,
labels etc. work the same way, and you can even connect a package and a class. Not all these
possibilities make sense semantically.

However, due to the geometrical shape of packages, there is some problems with the connections. I
have found no good solution to this. Now, default, relations is connected to an imaginary rectangle
covering the entire package. The problem occur if the node hits the package in the upper right corner,
where the package does not fill out the rectangle.

To solve this problem preliminarily, two more nodes are placed: The upper rectangle is given the name
small{reference), and the lower big(reference). You can make the connector connect to one of these
if desired.

25 Colors

The metamodel for this is in figure 4 on page 10.

25.1 Colorset

In uml.sty, there is always an color set in action. There are currently six defined color sets:
ColorsDefault uses normal black and white colors.
ColorsGray uses more gray colors. Typically used for constructs which not is to be emphazised.

ColorsImport uses blue colors. Typically used for constructs which are defined in another document,
and only are imported here.

ColorsArgument uses green colors. Typically used for constructs given as arguments.
ColorsRed uses red colors. Use it as you like.
ColorsSub is intended to be used on material inherited from other material.

Demonstrations of this color sets is in figure 4.
If you want to make your own color set, you may say something like

\newcommand\myColorset{%
\umlColorsSet{%
Class \newrgbcolor{umlColor}{0 .4 .4}%

Color set = myColorset \peyrgbcolor{umlLinecolor}{0.5 1 1}%

\newrgbcolor{umlFillcolor}{.8 1 1}%
\newrgbcolor{umlClassifierFillcolor}{.85 1 1}%
\newrgbcolor{umlDiagramFillcolor}{.95 1 1}%
\newrgbcolor{umlRelationColor}{0 1 1}%

1%

30

You may want to use the commands \newrgbcolor{(name)}{(red) (green) (blue)}, \newgray{(name)}{(grayness)},
\newhsbcolor{(name)}{(hue) (saturation) {brightness)} or \newcmykcolor{(name)}{{cyan) (magenta)
(yellow) (black)}, where all the parameters except (name) are real numbers between 0 and 1.

25.2 Using the color sets

You can use the color sets in different ways:

\umlColors... e You can use the command directly (e.g., say \umlColorsDefault), and the color set will take
effect on the following constructs.
umlColorset e You can use the environment , which takes the color set as argument (e.g. \begin{umlColors}{\umlColorsDefault}).
colorSet- e Indrawables, (i.e., most constructs) you can use the named option colorSet (e.g., \umlClass[colorSet=\umlColorsDef:

e Some color sets are also implied in other named options (import=) and otherwise.

Colors are primarily handled by Drawable. However, due to some technical obscurities in
TEX, the implementation is done in the known subclasses (\umlElement, \umlCompartment and
\umlCompartmentline).

Technically, the commands only define another command (\umlColorsAdjust), which is called in every
construct. The value of \umlColorsAdjust til enhver tid is the color set in action. See 45.1 for more
details on this.

26 Positions

The metamodel for this is in figure 5 on page 11.

In PSTricks, a Node can serve as a Coordinate. There exist other types of coordinates too. Box.pos
uses \rput, and is a coordinate. Box.posDelta should be a relative coordinate (a cartesian number
pair), but could really be any coordinate.

Relation.NodeA and Relation.NodeB, however, uses \ncdiag, and must be Nodes. This is confusing.
It is also confusing that coordinates in PSTricks are written in parenthesis, while nodes are not. In
uml.sty, no parenthesis are used.

This imply that relation only can be between Nodes, and not between other coordinates. But some-
times, we want to use the power of other coordinate kinds while placing relations.

26.1 PlaceNode

To do that, use the command \umlPlaceNode, which has a lot of power, and places a node. Note that
\umlPlaceNode only places a new node (named after its third argument); it is no node itself.
One may want to do something like

\umlPlaceNode[top=-2em,rightside]{A}{Aright}
\umlPlaceNode[top=-2em,leftside]{B}{Bleft}
\umlSubclass[ref=AB]{Aright}{Bleft}

Why should it not be legal to say something like

\umlSubclass[top=-2em,rightsideA, leftsideB]{A}{B}

31

\umlPlaceNode

leftside-
rightside-
top-
bottom-
left-
right-
up-

down-
angle-
offset-
nodesep-

\umlTop
\umlRight
\umlBottom
\umlLeft
\umlTopRight
\umlBottomRight
\umlBottomLeft
\umlTopLeft

0
It is possible to implement the latter syntax, but that would require a great amount of new nodes.
It is already a problem that uml.sty relations uses so many nodes, so I have chosen to keep the first
syntax. After all, I do not expect \umlPlaceNode to be used often.

\umlPlacenodetakes three arguments: Its named options, a node and a name to be used as a name of
the new node.

It takes several named options:

leftside, rightside, top and bottom makes \umlPlaceNode start at one side of the node. They all
can take one length as argument. One horizontal and one vertical of these can be combined.

left, right, up and down These makes \umlPlaceNode go in one of the four directions. Several (even
of the same type) can be combined. Legal values are lengths.

angle, angleX and angleY angle from the node to start with.
offset, offsetX and offsetY

nodesep, nodesepX and nodesepY separation from the node.

26.2 Coordinates

Legal coordinates are:
(z), (y) The usual Cartesian coordinate. E.g., 3,4.

(r);{a) Polar coordinate, with radius (r) and angle (a). The default unit for (r) is the PSTricks
unit. E.g., 3;110.
(node) The center of (node). (node) can be any valid PSTricks node. Various commands in uml.sty

places a number of nodes, which can be used as reference points.

e Most constructs can be given a node name using the reference= named option.

e For classes and schemas, default node name (when reference= is not used) is the Class
name or Schema name itself.

e Relations place nodes, see documentation in 18 on page 20.

[(par)1{node) The position relative to (node) determined using the angle, nodesep and offset
parameters. E.g., ([angle=90]Car).

(coor1)|{coor2) The z coordinate from (coorl) and the y coordinate from (coor2). (coorl) and
(coor2) can be any other coordinates. For example, (Car|1lin;30). However, you may instead
want to use named options such as posX and deltaPosY to achieve this.

Position commands take a node as parameter and return an coordinate. The different position
commands are shown below. E.g., \umlClass[pos=\umlBottomRight{Car}]{Wheel}{}{}.

Note that you should usually omit the parentheses in uml.sty. This is due to the fact that the
({coor1) | {coor2)) construct requires two parts without parentheses.

Also note that coordinate pairs containing parentheses as values to named options my cause problems.
You have to enclose them in braces. E.g., \umlClass[pos={3,3}]1{Car}{}{}.

26.2.1 Coordinate commands

This is kept for backward compatibility. However, only the first group of Coordinate commands should
be useful now. The others are deprecated.

A coordinate command takes an node (and possibly other things) as argument, and return a coordinate.
Several groups of coordinate commands exist:

32

\umlTopSep
\umlRightSep
\umlBottomSep
\umlLeftSep
\umlTopRightSep
\umlBottomRightSep
\umlBottomLeftSep
\umlTopLeftSep
\umlNodeSep
\umlTopOpt
\umlRightOpt
\umlBottomOpt
\umlLeftOpt
\umlTopRightOpt
\umlBottomRightOpt
\umlBottomLeftOpt
\umlTopLeftOpt
\umlTopSepOpt
\umlRightSepOpt
\umlBottomSepOpt
\umlLeftSepOpt
\umlTopRightSepOpt
\umlBottomRightSepOpt
\umlBottomLeftSepOpt
\umlTopLeftSepOpt
\umlNodeSepOpt

Simple commands The commands \umlTop, \umlRight, \umlBottom, \umlLeft, \umlTopRight,
\umlBottomRight, \umlBottomLeft and \umlTopLeft all take one argument: the node

Commands with separation The commands \umlTopSep, \umlRightSep, \umlBottomSep, \umlLeftSep,
\umlTopRightSep, \umlBottomRightSep, \umlBottomLeftSep and \umlTopLeftSep returns a po-
sition \umlNodeSep from the position of the argument. \umlNodeSep is default lem, but may
be changed by the user.

Commands taking options The commands \umlTopOpt, \umlRightOpt, \umlBottomOpt, \umlLeftOpt,
\umlTopRightOpt, \umlBottomRightOpt, \umlBottomLeftOpt and \umlTopLeftOpt takes two ar-
guments, both mandatory: a comma-separated list of (key)=(value) pairs, where (key) can be
angle (value: number), nodesep (value: length) or offset (value: length). The second argu-
ment is the node

Commands with separation taking options The commands \umlTopSepOpt, \umlRightSepOpt,
\umlBottomSepOpt, \umlLeftSepOpt, \umlTopRightSepOpt, \umlBottomRightSepOpt, \umlBottomLeftSepOpt
and \umlTopLeftSepOpt takes two arguments and do just what you expect them to.

27 A large example (Abstract Data Structures)

Figure 12 on the next page is a more large model of some standard ADTs. It is an example of both
\umlSchema and some relations. It also is an example of the Schema construct itself, but is primarily
intended to be a uml.sty example, and is not intended to be a good ADT model.

The command Technically, the following source defines a command \umlADTExample, which is
used in figure 12 on the following page.

1| \providecommand\umlADTExample{

The diagram The diagram is a box which uses room. It is 15 ¢cm wide and 16 c¢m high, and has
the reference ADTdiagram. It has a grayness of 92 %. If we did not supply a grayness, it would get the
umlDiagramFillcolor of the current color set.

Note that, technically, it is not necessary to have the semantical contents of the diagram inside its
KTEX argument.

1 \umlDiagram[box=,sizeX=15cm, sizeY=16cm,ref=ADTdiagram,
2 grayness=0.92]{}% End of diagram

ADT The schema (or class) ADT is located in the top right corner of the diagram (which had
reference ADTdiagram. More accurately, its top right (tr) corner is placed half an unit left and half
an unit down relative the the top right corner.

1 \umlSchema[pos=\umlTopRight{ADTdiagram}, posDelta={-.5,-.5},
2 refpoint=tr]{ADT}{% Attributes
3 \umlAttribute[visibility, type=String]{name}}{}{}{3}{}

33

ADT-example
- firstNode : type = null _
fype : Metaclass | = _ ____——————"7"7777

Node —| Graph
+data : type
L v\ ~+insert(type x)
+dijkstra(type x) : type
AN ~+insertEdge(type x) : boolean

+delete(type x)

Edge

Nodej_ |

cost : real

Search Tree

~+insert(type x)
+search(type x) : type
+search(type x) : boolean
+delete(type x)

arity : Integer= 2
sort : type X type — boolean = >

arity
Node :|
1
List <l
Queue Stack
~+enqueue(type x) + push(type x)
NOde:I 1 +dequeue() : type +pop() : type
. First come, first served.| [S:Stack = S.push(x).pop()

ADT

+name : String

Figure 12: ADT model. Bad model, good uml.sty example.

34

ADT-example The schema ADT-example is located in the upper left corner of the diagram. It
is an abstract schema, giving italics name in the diagram. Because the class name contains a dash, a
reference (ADTexample) must be supplied.

This schema also takes an argument (type). This is not the place to fully explain the semantics of
arguments, but type can be given any Metaclass as value.

Everywhere in the schemas an argument is used, this color is used. Here, the code is getting a bit

clogged up with color code. If you read this the first time, please ignore the commands starting with
\umlColor.

1 \umlSchema[pos=\umlTopLeft{ADTdiagram}, posDelta={.5,-1},
2 refpoint=1t, abstract,
3 ref=ADTexample]{ADT-example}{%
4 \umlAttribute[visibility=-,
5 type=\emph{\umlColorsArgument\umlColorsAdjust type},default=null]{%
6 firstNode}
7 } %Methods
8 H %Arguments
9 \umlArgument[type=Metaclass]{type}
10 }{ %Constraints
1 H %Structure
12 \umlDiagram[box=,innerBorder=2mm, outerBorder]{%
13 \umlClass[pos={.5, .5}, ref=adtNode,box=]{Node}{%
14 \umlAttribute[visibility,
15 type=\emph{\umlColorsArgument\umlColorsAdjust type}]{%
16 datal}}{}%
17 \umlAssociation[angleA=20, angleB=-20,
18 arm=1lem, arm=lem]{adtNode}{adtNode}%
19 \cr% End of Diagram
20 }% End of ADT-example
Then the isInstance relation between ADT-example and ADT. This is shown as a dashed arrown with
an arrowhead towards ADT.
1 \umlInstance{ADTexample}{ADT}%

Graph Graph is a subclass (subschema) of ADT-example. Thus, it is implicitly inheriting the
attribute firstNode, the argument type, the structure Node (with the relation), and the isInstance-
relationwhip to ADT.

What is added, is four well-known procedures, the *—*-specification of the Node-Node-relation, and
the association class Edge.

What is inherited from ADT-example (Node and the Node—Node-relation) is drawn with the
\umlColorsSub color set. Note that the relation is brown, while the relation multiplicities is black.
All the nodes are given references, in order to separate them from each other (they have equal class
names). However, it might work to let Node mean the last defined Node all the time.

1 \umlSchema[pos=\umlRight{ADTexample}, posDelta={3,-1},

2 refpoint=tl,]{Graph}{% Attributes

3 H% Methods

4 \umlMethod[visibility,]{%

s insert}{\emph{\umlColorsArgument\umlColorsAdjust type} x}
6 \umlMethod[visibility,

35

7 type=\emph{\umlColorsArgument\umlColorsAdjust type}]{%

8 dijkstra}{\emph{\umlColorsArgument\umlColorsAdjust type} x}
9 \umlMethod[visibility, type=boolean]{%

10 insertEdge}{\emph{\umlColorsArgument\umlColorsAdjust type} x}
n \umlMethod[visibility,]{%

12 delete}{\emph{\umlColorsArgument\umlColorsAdjust type} x}
13 }{% Arguments

14 H% Constraints

15 H% Structure

16 \umlDiagram[box=,innerBorder=2mm, outerBorder,

17 sizeX=1lem,sizeY=3.5em,ref=GraphDiagram]{%

18 \begin{umlColors}{\umlColorsSub}

19 \umlClass[pos=\umlBottomLeft{GraphDiagram},

20 posDelta={1,1}, ref=graphNode]{Node}{}{}%

21 \umlAssociation[angleA=20, angleB=-20, armA=lem, armB=lem
2 1{graphNode}{graphNode}%

23 \end{umlColors}

24 \umlLabelA[height=0mm,offset=1ex]{graphNodegraphNode}{+*}%
25 \umlLabelB[height=0mm,offset=1ex,refpoint=t

26 J{graphNodegraphNode}{+}%

27 \umlSymbol[fraction=.5]{graphNodegraphNode}{\pnode{gngn}}
28 \umlClass[pos=gngn, posDelta={2,0},

20 ref=graphEdge, refpoint=1]{Edge}{%

30 \umlAttribute[type=real]{cost}}{}%

31 \umlAssociationClass[]{graphEdge}{gngn}%

32 \cxr% End of diagram

33 }% End of Graph

Graph is an subschema of ADT-example.

1 \umlSubclass{Graph}{ADTexample}

Search Tree This schema is vertically positioned relative to ADT-example, and horizontally below
Graph.

It has four well-known methods. It has two arguments (in addition to type); arity is an integer which
default to 2, giving a binary tree. sort is a function itself taking as arguments two instances of type
and returning true or false. It defaults to “greater than”.

1 \umlSchema[posX=\umlLeft{ADTexample}, posDelta={3em,-lem},

2 posY=\umlBottom{Graph},

3 refpoint=tl, ref=searchTree]{Search Tree}{% Attributes
4 }{% Methods

5 \umlMethod[visibility,]{%

6 insert}{\emph{\umlColorsArgument\umlColorsAdjust type} x}
7 \umlMethod[visibility,

8 type=\emph{\umlColorsArgument\umlColorsAdjust type}]{%
9 search}{\emph{\umlColorsArgument\umlColorsAdjust type} x}
10 \umlMethod[visibility, type=boolean]{%

1 search}{\emph{\umlColorsArgument\umlColorsAdjust type} x}
12 \umlMethod[visibility,]{%

36

13 delete}{\emph{\umlColorsArgument\umlColorsAdjust type} x}
14 % Arguments

15 \umlArgument[type=Integer, initialValue=2]{arity}

16 \umlArgument[type={${\umlColorsArgument\umlColorsAdjust type}
17 \times {\umlColorsArgument\umlColorsAdjust type}\rightarrow$
18 boolean}, default=>]{sort}

19 }{% Constraints

20 H% Structure

21 \umlDiagram[box=, sizeX=14em, sizeY=4em,

22 innerBorder=2mm, outerBorder]{%

23 \begin{umlColors}{\umlColorsSub}

21 \umlClass[pos={.5, .5}, ref=treeNode]{Node}{}{}%

25 \umlAssociation[angleA=30, angleB=-30, armA=lem, armB=lem
26]{treeNode}{treeNode}%

27 \end{umlColors}

28 \umlLabelA[height=1mm, offset=4mm,refpoint=1

20 J{treeNodetreeNode}{%

30 \emph{\umlColorsArgument\umlColorsAdjust arity}}%

31 \umlLabelB[refpoint=tl,height=-1mm, offset=4mm,

32]J{treeNodetreeNode}{1}%

33 }\cr% End of diagram

34 Y%

35 \umlSubclass{searchTree}{ADTexample}%

List There is not much new here.

1 \umlSchema[pos=\umlBottomLeft{searchTree},posDelta={0,-1},
2 refpoint=1t]{List}{%Attributes

3 H% Methods

4 % Arguments

5 }{% Constraints

6 H% Structure

7 \umlDiagram[box=, sizeX=6em, sizeY=4em,

8 innerBorder=2mm, outerBorder]{%

9 \begin{umlColors}{\umlColorsSub}

10 \umlClass[pos={.5, .5}, ref=1listNode]{Node}{}{}%
1 \umlAssociation[angleA=30, angleB=-30, armA=lem, armB=lem
12]{listNode}{listNode}%

13 \end{umlColors}

14 \umlLabelA[height=1mm, offset=5mm, refpoint=1

15]{listNodelistNode}{1}%

16 \umlLabelB[refpoint=tl, height=-1mm,offset=5mm

17 J{listNodelistNode}{1}%

18 }\cr% End of diagram

19 }% End of Schema List

Before making the actual subclass relation from List to ADT-example, we place node to point to and
from. This is in order to better control the placement of the end points. (Really, it is to demonstrate
\umlPlaceNode :-)

37

The first one is called Listtl, and is placed 1 em below the top left corner of List. The second is
named ADTexamplebl, and placed 2 em to the right of the bottom left corner of ADT-example.
The subclass relation itself has an arm A of 1 em sticking out from List.

1 \umlPlaceNode[leftside, top, down=lem]{List}{Listtl}
2 \umlPlaceNode[leftside,right=2em,bottom]{ADTexample}{ADTexamplebl}
3 \umlSubclass[armA=1.4142em, armAngleA=135]{Listtl}{ADTexamplebl}%

Queue A Queue inherits pretty much from List, ADT-example and ADT. Only two methods and
one constraint (in natural language) is added explicitly.

1 \umlSchema[pos=\umlTopRight{List},posDelta={lem,-2em},

2 refpoint=t1]{Queue}{% Attributes

3 H\umlMethod[visibility]{%

4 enqueue}{\emph{\umlColorsArgument\umlColorsAdjust type} x}

s \umlMethod[visibility, type=\emph{\umlColorsArgument\umlColorsAdjust type}]1{%
6 dequeue}{}}{ %Arguments

7 }{%Constraints

8 \umlCompartmentline{First come, first served.}

9 H% Structure

10 }% End of Queue

1 \umlPlaceNode[rightside, top, down=lem]{List}{Listtr}

12 \umlSubclass[angleA=90, armAngleA=135, armA=1.4142em]{Queue}{Listtr}%

Stack Remember, Stack is still a subclass of List and of ADT-example, and an instance of ADT.
Thus, Stack really resembles figure 10 on page 27 closely.

1 \umlSchema[pos=\umlTopRight{Queue},posDelta={\umlNodeSep,Oem},

2 refpoint=tl1]{Stack}{%Attributes

3 }{% Methods

4 \umlMethod[visibility]{

5 push}{\emph{\umlColorsArgument\umlColorsAdjust type} x}

6 \umlMethod[visibility, type=\emph{\umlColorsArgument\umlColorsAdjust type}]1{%
7 pop}{}

8 % Arguments

9 }{% Constraints

10 \umlCompartmentline{S:Stack = S.push(x).pop()}

1 H% Structure

12 }% End of Stack

13 \umlSubclass[angleA=90, armAngleA=135, armA=1.4142em]{Stack}{Listtr}%
14 }

28 Typesetting the implementation

I want the line numbers and the macro names to be right-aligned together, close to the text. It is
important to make a virtual vertical line in order to make some order in the pages.

However, doc.sty contains a spurious space (in \m@cro@, where \PrintMacroName and where
\PrintEnvName are used). This space shows up after the macro name. To overcome this, I make

38

a length \minusSpace of length one negative space in the right font, and make a \hspace of this
length.

28.1 The documentation driver file

The next bit of code contains the documentation driver file for TEX, i.e., the file that will produce the
documentation you are currently reading. It will be extracted from this file by the docstrip program.
Since it is the first code in the file one can alternatively process this file directly with BETEX 2¢ to
obtain the documentation.

<*package>

29 Introductory code

29.1 Identification

1 \NeedsTeXFormat{LaTeX2e}
2 \ProvidesPackage{uml}

29.2 Processing of options

29.2.1 debug

debug The option debug is used if you want some extra lines shown. Intended for debugging of this package.

3 \DeclareOption{debug}{
4 \def\umlDebugLineStyle{dashed}
5 \def\umlDebugLength{lpt}
6 1}
7 \DeclareOption{nodebug}{
8 \def\umlDebugLineStyle{none}
9 \def\umlDebugLength{Opt}
10 }

\umlDebugLinestyle A linestyle normally none. The linestyle of invisible leading lines.

11 \def\umlDebugLinestyle{none}

\umlDebugLength A length normally Opt. E.g., the breadth of invisible lines.
12 \def\umlDebugLength{Opt}

29.2.2 index

index The option index makes all Stretchboxes and Features (all Drawables with names make an index entry
of the form (name)!(type).

13 \newcommand\umlIndexOn{\renewcommand\umlIndex[2]{\index{##1!##2}}}
14 \newcommand\umlIndexOff{\renewcommand\umlIndex[2]{}}

15 \DeclareOption{index}{\umlIndexOn}

16 \DeclareOption{noindex}{\umlIndexOff}

\umlIndex Takes two arguments: Type and Name.
17 \newcommand\umlIndex[2]{\index{#1!#2}}

39

29.2.3 Processing the options

Default is the index option.

18 \ExecuteOptions{nodebug}
19 \ProcessOptions

29.3 Using other packages
uml. sty relies heavily on the BTEX packages pstricks and pst-node [PSTricks|. Most of the graphics
is displayed using pstricks.

20 \RequirePackage{pstricks}
21 \RequirePackage{pst-node}

pst-xkey [xKeyval] is the package which handles Keys can be set as usual for PStricks related
package with \psset[uml]{...}, where the family name uml is optional. named options (like
[name=Name, reference=Ref]).

22 \RequirePackage{pst-xkey}
23 \pst@addfams{uml,umlAE,umlPlaceNode}

relsize [Relsize] handles relative sizes, with macros like \Larger and \relsize{-1}.
24 \RequirePackage{relsize}

We also need the color package, which is already loaded by the pstricks package.

30 General syntax

Users used to BTEX and PSTricks will recognize a lot of syntax.

An important implementation point is that any contents (which can affect variables) is typeset after
all the variables is used. If it is not, the different boxes inside each other get intertwined with strange
results. \umlDiagram uses \expandafter to assert this.

25 \def\umlTrueVariable{true}

30.1 Lengths

26 \psset{unit=1lem}

30.2 Angles
31 Drawable

Each main uml.sty command (those drawn as schemas at pages 7-11) is implemented in the same
pattern.

\umlDrawableNull First, all the variables (in the \umlDrawable case, just one) are set to their default values.

27 \def\umlDrawableNull{%

28 \def\umlImport{}%

29 \def\umlKind{Drawable}%

30 \gdef\umlName{DrawableNameDefault}%

31 \def\umlNameDefaul t{DrawableNameDefault}%

32 %\ifx\umlName\umlNameDefault\else umlName is changed
33 }

40

31.1 Named options

Of course, it would be more elegant to treat one variable at a time, setting it to its default value and
handling its named options at the same place. However, I have not found any way to do so.

Then, the named options are handled. Most of them modify the variables. In this case, there is only
one named option (import) which modify one variable (\umlColor). In most cases, the named option
and the variable has corresponding names.

kind- The kind (type, metaclass) of the Drawable, e.g., Class.
34 \define@key[psset]{uml}{kind}{\def\umlKind{#1}}

name- The name of the Drawable, e.g., Car.
35 \define@key[psset]{uml}{name}{\gdef\umlName{#1}}

31.2 Colors

As said in section ?7?, colors are primarily handled by Drawable. However, due to some technical ob-
scurities in TEX, the implementation is done in the known subclasses (\umlElement, \umlCompartment
and \umlCompartmentline).

The technical obscurities in TEX is this: The brackets ({}) needed to limit the scope of colors,
cannot contain table line breaks. \umlCompartmentline, which uses to be placed inside a table
(\umlClassifier), must put the line break outside the brackets.

import-
36 \define@key[psset]{uml}{import}{\umlColorsImport}

noimport-
37 \define@key[psset]{uml}{noimport}{\umlColorsDefault}

argument-
38 \define@key[psset]{uml}{argument}{\umlColorsArgument}

argument-
39 \define@key[psset]{uml}{colorset}[\umlColorsDefault]{#1}

31.3 The command
And then the command itself.

\umlDrawable This command does not do much work. It just process the nmed options.
40 \newcommand\umlDrawable[2][]{%
It sets its variables to default values,
41 \umlDrawableNull%
process the named options
42 \psset[uml]{kind=Drawable, #1}%
and typesets it second argument. This argument, the contents, typically uses some of the variables.

43 #2%
44 }

41

32 Element

\umlElementNull \umlElement follows the same pattern as \umlDrawable and the other main commands; first, it sets
its variables to the default values, then handles the named options, and least define the command
itself to call its “supercommand”.

45 \def\umlElementNull{%

46 \def\umlReference{refdef}%
47 \def\umlStereotype{}%

48 \def\umlSubof{}%

49 \def\umlImportedFrom{}%

50 \def\umlComment{}%

51 \def\umlAbstract{}%

52 }

reference- ref is provided as an short-form for reference.

53 \define@key[psset]{uml}{reference}{\def\umlReference{#1}}
54 \define@key[psset]{uml}{ref}{\def\umlReference{#1}}

stereotype- The WTEX variable itself sometimes contains not only the value itself, but some grahical stuff around.

55 \define@key[psset]{uml}{stereotype}{%
56 \def\umlStereotype{{\hfil<<#1>>\hfil}\\}}

subof-
57 \define@key[psset]{uml}{subof}{\def\umlSubof{{~Sub of: #1}\\}}

abstract- The abstract named option also affects the graphical name in \umlStretchbox.
58 \define@key[psset]{uml}{abstract}[]{\def\umlAbstract{\emph}}%

importedFrom-

59 \define@key[psset]{uml}{importedFrom}{%
60 \def\umlImportedFrom{{~From: #1}\\}%
61 \umlColorsImport%

62 }

comment-
63 \define@key[psset]{uml}{comment}{\def\umlComment{{~#1}\\}}

\umlElement The command itself just calls \umlDrawable.

64 \newcommand\umlElement [2][]{%

65 \umlElementNull%

66 {\umlDrawable[kind=Element,#1]{%
67 \umlColorsAdjust%

68 #23}3}}

33 Box
33.1 Positioning

One of the main responsibilities of \umlBox is to place the box in the right position. In order to achieve
this, \umlBox uses two macros, \umlBoxPosCommand and \umlBoxPosDeltaCommand. Each of these, in

42

\umlBoxNullPositions

69
70
71
72
73
74
75
76
s
78
79
80
81

pos-
82

83
84

turn, uses other macros, which ultimately are set to default values. How this happends is indicated
in figure 13.

The user can modify this tree by the named options pos, posX, posY, posDelta, posDeltaX, posDeltaY
and refpoint.

\umlBox
\umlBoxPosCommand \umlBoxPosDeltaCommand
\umlRefpoint \umlPos \umlPosDelta
refpoint= pos= posDelta=
b1 \umlPosX \umlPosY \umlPosDeltaXumlPosDeltaY
posX= posY= posDeltaX= posDeltaY=
(0,0) (0,0) (0,0) (0,0)

Figure 13: Positioning of boxes. The arrows here means “calls”. The user can affects this tree
by several named options.

First, the variables are set to their null values. This command is called from \umlBox via \umlBoxNull.

\def\umlBoxNullPositions{%
\def\umlPosCommand{%

\rput[\umlRefpoint] (\umlPos)}%
\def\umlPos{\umlPosX|\umlPosY}%
\def\umlPosX{0,0}%

\def\umlPosY{0,0}%
\def\umlPosDeltaCommand{%

\rput[\umlRefpoint] (\umlPosDelta)}%
\def\umlPosDelta{\umlPosDeltaX|\umlPosDeltaY}%
\def\umlPosDeltaX{0,0}%
\def\umlPosDeltaY{0,0}%

\def\umlRefpoint{bl}%

}%
Note that all the named options starting with pos takes legal values as arguments. You must write
posX={1lem,0} even if he zero is ignored.

\define@key[psset]{uml}{pos}[0,0]{\def\umlPos{#1}}
\define@key[psset]{uml}{posX}[0,0]{\def\umlPosX{#1}}
\define@key[psset]{uml}{posY}[0,0]{\def\umlPosY{#1}}

43

posDelta- The reference point of the box is placed at pos 4+ posDelta.

85 \define@key[psset]{uml}{posDelta}[0,0]{\def\umlPosDelta{#1}}
86 \define@key[psset]{uml}{posDeltaX}[0,0]{\def\umlPosDeltaX{#1}}
87 \define@key[psset]{uml}{posDeltaY}[0,0]{\def\umlPosDeltaY{#1}}

refpoint- Legal values are reference points (sec. 1.4)
88 \define@key[psset]{uml}{refpoint}{\def\umlRefpoint{#1}}

33.2 Boxes in text

\umlBoxNullBoxes Normally, a box is an empty hbox. This can be changed using the named option box=. It takes no
values (i.e. possible values are ignored). It makes the box taking the natural size of its contents.

89 \def\umlBoxNullBoxes{%
This is how the box is made a zero size hbox then the box= named option are not in effect.

90 \def\umlBoxH{\hbox to Ocm}%
91 \def\umlBoxV{\smash}%
92 1%

box- This gives the box its natural size.

93 \define@key[psset]{uml}{box}{%

94 \def\umlBoxH{}% no \hbox to Ocm

95 \def\umlBoxV{}% no \smash anymore

96 \def\umlPosCommand{}% no \rput... anymore
97 \def\umlPosDeltaCommand{}}% Ditto

33.3 The visual appeareance

\umlBoxNullVisual

98 \def\umlBoxNullVisual{%
99 \def\umlGrayness{1}%
100 \def\umlBorder{Omm}%
101 \def\umlInnerBorder{Omm}%
102 \def\umlOuterBorder{Omm}%
103 \def\umlFillcolorCommand{umlFillcolor}%
104 }%

grayness- The grayness of the background in the box. Legal values are real numbers between 0 (black) and 1
(white). Default without named option is 1. Default with named option is 0.85.

105 \define@key[psset]{uml}{grayness}[.85]{\definecolor{umlFillcolor}{gray}{#1}}

fillcolorCommand- \umlFillcolorCommand returns the name of the current fill color.

106 \define@key[psset]{uml}{fillcolorCommand}[umlFillcolor]{%
107 \def\umlFillcolorCommand{#1}}

border- The thickness of the outer border. Default without named option is 0 mm, with 0.4 pt. Legal values
are lengths.

108 \define@key[psset]{uml}{border}[0.4pt]{\gdef\umlBorder{#1}}

44

outerBorder- The margin around the border. Default is \umlhsep.
109 \define@key[psset]{uml}{outerBorder}[1pt]{\def\umlOuterBorder{#1}}

innerBorder- The space left between the edge of the box and its contents. Default is \umlhsep.
110 \define@key[psset]{uml}{innerBorder}[\umlhsep]{\def\umlInnerBorder{#1}}

33.4 Size
\umlBoxNullSize The minimum size of the box (or rather, the space left for the contents). Different boxes (i.e.,
\umlStretchBox and \umlDiagram use different algorithms for sizeing the box.
111 \def\umlBoxNullSize{%
112 \def\umlSizeX{5mm}%

113 \def\umlSizeY{7mm}%
114 }

size- Minimum values, used mostly by \umlDiagram. Legal values are lengths.

115 \define@key[psset]{uml}{sizeX}{\def\umlSizeX{#1}}
116 \define@key[psset]{uml}{sizeY}{\def\umlSizeY{#1}}

33.5 Holding together all the named options

\umlBoxNull Just to invoke the other macros.

117 \def\umlBoxNull{%

118 \umlBoxNullPositions%
119 \umlBoxNullBoxes%

120 \umlBoxNullVisual%

121 \umlBoxNullSize%

122 }%

33.6 The command
\umlBox A box is a rectangle with position and size. \umlBox takes two arguments: The named options and

the contents.

123 \newcommand\umlBox[2][]{\1leavevmode%
The variables are set to default

124 \umlBoxNull%
and \umlElement is invoked, with new contents.

125 \umlElement[kind=Box,#1]{%
Determines how large hbox I¥TEX should think this is

126 \umlBoxH{% \hbox to Ocm or nothing
127 \umlBoxV{% \smash or nothing

rputs the stuff the right place

128 \umlPosCommand{%
129 \umlPosDeltaCommand{%

the box is a node

130 \rnode{\umlReference}{%

45

with outer margin

131 \setlength{\fboxrule}{Omm}%
132 \setlength{\fboxsep}{\umlOuterBorder}%
133 \fbox{%
border
134 % \setlength{\fboxrule}{\umlBorder}%
135 % \setlength{\fboxsep}{0Omm}%
136 % \fbox{%
and some color and inner margin
137 \psframebox[framesep=\umlInnerBorder,
138 linewidth=\umlBorder,
139 fillcolor=\umlFillcolorCommand, fillstyle=solid]{%
around the contents.
140 #2}%
141 % 3%
142 1%
143 1%
144 1%
145 1%
146 }%
147 Y%
148 1%
149 }

34 Diagram

A diagram determines its size before typesetting the contents. This in order to be able to place the
contents relative to the borders of the diagram.

\umlDiagramNull The macro \umlDiagramNull sets the variables to their default variables.

150 \newcommand\umlDiagramNull{%
151 \def\umlGrid{}%
152}

grid-
153 \define@key[psset]{uml}{grid}[1]{\message{named option grid is deprecated and of no use}}

34.1 The command

\umlDiagram
154 \newcommand\umlDiagram[2][]{%
First, the variables are set to their default values.
155 \umlDiagramNull%

For some reason, \umlDiagram without the box= named option gives an error. I do not understand
why, but it appears to be an illegal paragraph break at \umlBoxV in \umlBox.

156 \umlBox[kind=Diagram, fillcolorCommand=umlDiagramFillcolor,
157 box=,#1]{%

46

#2 is the contents. The rules are to make sure the diagram is big enough. The rules are normally
invisible, because \umlDebugLength normally is O pt.

However, the rules must be evaluated before the contents, so possible \umlBoxes does not inflict
on \umlSizeX and \umlSizeY. Thus, the \expandafter, which assert that #2 is typeset before, but
expanded after, the rules.

158 \expandafter{#2}{%

159 \rule{\umlDebuglength}{\umlSizeY}%
160 \rule{\umlSizeX}{\umlDebugLength}}%
161 }%

162 }%

35 Stretchbox

\umlStretchbox is the first command to take three arguments: The optional named options, a name
and some contents.

\umlStretchboxNull

163 \newcommand\umlStretchboxNull{%
164 \def\umlGraphicalName{StrechboxDefault{\umlAbstract\umlName}\\}%
165 }

\umlGraphicalName \umlGraphicalName is a name, possibly with some graphical fuzz, to be printed in the box.

\umlStretchbox The macro itself just handles the name. The reference is by default set to the name.
A stretchbox first typesets its contents, and then take size depending on the contents. This as opposed
to a diagram, which determine the size first.

166 \newcommand\umlStretchbox[3][]{%

167 \umlStretchboxNull%

168 \umlBox[kind=Stretchbox, name={#2}, ref={#2}, #11{%
169 \umlIndex{\umlName}{\umlKind}%

170 \rnode{\umlReference}{#3}%

171 1%

172 %

36 Package

\umlPackage
173 \newcommand\umlPackage[3][]{%
174 % Null unneccessary
175 \def\umlName{#1}%
176 \begin{tabular}{@{}1l@{}}%
The upper rectangle. It may seem natural to make this a \umlStretchbox, but then we risk variable
interference between the two instances of \umlStretchbox. It does not work in practice either.

177 \umlStretchbox[kind=Package, border=0.4pt,#1]{#2}{%

178 \def\umlGraphicalName{%

179 {\umlhspace\hfill\relsize{2}\textbf{\umlName}%
180 \rule{Omm}{2.3ex}\hfill\umlhspace}\\%

181 1%

47

182 \rnode{small\umlReference}{%

183 \begin{tabular}{@{}1@{}}%
184 \umlStereotype%

185 \umlGraphicalName%

186 \umlImportedFrom%

187 \umlComment%

188 \umlSubof%

189 \end{tabular}}}%

There is no need for double width border between the parts of the package, so we step back a bit.
190 \cr\noalign{\vskip -\umlBorder}%
The lower rectangle

191 \umlStretchbox[kind=Package,border=0.4pt,#1]{#2}{%
192 \rnode{big\umlReference}{%
193 \begin{tabular}{@{}1@{}}%

Start the boxes in the lower rectangle

Insert the contents
194 #3%
195 \cr%

Here (in the \cr?), there is some vertical space. I still have some work to do to understand the vertical
lengths in tabular.

196 \end{tabular}}}% End of lower rectangle
197 \end{tabular}%
198 }%

37 Classifier

A classifier is a stretchbox which contains compartments. A classifier can be instanciated, or be an
instance.

\umlClassifierNull

199 \newcommand\umlClassifierNull{%
200 \def\umlObject{}%

201 \umlClassifierEmptytrue%
202 }

203 \newif\ifumlClassifierEmpty%

object- This makes the classifier be an instance (object). Graphically, this is shown by an line under the
classifier name. Note that instances cannot be abstract.

204 \define@key[psset]{uml}{object}{\def\umlObject{\underbar}}

suppress- Makes \umlSuppressionOn active in the classifier (empty compartments are not shown). For imple-
mentation: see on page 50.

instance- instance is provided as an equivalent to object.

205 \define@key[psset]{uml}{instance}{\def\umlObject{\underbar}}

48

\umlClassifier \umlClassifier is implemented as a table inside a \umlStretchbox. The contents must be able to be
inside a table. The contents is typically \umlCompartments.

206 \newcommand\umlClassifier[3][]1{%
Variables set to default values
207 \umlClassifierNull%
Names fixed. Uses \umlAbstract.
208 \def\umlName{#2}%
Grayness and border are given default values, possible to override.

209 \umlStretchbox[kind=Classifier,border=.4pt,
210 fillcolorCommand=umlClassifierFillcolor,#1]{#2}{%

\umlGraphicalName must be defined here not to be overridden by \umlStretchboxNull. Note the
invisible rule to make some space.

211 \def\umlGraphicalName{%

212 \rule{Omm}{2.8ex}%

213 \umlhspace\larger\hfill\textbf{%

214 \umlAbstract{\umlObject{\umlName}}}\hfill\umlhspace\\}%
215 \begin{tabular}[tl]{@{}1@{}}%

216 \umlStereotype%

217 \umlGraphicalName%

218 \umlImportedFrom%

219 \umlComment%

220 \umlSubof%

221 #3%

222 % \ifhmode hmode\else not\fi

223 % \\\noalign{\vskip -15pt}%

224 \ifumlClassifierEmpty\\\noalign{\vskip -2.5ex}\fi
225 \end{tabular}%

226 %

227 1%

38 Class

\umlClass A class is a classifier with the three usual compartments.
There is not much work left for \umlClass:

228 \newcommand\umlClass[4][]{%
A \umlClassNull is unneccessary, as there is no variables here.
229 \umlClassifier[kind=Class,#1]{#2}{%

230 \umlCompartment [name=attributes]{#3}%
231 \umlCompartment [name=operations]{#4}%
232 %

233 %

39 Schema

\umlSchema A schema is a classifier with some more compartments.

234 \newcommand\umlSchema[7][]{%

49

Null unneccessary here too.
235 \umlClassifier[kind=Schema,#1]{#2}{%

236 \umlCompartment [name=attributes]{#33}% Attributes
237 \umlCompartment [name=operations]{#4}% Methods

238 \umlCompartment[name=arguments]{#5}% Arguments

239 \umlCompartment[name=constraints]{#6}% Constraints
240 \umlCompartment [name=structure]{#7}% Structure

241 1%

242 %

40 Compartment

Classifiers (e.g., classes) are drawn as compartments (boxes) below each other.
\umlCompartment takes two arguments: a optional list of named options, and the contents.

\umlCompartmentNull

243 \newcommand\umlCompartmentNull{%
244 }

\ifisnull A handy command stolen from [AdvancedTeX, p.126|. If first argument is empty, execute the second;
else execute the third.

245 \def\ifisnull#1#2#3{\def\inner{#1}%
246 \ifx\inner\empty%

247 #2\else{}#3%

248 \fi}

last-

249 \define@key[psset]{uml}{last}[]{%
250 \message{The named option last= is deprecated and of no use.}%
251 }

40.1 Suppression

i fumlCompartmentSuppress The boolean variable umlCompartmentSuppress affects whether empty compartments should be sup-
pressed or not.
You can set the variable (saying \umlCompartmentSuppresstrue or \umlCompartmentSuppressfalse)
whenever you like.

252 \newif\ifumlCompartmentSuppress

suppress- You can also set it for a construct (e.g., one compartment or an entire classifier) with the named
option suppress. When used, it is default true.

253 \define@key[psset]{uml}{suppress}[true]{%

254 \def\arg{#1}%

255 \ifx\arg\umlTrueVariable\umlCompartmentSuppresstrue%
256 \else\umlCompartmentSuppressfalse%

257 \fi%

258 }

50

40.2 Compartment names

fumlCompartmentNamesShow The boolean variable umlCompartmentNamesShow affects whether compartment names should be shown
or not.
Compartment names are shown top centered in a distinct font in the compartment.
You can set the variable (saying \umlCompartmentNamesShowtrue or \umlCompartmentNamesShowfalse)
when you like.

259 \newif\ifumlCompartmentNamesShow

showname- You may also use the named option showname for one compartment or another construct.

260 \define@key[psset]{uml}{showname}[true]{%

261 \def\arg{#1}%

262 \ifx\arg\umlTrueVariable\umlCompartmentNamesShowtrue%
263 \else\umlCompartmentNamesShowfalse%

264 }

40.3 The implementation

The implementation of \umlCompartment caused me some trouble. This is partly due to the many
different possibilities, partly due to the funny scope rules in ETEX tables (in \halign).

In tables, it seems like every line is a scope. A variable modified with \def in one line gets its old
value when passing a line break.

Also, we cannot place the line break inside the body of an if sentence.

This is very, very odd, took me some time to detect, and destroys much beauty.

In short: TEX is a scanalous bad programming language, but you can make absolutely everyting in it
(including object oriented programs :-)

A compartment composes classifiers, and is itself composed of compartment lines. Every compartment
line ends with a line break. Every compartment starts with a \hline and ends with a line break.

\umlCompartmentCommon
265 \newcommand\umlCompartmentCommon[2][]{%

Even if every compartment should be preceded by a line break, we assert this is really true.
Of couse, the following line is an ad hoc hack, but I have no better solution right now.

266 \ifhmode \vspace={-2.5ex}\\\fi%
The actual line between this and the following compartment.
267 \hline%
The compartment name (if it should be shown). I miss an and operator in TEX.

268 \ifumlCompartmentNamesShow%

269 \ifx\umlName\umlNameDefault\else%

270 \omit\hfil\textbf{\umlName}\hfil\\%
271 \fi%

272 \fi%

This is really not neccesary, as it is defined in \umlCompartment.
273 \def\umlCompartmentContents{#2}%

If the compartment is empty (but not suppressed), It looks better to make it shorter. (But why isn’t
this like \hline\hline in the first place?

274 \ifx\umlCompartmentContents\empty%
275 \vspace*{-1.5ex}%

o1

276 \else% There is contents

277 \umlClassifierEmptyfalse%
278 #2%
279 \fi%

Assuring we end with a line break.

280 \ifhmode\\\fi%
281 }

\umlCompartment \umlCompartment itself mainly calls \umlCompartmentCommon.

282 \newcommand\umlCompartment[2][]{%

283 \umlCompartmentNull%

284 \def\umlCompartmentContents{#2}%

285 \umlDrawable[kind=Compartment,#1]{%

286 \umlColorsAdjust%

287 \ifumlCompartmentSuppress%

288 \ifx\umlCompartmentContents\empty\else%
289 \umlCompartmentCommon [#1]{#2}%

290 \fi%

291 \else%

292 \umlClassifierEmptyfalse%

293 \umlCompartmentCommon[#1]{#2}%

294 \fi}}%

41 Compartmentline

A compartmentline is a line of text designed to be in a compartment. Such a line should have some
room before and after it, in order not to touch the compartment border.

\umlhspace This make some horizontal space.

295 \def\umlhsep{.5ex}
296 \newcommand\umlhspace{\hspace+{\umlhsep}}

\umlCompartmentline This should be straight-forward. ..

297 \newcommand\umlCompartmentline[2][]{%
298 \umlDrawable[kind=Compartmentline,#1]{%
299 {\umlColorsAdjust\umlhspace{}#2{}\umlhspace}\\}}

\umlCompartmentText Provided for backward compatibility.

300 \newcommand\umlCompartmentText[1]{%
301 \umlhspace#1\umlhspace}

42 Feature

A feature is something attached to a classifier.

\umlVisibilityLength This is the hspace in front of the attribute name, where the visibility is placed.
302 \def\umlVisibilityLength{2ex}

52

\umlFeatureNull
303 \newcommand\umlFeatureNull{%
304 \def\umlVisibility{}%
305 \def\umlType{1}%
306 \def\umlPropertyString{}%
307 \def\umlInitialValue{}%
308 \def\umlName{FeatureNameDefault}%
309 }

visibility-
310 \define@key[psset]{uml}{visibility}[+]{%
311 \def\umlVisibility{\hbox to \umlVisibilityLength{#1\hfil}}}

\umlTilde Prints a tilde.

312 \newcommand\umlTilde{\ensuremath{\sim}}

propertyString-

313 \define@key[psset]{uml}{propertyString}{%
314 \def\umlPropertyString{#1}}

type- The data type returned from the feature.

315 \define@key[psset]{uml}{type}{%
316 \def\umlType{: #1}}

initialValue-

317 \define@key[psset]{uml}{initialValue}{%
318 \def\umlInitialValue{= #1}}

\umlFeature \umlFeature is implemented as a table inside a \umlStretchbox. The contents must be able to be
inside a table. The contents is typically \umlCompartments.

319 \newcommand\umlFeature[2][]{%

320 \umlFeatureNull%

321 \umlCompartmentline[kind=Feature, #1]{%
322 \umlIndex{\umlName}{\umlKind}%

323 #2}%

324 1%

42.1 Attribute

\umlAttributeNull
325 \def\umlAttributeNull{%
326 \def\umlMultiplicity{}%
327 \def\umlOrdering{}%
328 \def\umlMultiplicityOrdering{}%
329 }

default- This is provided as an alias to initialValue for the sake of backward compatibility. Use is deprecated.

330 \define@key[psset]{uml}{default}{%
331 \def\umlInitialValue{ = #1}}

53

multiplicity- Examples of legal values are {[1]}, {[1..*]} and {[1..3,5..]}.
332 \define@key[psset]{uml}{multiplicity}{%
333 \def\umlMultiplicity{#1}%
334 \def\umlMultiplicityOrdering{[\umlMultiplicity{} \umlOrdering]}}

ordering- Legal values are ordered and unordered. Absent value imply unordered. Default value with named
option is ordered.
335 \define@key[psset]{uml}{ordering}[ordered]{%
336 \def\umlOrdering{#13}%
337 \def\umlMultiplicityOrdering{[\umlMultiplicity{} \umlOrdering]}}

\umlAttribute

338 \newcommand\umlAttribute[2][]{%

339 \umlAttributeNull%

340 \umlFeature[kind=Attribute, name={#2}, #11{%

341 \umlVisibility #2 \umlType \umlMultiplicityOrdering
342 \umlInitialValue \umlPropertyString}}

42.2 Method

\umlMethodNull

343 \newcommand\umlMethodNull{%
344 }

returntype- Alias to type=.

345 \define@key[psset]{uml}{returntype}{%
346 \def\umlType{: #1}}

\umlMethod

347 \newcommand\umlMethod[3][]{%

348 \umlMethodNull%

349 \def\umlName{#2}%

350 \umlFeature[kind=Method, name={#2}, #1]1{%

351 \umlVisibility #2(#3) \umlType \umlPropertyString}}

42.3 Argument

\umlArgumentNull

352 \newcommand\umlArgumentNull{%
353 }

\umlArgument

354 \newcommand\umlArgument[2][]{%

355 \umlArgumentNull%

356 \def\umlName{#2}%

357 \umlFeature[kind=Argument, name={#2}, #1]{%
358 \emph{#2} \umlType \umlInitialValue}}

54

43 Relation

43.1 Node connection points

nlRelationNullConnection

359 \newcommand\umlRelationNullConnection{%
360 \def\umlNodesepA{Opt}%

361 \def\umlNodesepB{Opt}%

362 \def\umlOffsetA{Opt}%

363 \def\umlOffsetB{Opt}%

364 \def\umlAngleA{}%

365 \def\umlAngleB{}%

366 }%

angle- This is the angle at which the connector hits the node

367 \define@key[psset]{uml}{angleA}{\def\umlAngleA{#1}}
368 \define@key[psset]{uml}{angleB}{\def\umlAngleB{#1}}
369 \define@key[psset]{uml}{angle}{\def\umlAngleA{#1}\def\umlAngleB{#1}}

nodesep- The distance from the node to the connector end. Legal values are lengths.

370 \define@key[psset]{uml}{nodesepA}{\def\umlNodesepA{#1}}
371 \define@key[psset]{uml}{nodesepB}{\def\umlNodesepB{#1}}
372 \define@key[psset]{uml}{nodesep}{\def\umlNodesepA{#1}\def\umlNodesepB{#1}}

offset- After the connection point is calculated, it is shift right (assumed direction onto node) by this value.
Legal values are lengths.

373 \define@key[psset]{uml}{offsetA}{\def\umlOffsetA{#1}}
374 \define@key[psset]{uml}{offsetB}{\def\umlOffsetB{#1}}
375 \define@key[psset]{uml}{offset}{\def\umlOffsetA{#1}\def\umlOffsetB{#1}}

43.2 Arm geometry

IRelationNullArmGeometry

376 \newcommand\umlRelationNullArmGeometry{%
377 \pssetlength\umlArmA{Opt}%

378 \pssetlength\umlArmB{Opt}%

379 \def\umlArmAngleA{0}%

380 \def\umlArmAngleB{0}%

381 }

armA- This is the lengths of the arms.

382 \newlength\umlArmA

383 \newlength\umlArmB

384 \define@key[psset]{uml}{armA}{\pssetlength\umlArmA{#1}}
385 \define@key[psset]{uml}{armB}{\pssetlength\umlArmB{#1}}
386 \define@key[psset]{uml}{arm}{%

387 \pssetlength\umlArmA{#1}%

388 \pssetlength\umlArmB{#1}}

55

armAngle- This is the angle of the arm.

389 \define@key[psset]{uml}{armAngleA}{\def\umlArmAngleA{#1}}
390 \define@key[psset]{uml}{armAngleB}{\def\umlArmAngleB{#1}}
391 \define@key[psset]{uml}{armAngle}{%

392 \def\umlArmAngleA{#1}%

393 \def\umlArmAngleB{#1}%

394 }

43.3 Visual appeareance

\umlRelationNullVisual

395 \newcommand\umlRelationNullVisual{%
396 \def\umlLinestyle{solid}%
397 }

umllinestyle- Legal values are none, solid, hashed and dotted.
398 \define@key[psset]{uml}{umllinestyle}{\def\umlLinestyle{#1}}

relationColor- The color of the line.
399 \define@key[psset]{uml}{relationColor}[black]{\pst@getcolor{#1}\pslinecolor}

lineColor- Alias for relationColor=.

400 \define@key[psset]{uml}{linecolor}{\pst@getcolor{#1}\pslinecolor}

\umlRelationNull

401 \newcommand\umlRelationNull{%
402 \umlRelationNullConnection%
403 \umlRelationNullArmGeometry%
404 \umlRelationNullVisual%

405 }

43.4 The macro

\umlRelation The command itself:

406 \newcommand\umlRelation[4][]{%
407 \umlRelationNull%
The default reference is the concatenation of the two references
408 \umlElement[kind=Relation,ref={#2#3}, #1]{%
Putting the Aa and Ba nodes, default (without angle=) first
409 \ncline[linecolor=green, linestyle=\umlDebugLinestyle,
410 offsetA=\umlOffsetA, nodesepA=\umlNodesepA,
411 offsetB=\umlOffsetB, nodesepB=\umlNodesepB]{#2}{#3}%
412 \1lput{:R}(0){\pnode{Aa\umlReference}}%
413 \1lput{:R}(1){\pnode{Ba\umlReference}}%
Then modifying Aa, if angleA= or angle= is used
414 \ifx\umlAngleA\empty \else
415 \ncdiag[linestyle=\umlDebuglinestyle, linecolor=magenta, %
416 angleA=\umlAngleA,

56

417 offsetA=\umlOffsetA, nodesepA=\umlNodesepA,

418 offsetB=\umlOffsetB, nodesepB=\umlNodesepB
419 1{#23{#2}%
420 \1lput{:R}(0){\pnode{Aa\umlReference}}\fi%
And Ba.
421 \ifx\umlAngleB\empty \else
422 \ncdiag[linestyle=\umlDebuglinestyle, linecolor=magenta, %
423 angleA=\umlAngleB,
424 offsetA=\umlOffsetA, nodesepA=\umlNodesepA,
425 offsetB=\umlOffsetB, nodesepB=\umlNodesepB
426 1{#3}{#3}%
427 \1lput{:R}(0){\pnode{Ba\umlReference}}\fi%
Now, we can draw the line, from the Aa to the Ba node.
428 \ncdiag[linestyle=\umlLinestyle, linecolor=umlLinecolor,
429 angleA=\umlArmAngleA, angleB=\umlArmAngleB,
430 armA=\umlArmA, armB=\umlArmB
431 1{%
432 Aa\umlReference}{%
433 Ba\umlReference}%

Placing nodes Ab and Bb. If there is no arm A,

434 \ifdim \umlArmA=Opt \lput{:R}(2){\pnode{Ab\umlReference}}%
Else, if there is

435 \else \1lput{:R}(1){\pnode{Ab\umlReference}} \fi%
If there is no arm B,

436 \ifdim \umlArmB=Opt \lput{:R}(1){\pnode{Bb\umlReference}}%
Else, if there is

437 \else \1lput{:R}(2){\pnode{Bb\umlReference}} \fi%
Final nodes

438 \1put{:R}(1){\pnode{Ac\umlReference}}%
439 \1put{:R}(2){\pnode{Bc\umlReference}}%

Other contents

440 #43}% of \umlElement
441 }

43.5 About the spesific relations

The different relations are specialized relations; they typically call \umlRelation and \umlSymbol with
an appropriate symbol.

\umlSymbolHeightDefault All the symbols are drawn with 0 as the upper border, -\umlSymbolHeightDefault as the lower,
-\umlSymbolWidthDefault as the left and \umlSymbolWidthDefault as the right one. These lengths
can be changed by the user. See, however, section 43.8 on the next page.

442 \newlength\umlSymbolHeightDefault

443 \setlength\umlSymbolHeightDefault{lem}
444 \newlength\umlSymbolWidthDefault

445 \setlength\umlSymbolWidthDefault{.5em}

57

43.6 Association

\umlAssociation \umlAssociation is a relation without any other contents.

446 \newcommand\umlAssociation[3][]{%
447 \umlRelation[kind=Association, #1]{#2}{#3}{}%
448 }

43.7 Subclass (generalization)

\umlSubclass A simple relation with a triangle as an endsymbol.

449 \newcommand\umlSubclass[3][]{%
450 \def\umlEndSymbol{%

451 \pspolygonx[linecolor=white](0,0)%

452 (-\umlSymbolWidthDefault,-\umlSymbolHeightDefault)%
453 (\umlSymbolWidthDefault,-\umlSymbolHeightDefault)%
454 \pspolygon[](0,0)% Why does not dimen=inner work?

455 (-\umlSymbolWidthDefault,-\umlSymbolHeightDefault)%
456 (\umlSymbolWidthDefault,-\umlSymbolHeightDefault)%
457 }%

458 % \def\umlEndSymbol{% Alternative \umlEndSymbol

459 % \pstriangle[dimen=inner] (0, -\umlSymbolHeightDefault)%
460 % (\umlSymbolWidthDefault, \umlSymbolHeightDefault)}

461 \umlRelation[kind=Subclass, #1]{#2}{#3}{%

462 \umlSymbol[fraction=B]{\umlReference}{\umlEndSymbol}}%
463 }

464 \def\umlGeneralization{\umlSubclass}

43.8 Inner class

The making of this symbol gave some problems. After experimenting with different interpolations and
Bézier curves, I defined it to consist of two clipped wedges. Each should of course have width w =
\umlWidthDefault and height A =\umlHeightDefault. The radius of the circle is r, and r = v 4+ w.
This gives figure 14.

This figure is drawn with an angle of 60 degrees.

Figure 14: The inner class symbol

We have
r=v+uw

58

\umlInnerWidthDefault

465
466

\umlInnerRadiusDefault

467
468

\umlInner

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487

and, from Pythagoras,

72— B2 1 ?
This gives
RO
2v 2
and
. h? v
T2 2

and we know where to locate the wedge.

However, while addition and subtraction of lengths is easy in PSTricks (only stepping back and forth),
multiplication and division of lengths is difficult, if not impossible. I really haven’t found a good
solution to this problem.

The not-so-good problem is to define w and r as TEX lengths (\umlInnerWidthDefault and
\umlInnerRadiusDefault) and then assign them values manually. We have to remember, then, that
Pythagoras still should work.

Page 57 assign the default values h = 1 em, v = .5 em. This gives

w = 0.75 em

\newlength\umlInnerWidthDefault
\setlength\umlInnerWidthDefault{0.75em}

and r = 1.25 em.

\newlength\umlInnerRadiusDefault
\setlength\umlInnerRadiusDefault{1l.25em}

If we should implement the symbol by \umlArc, we had to know some angles. They would be easy to
compute using trigonometry, but that is difficult within TEX. Then, we use \umlCircle and \psclip
instead.

Maybe this could be done easily using raw postscript?

On some systems, the clipping makes some borders.

\newcommand\umlInner[3][]{%
\def\umlEndSymbol{%

\pspolygonx[linecolor=white](0,0)%
(-\umlSymbolWidthDefault,-\umlSymbolHeightDefault)%
(\umlSymbolWidthDefault,-\umlSymbolHeightDefault)%

\psclip{%
\psframe[linewidth=0pt]%
(-\umlSymbolWidthDefault, -\umlSymbolHeightDefault)(0,0)}
\pscircle(\umlInnerWidthDefault,-\umlSymbolHeightDefault)%
{\umlInnerRadiusDefault}
\endpsclip
\psclip{%
\psframe[linewidth=0pt]%
(\umlSymbolWidthDefault, -\umlSymbolHeightDefault)(0,0)}
\pscircle(-\umlInnerWidthDefault,-\umlSymbolHeightDefault)%
{\umlInnerRadiusDefault}
\endpsclip
\psline(-\umlSymbolWidthDefault, -\umlSymbolHeightDefault)%
(\umlSymbolWidthDefault, -\umlSymbolHeightDefault)}

59

488 \umlRelation[kind=Inner, #1]{#2}{#3}{%
489 \umlSymbol[fraction=B]{\umlReference}{\umlEndSymbol}
490 }}

43.9 Instance

\umlInstance The only new thing about \umlInstance is the addition of one named option, the linestyle.

491 \newcommand\umlInstance[3][]{%

492 \def\umlEndSymbol{%

493 \psline(-\umlSymbolWidthDefault, -\umlSymbolHeightDefault)%

494 (0,0)%

495 (\umlSymbolWidthDefault, -\umlSymbolHeightDefault)}%

496 \umlRelation[kind={Instance-of}, umllinestyle=dashed, #1]{#2}{#3}{%
497 \umlSymbol[fraction=B]{\umlReference}{\umlEndSymbol}}

498 }

43.10 Aggregation

\umlAggregation Endpoint is a diamond.

499 \newcommand\umlAggregation[3][]{%
500 \def\umlEndSymbol{%

Anyone said addition of lengths in PSTricks was difficult?
501 \rput (0,-\umlSymbolHeightDefault){%

502 \psline*[linecolor=white](-\umlSymbolWidthDefault, 0)%
503 (0,-\umlSymbolHeightDefault)%

504 (\umlSymbolWidthDefault, 0)}

505 \pslinex[linecolor=white]%

506 (-\umlSymbolWidthDefault, -\umlSymbolHeightDefault)%
507 (0,0)%

508 (\umlSymbolWidthDefault, -\umlSymbolHeightDefault)

509 \rput (0,-\umlSymbolHeightDefault){%

510 \psline(-\umlSymbolWidthDefault, 0)%

511 (0,-\umlSymbolHeightDefault)%

512 (\umlSymbolWidthDefault, 0)}

513 \psline(-\umlSymbolWidthDefault, -\umlSymbolHeightDefault)%
514 (0,0)%

515 (\umlSymbolWidthDefault,

516 -\umlSymbolHeightDefault)}

517 \umlRelation[kind=Aggregation, #1]{#2}{#3}{%
518 \umlSymbol[fraction=B]{\umlReference}{\umlEndSymbol}}
519 }

43.11 Composition

\umlComposition End symbol is a filled diamond.

520 \newcommand\umlComposition[3][]{%

521 \def\umlEndSymbol{%

522 \rput (0, -\umlSymbolHeightDefault){%

523 \psline*(-\umlSymbolWidthDefault, 0)%

60

524 (0,-\umlSymbolHeightDefault)%

525 (\umlSymbolWidthDefault, 0)}

526 \psline*(-\umlSymbolWidthDefault, -\umlSymbolHeightDefault)%
527 (0,0)%

528 (\umlSymbolWidthDefault,

529 -\umlSymbolHeightDefault)}

530 \umlRelation[kind=Composition, #1]{#2}{#3}{%
531 \umlSymbol[fraction=B]{\umlReference}{\umlEndSymbol}}
532 }

43.12 Application

\umlApplication End symbol is a filled arrow.

533 \newcommand\umlApplication[3][]{%
534 \def\umlEndSymbol{%
535 \pspolygons(-\umlSymbolWidthDefault, -\umlSymbolHeightDefault)%

536 (0,0)%
537 (\umlSymbolWidthDefault, -\umlSymbolHeightDefault)%
538 (0,-\umlSymbolWidthDefault)}%

539 \umlRelation[kind=Application, #1]{#2}{#3}{%

540 \1put(1.2){\pnode{argument\umlReference}}%

541 \umlSymbol[fraction=B]{\umlReference}{\umlEndSymbol}}
542 }

43.13 ToRelation
\umlToRelationNull

543 \newcommand\umlToRelationNull{%
544 \def\umlPosMeetLine{.5}%
545 }
posMeetLine- Where this relation shall meet the relation.
546 \define@key[psset]{uml}{posMeetLine}[.5]{\def\umlPosMeetLine{#1}}

\umlAssociationClass Relation from a relation to a classifier

547 \newcommand\umlToRelation[3][]{%
548 \umlToRelationNull%

We have to process the posMeetLine option before the \lput. This introduces some overhead, as
\psset is run twice. However, I expect this to be used relatively few times.

549 \psset[uml]{kind=ToRelation, #1}%

550 \ncline[linecolor=red, linestyle=\umlDebuglinestyle]{Ac#3}{Bc#3}%
551 \1lput{:R}(\umlPosMeetLine){\pnode{ToRelation#3}}%

552 \umlRelation[ref={#2#3}, #1]{#2}{ToRelation#3}{}%

553 }

43.14 AssociationClass and AssociationSchema

\umlAssociationClass Relation from a relation to a schema symbol.

554 \newcommand\umlAssociationSchema[3][]{%

61

555 \umlToRelation[kind=AssociationSchema,

556 posMeetLine=.5, umllinestyle=dashed,#1]{#2}{#3}%

557 }

558 \newcommand\umlAssociationClass[3][]{%

559 \umlAssociationSchemal[kind=AssociationClass,#1]{#2}{#3}}

43.15 ArgumentRelation

\umlArgumentRelation Relation from an application to an argument.

560 \newcommand\umlArgumentRelation[3][]{%

561 \umlToRelation[kind=ArgumentRelation,

562 posMeetLine=.2,umllinestyle=dotted, #1]{#2}{#3}%
563 }

44 AssociationEnd

\umlAssociationEndNull

564 \newcommand\umlAssociationEndNull{%

565 \def\umlAEOffset{\umlAEOffsetDefault}%
566 \def\umlAEOffsetDefault{Opt}%

567 \def\umlAEFraction{0}%

568 \def\umlAEFractionAngle{\umlAEFractionAngleDefault}%
569 \def\umlAEFractionAngleDefault{:U}%
570 \def\umlAEAngle{\umlAEAngleDefault}%
571 \def\umlAEAngleDefault{U}%

572 \def\umlAERefpoint{B}%

573 \def\umlAEHeight{\umlAEHeightDefault}%
574 \def\umlAEHeightDefault{Opt}%

575 \def\umlAENoderefClose{Ac}%

576 \def\umlAENoderefFar{Bc}%

577 \def\umlAEType{AssociationEnd}%

578 \def\umlAEKind{AssociationEnd}

import-
580 \define@key[psset]{umlAE}{import}{\def\umlAEColor{red}}

type-
581 \define@key[psset]{umlAE}{type}{\def\umlType{#1}}

kind- E.g., AssociationEnd.
582 \define@key[psset]{umlAE}{kind}{\def\umlKind{#1}}

offset-
583 \define@key[psset]{umlAE}{offset}{\def\umlAEOffset{#1}}

angle- Angle used to rotate the symbol itself.
584 \define@key[psset]{umlAE}{angle}{\def\umlAEAngle{#1}}

62

fractionAngle- The angle used when positioning the symbol. Legal values includes angles preceded by a colon (:),
indicting positioning relative to the relation. This is expected to be used by subcommands, but seldom
by users.

585 \define@key[psset]{umlAE}{fractionAngle}{\def\umlAEFractionAngle{#1}}

height-
586 \define@key[psset]{umlAE}{height}{\def\umlAEHeight{#1}}

refpoint-
587 \define@key[psset]{umlAE}{refpoint}{\def\umlAERefpoint{#1}}

refpoint-
588 %% \define@key[psset]{umlAE}{type}{\def\umlAEType{#1}}% %%%%%%%%%%%%

44.1 Fraction

fraction- This value is used by \umlAEFixFractionLabel and \umlAEFixFractionSymbol.
589 \define@key[psset]{umlAE}{fraction}{\def\umlAEFraction{#1}}

\umlFromTo A handy little procedure. If its first argument is A or From, it executes the second argument. If it is B
or To, it executes the third. Used in the procedures like \umlAssociationEndMakeA, \umlLabelMakeA
and \umlSymbolMakeA.

590 \newcommand\umlFromTo[3]{%

591 \edef\umlAEFractionArgument{#1}%

592 \def\umlAEFractionTmp{From}\ifx\umlAEFractionArgument\umlAEFractionTmp{}#2\fi%
593 \def\umlAEFractionTmp{A}\ifx\umlAEFractionArgument\umlAEFractionTmp{}#2\fi%

594 \def\umlAEFractionTmp{To}\ifx\umlAEFractionArgument\umlAEFractionTmp{}#3\fi%
595 \def\umlAEFractionTmp{B}\ifx\umlAEFractionArgument\umlAEFractionTmp{}#3\fi%
596 }

597 %

ssociationEndUseFraction If \umlFraction is A or something (i.e., if fraction=A or sth), adjust some other parameters.

598 \newcommand\umlAssociationEndUseFraction{%
599 % \begin{macrocode}
600 \umlFromTo{\umlAEFraction}{% If A or From
601 \def\umlAENoderefClose{Aa}%
602 \def\umlAENoderefFar{Ab}%
603 \def\umlAEFraction{0}%
604 H%
605 \def\umlAENoderefClose{Ba}% If B or To
606 \def\umlAENoderefFar{Bb}%
607 \def\umlAEFraction{0}%

If this is a “B” type association end, and this is an Label type association end, invert the height.
608 \def\umlTmp{Label }%
609 \ifx\umlTmp\umlAEType%
610 \edef\umlAEHeight{-\umlAEHeight }\fi%
611 %
612 }

63

44.2 The command

\umlAssociationEnd This places a symbol (third argument) on the (From) end of the relation (indicated by the second
argument).

613 \newcommand\umlAssociationEnd[3][]{%

614 \umlAssociationEndNull%

615 \psset[umlAE]{kind=AssociationEnd,#1}%

616 \umlAssociationEndUseFraction%

617 % AE:#2:\umlAENoderefClose:\umlAENoderefFar:

618 \ncline[linecolor=red, linestyle=\umlDebugLinestyle]{%

619 \umlAENoderefClose#2}{\umlAENoderefFar#2}%

620 {\umlColorsAdjust%

621 \1put[\umlAERefpoint]{\umlAEFractionAngle} (\umlAEFraction){%

622 \rput[\umlAERefpoint]{\umlAEAngle} (\umlAEOffset, \umlAEHeight){%
623 #3}%
624 1%
625 Y%
626 Y%
44.3 Label

\umlLabel A label is a symbol with default height and offset.

627 \newcommand\umlLabel[3][]{% Null unneccesary
628 \umlAssociationEnd[kind=Label,offset=4ex,height=2ex,angle=N, #1]{#2}{#3}%
629 }

\umlLabelA \umlLabelA and \umlLabelB are provided for convenience and backward compatibility.

630 \newcommand\umlLabelA[2][]{\umlLabel[#1,fraction=A]{#2}}
631 \newcommand\umlLabelB[2][]{\umlLabel[#1,fraction=B]{#2}}

44.4 Symbol

\umlSymbol A symbol is a symbol with default height and offset.

632 \newcommand\umlSymbol[3][]{% Null unneccesary
633 \umlAssociationEnd[kind=Symbol,offset=0ex,height=0ex,

634 fractionAngle=:L,refpoint=t,#1]{%
635 #2}{\umlSymbolUseFraction%
636 #3}}

ssociationEndUseFraction

637 \newcommand\umlSymbolUseFraction{%
638 \umlFromTo{\umlAEFraction}{%

639 H%
640 Y%
641 }

\umlSymbolA \umlSymbolA and \umlSymbolB are provided for convenience and backward compatibility.

642 \newcommand\umlSymbolA[2][]{\umlSymbol[#1,fraction=A]{#2}}
643 \newcommand\umlSymbolB[2][]{\umlSymbol[#1,fraction=B]{#2}}

64

44.5 Navigability

\umlNavigability A specialized version of \umlAssociationEnd. Takes two arguments: a list of named options, and the

relation reference.

644 \newcommand\umlNavigability[2][]{

645
646
647
648
649
650

\umlNavigabilityA \umlNavigabilityA and \umlNavigabilityB are provided for convenience and backward compatibility.

651 \newcommand\umlNavigabilityA[2][]{\umlNavigability[#1,fraction=A]{#2}}
652 \newcommand\umlNavigabilityB[2][]{\umlNavigability[#1,fraction=B]{#2}}

\def\umlEndSymbol{\psline%

(-lex, -1.618ex)%
(0,0)%
(lex, -1.618ex)}%

\umlSymbol[kind=Navigability, #1]{#2}{\umlEndSymbol}%

45 Colors
45.1 Colorset

\umlColorset Every \umlDrawable (really, every instance of a subcommand) calls \umlColorsAdjust. Then, the
colors is set anew for the Drawable. The effect then depends on the value of \umlColorsAdjust. This

value is set by \umlColorsDefault, \umlColorsImport etc.

653 \newcommand\umlColorset[1]{%

654
655

\umlColorsDefault

\def\umlColorsAdjust{#1%
\psset{linecolor=umlLinecolor, fillcolor=umlFillcolor}}}

656 \newcommand\umlColorsDefault{%

657
658
659
660
661
662
663
664 }}

\umlColorsGray

\umlColorset{%

\definecolor{umlColor}{gray}{0}%
\definecolor{umlLinecolor}{gray}{0}%
\definecolor{umlFillcolor}{gray}{1}%
\definecolor{umlClassifierFillcolor}{gray}{0.85}%
\definecolor{umlDiagramFillcolor}{gray}{0.95}%
\definecolor{umlRelationColor}{gray}{03}%

665 \newcommand\umlColorsGray{%

666
667
668
669
670
671
672
673 }}

\umlColorset{%

\definecolor{umlColor}{gray}{0.4}%
\definecolor{umlLinecolor}{gray}{0.4}%
\definecolor{umlFillcolor}{gray}{1}%
\definecolor{umlClassifierFillcolor}{gray}{0.90}%
\definecolor{umlDiagramFillcolor}{gray}{0.98}%
\definecolor{umlRelationColor}{gray}{0.4}%

65

\umlColorsImport The import color set makes the boxes blue.

674 \newcommand\umlColorsImport{%

675 \umlColorset{%

676 \definecolor{umlColor}{rgb}{0, 0, 0.4}%

677 \definecolor{umlLinecolor}{rgh}{0, 0, 0.4}%

678 \definecolor{umlFillcolor}{rgh}{.8, .8, 1}%

679 \definecolor{umlClassifierFillcolor}{rgb}{.85, .85, 1}%
680 \definecolor{umlDiagramFillcolor}{rgb}{.95, .95, 1}%
681 \definecolor{umlRelationColor}{rgb}{0, 0, 0.4}%

682 }}

\umlColorsArgument This color set makes the boxes green.

683 \newcommand\umlColorsArgument{%

684 \umlColorset{%

685 \definecolor{umlColor}{rgh}{0, 0.4, 0}%

686 \definecolor{umlLinecolor}{rgb}{0, 0.4, 0}%

687 \definecolor{umlFillcolor}{rgh}{.8, 1, .8}%

688 \definecolor{umlClassifierFillcolor}{rgb}{.85, 1, .85}%
689 \definecolor{umlDiagramFillcolor}{rgbh}{.95, 1, .95}%
690 \definecolor{umlRelationColor}{rgb}{0, 0.7, 0}%

691 }}

\umlColorsRed

692 \newcommand\umlColorsRed{%

693 \umlColorset{%

694 \definecolor{umlColor}{rgb}{0.4, 0, 0}%

695 \definecolor{umlLinecolor}{rgb}{0.4, 0, 0}%

696 \definecolor{umlFillcolor}{rgb}{1, .8, .8}%

697 \definecolor{umlClassifierFillcolor}{rgb}{1, .85, .85}%
698 \definecolor{umlDiagramFillcolor}{rgb}{1, .95, .95}%
699 \definecolor{umlRelationColor}{rgb}{0.4, 0, 0}%

700 }}

\umlColorsSub

701 \newcommand\umlColorsSub{%

702 \umlColorset{%

703 \definecolor{umlColor}{rgb}{.6, .2, .2}%

704 \definecolor{umlLinecolor}{rgh}{.6, .2, .2}%

705 \definecolor{umlFillcolor}{rgb}{.9, .8, .83}%

706 \definecolor{umlClassifierFillcolor}{rgb}{.9, .8, .8}%
707 \definecolor{umlDiagramFillcolor}{rgb}{.97, .95, .95}%
708 \definecolor{umlRelationColor}{rgb}{.6, .2, .2}%

709 }}

710 \umlColorsDefault
711 \umlColorsAdjust

45.2 Using color sets

\umlColors
712 \newenvironment{umlColors}[1]{\bgroup#1}{\egroup}

66

713
714
715

716
717

\umlPlaceNodeNull

718
719
720
721
722
723
724
725
726
727

leftside-

728
729
730

rightside-
731

732
733

up-
734
735
736

bottom-

737
738
739

left-

740
741

right-

742

46 Positions

\SpecialCoor
\newlength{\umlNodeSep}
\setlength{\umlNodeSep}{lem}

A historical note here: First, \umlBox used to throw lots of pnodes around. However, this used
huge memory space. This way works much better. However, I have not found any way to do the
corresponding thing in the relations.

46.1 PlaceNode

\newlength\umlPlaceNodeX
\newlength\umlPlaceNodeY

\newcommand\umlPlaceNodeNull{%
\def\umlPlaceNodeNodesepX{Opt}%
\def\umlPlaceNodeNodesepY{Opt}%
\def\umlPlaceNodeAngleX{}%
\def\umlPlaceNodeAngleY{}%
\def\umlPlaceNodeOffsetX{}%
\def\umlPlaceNodeOffsetY{}%
\setlength\umlPlaceNodeX{Opt}%
\setlength\umlPlaceNodeY{Opt}%

}

\define@key[psset]{umlPlaceNode}{leftside}[Opt]{%
\def\umlPlaceNodeAngleX{,angle=180}%
\def\umlPlaceNodeNodesepX{#1}}%

\define@key[psset]{umlPlaceNode}{rightside}[Opt]{%
\def\umlPlaceNodeAngleX{,angle=0}%
\def\umlPlaceNodeNodesepX{#1}}%

\define@key[psset]{umlPlaceNode}{top}[Opt]{%
\def\umlPlaceNodeAngleY{,angle=90}%
\def\umlPlaceNodeNodesepY{#1}}%

\define@key[psset]{umlPlaceNode}{bottom}[Opt]{%
\def\umlPlaceNodeAngleY{,angle=2703}%
\def\umlPlaceNodeNodesepY{#1}}%

\define@key[psset]{umlPlaceNode}{left}[Opt]{%
\addtolength\umlPlaceNodeX{-#1}}%

\define@key[psset]{umlPlaceNode}{right}[Opt]{\addtolength\umlPlaceNodeX{#1}}

67

up-
743 \define@key[psset]{umlPlaceNode}{up}[Opt]{\addtolength\umlPlaceNodeY{#1}}

down-
744 \define@key[psset]{umlPlaceNode}{down}[Opt]{\addtolength\umlPlaceNodeY{-#1}}

angle-
745 \define@key[psset]{umlPlaceNode}{angle}{%
746 \def\umlPlaceNodeAngleX{,angle=#1}%
747 \def\umlPlaceNodeAngleY{,angle=#1}}%
748 \define@key[psset]{umlPlaceNode}{angleX}{\def\umlPlaceNodeAngleX{,angle=#1}3}%
749 \define@key[psset]{umlPlaceNode}{angleY}{\def\umlPlaceNodeAngleY{,angle=#1}}%

offset-

750 \define@key[psset]{umlPlaceNode}{offset}{

751 \def\umlPlaceNodeOffsetX{,offset=#1}%

752 \def\umlPlaceNodeOffsetY{,offset=#1}}%

753 \define@key[psset]{umlPlaceNode}{offsetX}{\def\umlPlaceNodeOffsetX{,offset=#1}}%
754 \define@key[psset]{umlPlaceNode}{offsetY}{\def\umlPlaceNodeOffsetY{,offset=#1}}%

nodesep-

755 \define@key[psset]{umlPlaceNode}{nodesep}{%

756 \def\umlPlaceNodeNodesepX{#1}%

757 \def\umlPlaceNodeNodesepY{#1}}%

758 \define@key[psset]{umlPlaceNode}{nodesepX}{\def\umlPlaceNodeNodesepX{#1}}%
759 \define@key[psset]{umlPlaceNode}{nodesepY}{\def\umlPlaceNodeNodesepY{#1}}%

\umlPlaceNode

760 \newcommand\umlPlaceNode[3][]1{%

761 \umlPlaceNodeNull%

762 \psset[umlPlaceNode]{#1}%
Placement relative to the node

763 \rput(%

764 [nodesep=\umlPlaceNodeNodesepX\umlPlaceNodeOffsetX\umlPlaceNodeAngleX]#2|%

765 [nodesep=\umlPlaceNodeNodesepY\umlPlaceNodeOffsetY\umlPlaceNodeAngleY]#2){%
Placement relative to that

766 % \rput(\umlPlaceNodeX, \umlPlaceNodeY){%
The new node is placed

767 \pnode (\umlPlaceNodeX, \umlPlaceNodeY){#3}}%
768 }

\umlRight The first coordinate commands are very simple. They takes as argument node.

769 \newcommand\umlRight[1]{[angle=0]#1}

770 \newcommand\umlTop[1]{[angle=00]#1}

771 \newcommand\umlLeft[1]{[angle=180]#1}

772 \newcommand\umlBottom[1]{[angle=270]#1}

773 \newcommand\umlTopRight[1]{[angle=0]#1]| [angle=90]#1}

774 \newcommand\umlBottomRight[1]{[angle=0]#1| [angle=270]#1}
775 \newcommand\umlTopLeft[1]{[angle=180]#1|[angle=90]#1}

776 \newcommand\umlBottomLeft[1]{[angle=180]#1|[angle=270]#1}

68

\umlRightSep The Sep coordinate commands use \umlNodeSep to make some space between the nodes.

777 \newcommand\umlRightSep[1]{[angle=0, nodesep=\umlNodeSep]#1}

778 \newcommand\umlTopSep[1]{[angle=90, nodesep=\umlNodeSep]#1}

779 \newcommand\umlLeftSep[1]{[angle=180, nodesep=\umlNodeSep]#1}

780 \newcommand\umlBottomSep[1]{[angle=270, nodesep=\umlNodeSep]#1}

781 \newcommand\umlTopRightSep[1]{%

782 [angle=0, nodesep=\umlNodeSep]#1|[angle=90, nodesep=\umlNodeSep]#1}
783 \newcommand\umlBottomRightSep[1]{%

784 [angle=0, nodesep=\umlNodeSep]#1|[angle=270, nodesep=\umlNodeSep]#1}
785 \newcommand\umlTopLeftSep[1]{%

786 [angle=180, nodesep=\umlNodeSep]#1|[angle=90, nodesep=\umlNodeSep]#1}
787 \newcommand\umlBottomLeftSep[1]{%

788 [angle=180, nodesep=\umlNodeSep]#1|[angle=270, nodesep=\umlNodeSep]#1}

\umlRightOpt This takes two mandatory arguments: Named options and the usual node.
Of course, it would be nice to make the first argument optional, thus combining \umlRight and
\umlRightOpt. However, this does not work together with mandatory argument in \umlBox. I have
found no elegant solution to this (despite some nights. . .)

789 \newcommand\umlRightOpt[2]{[angle=0, #1]#2}

790 \newcommand\umlTopOpt[2]{[angle=90, #1]#2}

791 \newcommand\umlLeftOpt[2]{[angle=180, #1]#2}

792 \newcommand\umlBottomOpt[2]{[angle=270, #1]#2}

793 \newcommand\umlTopRightOpt[2]{[angle=0, #1]#2|[angle=90, #1]#2}

794 \newcommand\umlBottomRightOpt[2]{[angle=0, #1]#2|[angle=270, #1]#2}
795 \newcommand\umlTopLeftOpt[2]{[angle=180, #1]#2|[angle=90, #1]#2}

796 \newcommand\umlBottomLeftOpt[2]{[angle=180, #1]#2|[angle=270, #1]#2}

\umlRightSep

797 \newcommand\umlRightSepOpt[2]{[angle=0, nodesep=\umlNodeSep, #1]#2}

798 \newcommand\umlTopSepOpt[2]{[angle=90, nodesep=\umlNodeSep, #1]#2}

799 \newcommand\umlLeftSepOpt[2]{[angle=180, nodesep=\umlNodeSep, #1]#2}

800 \newcommand\umlBottomSepOpt[2]{[angle=270, nodesep=\umlNodeSep, #1]#2}

801 \newcommand\umlTopRightSepOpt[2]{[angle=0, nodesep=\umlNodeSep, #1]#2|[angle=90, nodesep=\umlNodeSep, #1]#:
802 \newcommand\umlBottomRightSepOpt[2]{[angle=0, nodesep=\umlNodeSep, #1]#2|[angle=270, nodesep=\umlNodeSep, ?
803 \newcommand\umlTopLeftSepOpt[2]{%

804 [angle=180, nodesep=\umlNodeSep, #1]#2|[angle=90, nodesep=\umlNodeSep, #1]#2}

805 \newcommand\umlBottomLeftSepOpt[2]{%

806 [angle=180, nodesep=\umlNodeSep, #1]#2|[angle=270, nodesep=\umlNodeSep, #1]#2}

69

	Syntax for all the commands
	Lengths
	Angles
	Node names
	Reference points
	Colors
	Line styles

	uml.sty options
	debug
	index

	Object-oriented approach
	Colors
	Positions

	Drawable
	Named options
	import

	Element
	Named options
	Reference
	Stereotype
	Subof
	ImportedFrom
	Comment

	Box
	Named options concerning location
	Boxes in text
	Named options concerning visual appearance
	grayness
	border
	borderLine
	innerBorder

	Named options concerning size

	Diagram
	Example

	Stretchbox
	Name, graphicalName and reference

	Classifier
	Compartment
	Suppression
	Name

	Compartmentline
	Feature
	visibility
	type
	propertyString

	Method
	Attribute
	Argument
	Class
	Schema
	Example (Stack)

	Relation
	Appearance of the connector
	Geometry of the connector
	Reference and placement of nodes

	AssociationEnd
	Placing of the symbol

	Label
	Symbol
	Navigability
	The different relations
	Association
	Subclass (generalization)
	Inner class
	Instance
	Aggregation
	Composition
	Application

	Relations to Relations
	AssociationClass
	ArgumentRelation

	Package
	Example
	Connecting packages

	Colors
	Colorset
	Using the color sets

	Positions
	PlaceNode
	Coordinates
	Coordinate commands

	A large example (Abstract Data Structures)
	Typesetting the implementation
	The documentation driver file

	Introductory code
	Identification
	Processing of options
	debug
	index
	Processing the options

	Using other packages

	General syntax
	Lengths
	Angles

	Drawable
	Named options
	Colors
	The command

	Element
	Box
	Positioning
	Boxes in text
	The visual appeareance
	Size
	Holding together all the named options
	The command

	Diagram
	The command

	Stretchbox
	Package
	Classifier
	Class
	Schema
	Compartment
	Suppression
	Compartment names
	The implementation

	Compartmentline
	Feature
	Attribute
	Method
	Argument

	Relation
	Node connection points
	Arm geometry
	Visual appeareance
	The macro
	About the spesific relations
	Association
	Subclass (generalization)
	Inner class
	Instance
	Aggregation
	Composition
	Application
	ToRelation
	AssociationClass and AssociationSchema
	ArgumentRelation

	AssociationEnd
	Fraction
	The command
	Label
	Symbol
	Navigability

	Colors
	Colorset
	Using color sets

	Positions
	PlaceNode

