
201

The TFtoPL processor

(Version 3.3, January 2014)

Section Page
Introduction . 1 202
Font metric data . 6 203
Unpacked representation . 18 209
Basic output subroutines . 26 212
Doing it . 44 216
Checking for ligature loops . 88 228
The main program . 96 232
System-dependent changes . 100 233
Index . 101 234

The preparation of this report was supported in part by the National Science Foundation
under grants IST-8201926 and MCS-8300984, and by the System Development Foundation.
‘TEX’ is a trademark of the American Mathematical Society.

March 12, 2025 at 15:39

202 INTRODUCTION TFtoPL §1

1. Introduction. The TFtoPL utility program converts TEX font metric (“TFM”) files into equivalent
property-list (“PL”) files. It also makes a thorough check of the given TFM file, using essentially the same
algorithm as TEX. Thus if TEX complains that a TFM file is “bad,” this program will pinpoint the source or
sources of badness. A PL file output by this program can be edited with a normal text editor, and the result
can be converted back to TFM format using the companion program PLtoTF.

The first TFtoPL program was designed by Leo Guibas in the summer of 1978. Contributions by Frank
Liang, Doug Wyatt, and Lyle Ramshaw also had a significant effect on the evolution of the present code.

Extensions for an enhanced ligature mechanism were added by the author in 1989.
The banner string defined here should be changed whenever TFtoPL gets modified.

define banner ≡ ´This is TFtoPL, Version 3.3´ { printed when the program starts }

2. This program is written entirely in standard Pascal, except that it occasionally has lower case letters
in strings that are output. Such letters can be converted to upper case if necessary. The input is read from
tfm file , and the output is written on pl file ; error messages and other remarks are written on the output
file, which the user may choose to assign to the terminal if the system permits it.

The term print is used instead of write when this program writes on the output file, so that all such
output can be easily deflected.

define print (#) ≡ write (#)
define print ln (#) ≡ write ln (#)

program TFtoPL(tfm file , pl file , output);
label 〈Labels in the outer block 3 〉
const 〈Constants in the outer block 4 〉
type 〈Types in the outer block 18 〉
var 〈Globals in the outer block 6 〉
procedure initialize ; { this procedure gets things started properly }

begin print ln (banner);
〈 Set initial values 7 〉
end;

3. If the program has to stop prematurely, it goes to the ‘final end ’.

define final end = 9999 { label for the end of it all }
〈Labels in the outer block 3 〉 ≡

final end ;

This code is used in section 2.

4. The following parameters can be changed at compile time to extend or reduce TFtoPL’s capacity.

〈Constants in the outer block 4 〉 ≡
tfm size = 30000; {maximum length of tfm data, in bytes }
lig size = 5000; {maximum length of lig kern program, in words }
hash size = 5003;

{ preferably a prime number, a bit larger than the number of character pairs in lig/kern steps }
This code is used in section 2.

5. Here are some macros for common programming idioms.

define incr (#) ≡ #← # + 1 { increase a variable by unity }
define decr (#) ≡ #← #− 1 {decrease a variable by unity }
define do nothing ≡ { empty statement }

§6 TFtoPL FONT METRIC DATA 203

6. Font metric data. The idea behind TFM files is that typesetting routines like TEX need a compact
way to store the relevant information about several dozen fonts, and computer centers need a compact
way to store the relevant information about several hundred fonts. TFM files are compact, and most of the
information they contain is highly relevant, so they provide a solution to the problem.

The information in a TFM file appears in a sequence of 8-bit bytes. Since the number of bytes is always a
multiple of 4, we could also regard the file as a sequence of 32-bit words; but TEX uses the byte interpretation,
and so does TFtoPL. Note that the bytes are considered to be unsigned numbers.

〈Globals in the outer block 6 〉 ≡
tfm file : packed file of 0 . . 255;

See also sections 8, 16, 19, 22, 25, 27, 29, 32, 45, 47, 63, 65, and 89.

This code is used in section 2.

7. On some systems you may have to do something special to read a packed file of bytes. For example, the
following code didn’t work when it was first tried at Stanford, because packed files have to be opened with
a special switch setting on the Pascal that was used.

〈 Set initial values 7 〉 ≡
reset (tfm file);

See also sections 17, 28, 33, 46, and 64.

This code is used in section 2.

8. The first 24 bytes (6 words) of a TFM file contain twelve 16-bit integers that give the lengths of the
various subsequent portions of the file. These twelve integers are, in order:

lf = length of the entire file, in words;
lh = length of the header data, in words;
bc = smallest character code in the font;
ec = largest character code in the font;

nw = number of words in the width table;
nh = number of words in the height table;
nd = number of words in the depth table;
ni = number of words in the italic correction table;
nl = number of words in the lig/kern table;
nk = number of words in the kern table;
ne = number of words in the extensible character table;
np = number of font parameter words.

They are all nonnegative and less than 215. We must have bc − 1 ≤ ec ≤ 255, ne ≤ 256, and

lf = 6 + lh + (ec − bc + 1) + nw + nh + nd + ni + nl + nk + ne + np .

Note that a font may contain as many as 256 characters (if bc = 0 and ec = 255), and as few as 0 characters
(if bc = ec + 1).

Incidentally, when two or more 8-bit bytes are combined to form an integer of 16 or more bits, the most
significant bytes appear first in the file. This is called BigEndian order.

〈Globals in the outer block 6 〉 +≡
lf , lh , bc , ec ,nw ,nh ,nd ,ni ,nl ,nk ,ne ,np : 0 . . 7́7777 ; { subfile sizes }

204 FONT METRIC DATA TFtoPL §9

9. The rest of the TFM file may be regarded as a sequence of ten data arrays having the informal specification

header : array [0 . . lh − 1] of stuff
char info : array [bc . . ec] of char info word

width : array [0 . . nw − 1] of fix word
height : array [0 . . nh − 1] of fix word
depth : array [0 . . nd − 1] of fix word
italic : array [0 . . ni − 1] of fix word

lig kern : array [0 . . nl − 1] of lig kern command
kern : array [0 . . nk − 1] of fix word

exten : array [0 . . ne − 1] of extensible recipe
param : array [1 . . np] of fix word

The most important data type used here is a fix word , which is a 32-bit representation of a binary fraction.
A fix word is a signed quantity, with the two’s complement of the entire word used to represent negation.
Of the 32 bits in a fix word , exactly 12 are to the left of the binary point; thus, the largest fix word value is
2048− 2−20, and the smallest is −2048. We will see below, however, that all but one of the fix word values
will lie between −16 and +16.

§10 TFtoPL FONT METRIC DATA 205

10. The first data array is a block of header information, which contains general facts about the font.
The header must contain at least two words, and for TFM files to be used with Xerox printing software it
must contain at least 18 words, allocated as described below. When different kinds of devices need to be
interfaced, it may be necessary to add further words to the header block.

header [0] is a 32-bit check sum that TEX will copy into the DVI output file whenever it uses the font.
Later on when the DVI file is printed, possibly on another computer, the actual font that gets used is
supposed to have a check sum that agrees with the one in the TFM file used by TEX. In this way, users
will be warned about potential incompatibilities. (However, if the check sum is zero in either the font
file or the TFM file, no check is made.) The actual relation between this check sum and the rest of the
TFM file is not important; the check sum is simply an identification number with the property that
incompatible fonts almost always have distinct check sums.

header [1] is a fix word containing the design size of the font, in units of TEX points (7227 TEX points =
254 cm). This number must be at least 1.0; it is fairly arbitrary, but usually the design size is 10.0
for a “10 point” font, i.e., a font that was designed to look best at a 10-point size, whatever that
really means. When a TEX user asks for a font ‘at δ pt’, the effect is to override the design size
and replace it by δ, and to multiply the x and y coordinates of the points in the font image by a
factor of δ divided by the design size. All other dimensions in the TFM file are fix word numbers in
design-size units. Thus, for example, the value of param [6], one em or \quad, is often the fix word
value 220 = 1.0, since many fonts have a design size equal to one em. The other dimensions must be
less than 16 design-size units in absolute value; thus, header [1] and param [1] are the only fix word
entries in the whole TFM file whose first byte might be something besides 0 or 255.

header [2 . . 11], if present, contains 40 bytes that identify the character coding scheme. The first
byte, which must be between 0 and 39, is the number of subsequent ASCII bytes actually relevant
in this string, which is intended to specify what character-code-to-symbol convention is present
in the font. Examples are ASCII for standard ASCII, TeX text for fonts like cmr10 and cmti9,
TeX math extension for cmex10, XEROX text for Xerox fonts, GRAPHIC for special-purpose non-
alphabetic fonts, UNSPECIFIED for the default case when there is no information. Parentheses should
not appear in this name. (Such a string is said to be in BCPL format.)

header [12 . . 16], if present, contains 20 bytes that name the font family (e.g., CMR or HELVETICA), in BCPL

format. This field is also known as the “font identifier.”

header [17], if present, contains a first byte called the seven bit safe flag , then two bytes that are ignored,
and a fourth byte called the face . If the value of the fourth byte is less than 18, it has the following
interpretation as a “weight, slope, and expansion”: Add 0 or 2 or 4 (for medium or bold or light) to
0 or 1 (for roman or italic) to 0 or 6 or 12 (for regular or condensed or extended). For example, 13 is
0+1+12, so it represents medium italic extended. A three-letter code (e.g., MIE) can be used for such
face data.

header [18 . . whatever] might also be present; the individual words are simply called header [18], header [19],
etc., at the moment.

206 FONT METRIC DATA TFtoPL §11

11. Next comes the char info array, which contains one char info word per character. Each char info word
contains six fields packed into four bytes as follows.

first byte: width index (8 bits)
second byte: height index (4 bits) times 16, plus depth index (4 bits)
third byte: italic index (6 bits) times 4, plus tag (2 bits)
fourth byte: remainder (8 bits)

The actual width of a character is width [width index], in design-size units; this is a device for compressing
information, since many characters have the same width. Since it is quite common for many characters to
have the same height, depth, or italic correction, the TFM format imposes a limit of 16 different heights, 16
different depths, and 64 different italic corrections.

Incidentally, the relation width [0] = height [0] = depth [0] = italic [0] = 0 should always hold, so that an
index of zero implies a value of zero. The width index should never be zero unless the character does not exist
in the font, since a character is valid if and only if it lies between bc and ec and has a nonzero width index .

12. The tag field in a char info word has four values that explain how to interpret the remainder field.

tag = 0 (no tag) means that remainder is unused.
tag = 1 (lig tag) means that this character has a ligature/kerning program starting at lig kern [remainder].
tag = 2 (list tag) means that this character is part of a chain of characters of ascending sizes, and not the

largest in the chain. The remainder field gives the character code of the next larger character.
tag = 3 (ext tag) means that this character code represents an extensible character, i.e., a character that

is built up of smaller pieces so that it can be made arbitrarily large. The pieces are specified in
exten [remainder].

define no tag = 0 { vanilla character }
define lig tag = 1 { character has a ligature/kerning program }
define list tag = 2 { character has a successor in a charlist }
define ext tag = 3 { character is extensible }

§13 TFtoPL FONT METRIC DATA 207

13. The lig kern array contains instructions in a simple programming language that explains what to do
for special letter pairs. Each word is a lig kern command of four bytes.

first byte: skip byte , indicates that this is the final program step if the byte is 128 or more, otherwise the
next step is obtained by skipping this number of intervening steps.

second byte: next char , “if next char follows the current character, then perform the operation and stop,
otherwise continue.”

third byte: op byte , indicates a ligature step if less than 128, a kern step otherwise.
fourth byte: remainder .

In a kern step, an additional space equal to kern [256 ∗ (op byte − 128) + remainder] is inserted between the
current character and next char . This amount is often negative, so that the characters are brought closer
together by kerning; but it might be positive.

There are eight kinds of ligature steps, having op byte codes 4a+2b+c where 0 ≤ a ≤ b+c and 0 ≤ b, c ≤ 1.
The character whose code is remainder is inserted between the current character and next char ; then the
current character is deleted if b = 0, and next char is deleted if c = 0; then we pass over a characters to
reach the next current character (which may have a ligature/kerning program of its own).

Notice that if a = 0 and b = 1, the current character is unchanged; if a = b and c = 1, the current
character is changed but the next character is unchanged. TFtoPL will check to see that infinite loops are
avoided.

If the very first instruction of the lig kern array has skip byte = 255, the next char byte is the so-called
right boundary character of this font; the value of next char need not lie between bc and ec . If the very
last instruction of the lig kern array has skip byte = 255, there is a special ligature/kerning program for a
left boundary character, beginning at location 256 ∗ op byte + remainder . The interpretation is that TEX
puts implicit boundary characters before and after each consecutive string of characters from the same font.
These implicit characters do not appear in the output, but they can affect ligatures and kerning.

If the very first instruction of a character’s lig kern program has skip byte > 128, the program actually
begins in location 256 ∗op byte + remainder . This feature allows access to large lig kern arrays, because the
first instruction must otherwise appear in a location ≤ 255.

Any instruction with skip byte > 128 in the lig kern array must have 256 ∗ op byte + remainder < nl . If
such an instruction is encountered during normal program execution, it denotes an unconditional halt; no
ligature command is performed.

define stop flag = 128 { value indicating ‘STOP’ in a lig/kern program }
define kern flag = 128 { op code for a kern step }

14. Extensible characters are specified by an extensible recipe , which consists of four bytes called top , mid ,
bot , and rep (in this order). These bytes are the character codes of individual pieces used to build up a large
symbol. If top , mid , or bot are zero, they are not present in the built-up result. For example, an extensible
vertical line is like an extensible bracket, except that the top and bottom pieces are missing.

208 FONT METRIC DATA TFtoPL §15

15. The final portion of a TFM file is the param array, which is another sequence of fix word values.

param [1] = slant is the amount of italic slant, which is used to help position accents. For example,
slant = .25 means that when you go up one unit, you also go .25 units to the right. The slant is a
pure number; it’s the only fix word other than the design size itself that is not scaled by the design
size.

param [2] = space is the normal spacing between words in text. Note that character " " in the font need
not have anything to do with blank spaces.

param [3] = space stretch is the amount of glue stretching between words.
param [4] = space shrink is the amount of glue shrinking between words.
param [5] = x height is the height of letters for which accents don’t have to be raised or lowered.
param [6] = quad is the size of one em in the font.
param [7] = extra space is the amount added to param [2] at the ends of sentences.
When the character coding scheme is TeX math symbols, the font is supposed to have 15 additional

parameters called num1 , num2 , num3 , denom1 , denom2 , sup1 , sup2 , sup3 , sub1 , sub2 , supdrop , subdrop ,
delim1 , delim2 , and axis height , respectively. When the character coding scheme is TeX math extension,
the font is supposed to have six additional parameters called default rule thickness and big op spacing1
through big op spacing5 .

16. So that is what TFM files hold. The next question is, “What about PL files?” A complete answer to
that question appears in the documentation of the companion program, PLtoTF, so it will not be repeated
here. Suffice it to say that a PL file is an ordinary Pascal text file, and that the output of TFtoPL uses only
a subset of the possible constructions that might appear in a PL file. Furthermore, hardly anybody really
wants to look at the formal definition of PL format, because it is almost self-explanatory when you see an
example or two.

〈Globals in the outer block 6 〉 +≡
pl file : text ;

17. 〈 Set initial values 7 〉 +≡
rewrite (pl file);

§18 TFtoPL UNPACKED REPRESENTATION 209

18. Unpacked representation. The first thing TFtoPL does is read the entire tfm file into an array of
bytes, tfm [0 . . (4 ∗ lf − 1)].

〈Types in the outer block 18 〉 ≡
byte = 0 . . 255; { unsigned eight-bit quantity }
index = 0 . . tfm size ; { address of a byte in tfm }

This code is used in section 2.

19. 〈Globals in the outer block 6 〉 +≡
tfm : array [−1000 . . tfm size] of byte ; { the input data all goes here }

{ the negative addresses avoid range checks for invalid characters }

20. The input may, of course, be all screwed up and not a TFM file at all. So we begin cautiously.

define abort (#) ≡
begin print ln (#);
print ln (´Sorry, but I can´´t go on; are you sure this is a TFM?´); goto final end ;
end

〈Read the whole input file 20 〉 ≡
read (tfm file , tfm [0]);
if tfm [0] > 127 then abort (´The first byte of the input file exceeds 127!´);
if eof (tfm file) then abort (´The input file is only one byte long!´);
read (tfm file , tfm [1]); lf ← tfm [0] ∗ 4́00 + tfm [1];
if lf = 0 then abort (´The file claims to have length zero, but that´´s impossible!´);
if 4 ∗ lf − 1 > tfm size then abort (´The file is bigger than I can handle!´);
for tfm ptr ← 2 to 4 ∗ lf − 1 do

begin if eof (tfm file) then abort (´The file has fewer bytes than it claims!´);
read (tfm file , tfm [tfm ptr]);
end;

if ¬eof (tfm file) then
begin print ln (´There´´s some extra junk at the end of the TFM file,´);
print ln (´but I´´ll proceed as if it weren´´t there.´);
end

This code is used in section 96.

210 UNPACKED REPRESENTATION TFtoPL §21

21. After the file has been read successfully, we look at the subfile sizes to see if they check out.

define eval two bytes (#) ≡
begin if tfm [tfm ptr] > 127 then abort (´One of the subfile sizes is negative!´);
#← tfm [tfm ptr] ∗ 4́00 + tfm [tfm ptr + 1]; tfm ptr ← tfm ptr + 2;
end

〈 Set subfile sizes lh , bc , . . . , np 21 〉 ≡
begin tfm ptr ← 2;
eval two bytes (lh); eval two bytes (bc); eval two bytes (ec); eval two bytes (nw); eval two bytes (nh);
eval two bytes (nd); eval two bytes (ni); eval two bytes (nl); eval two bytes (nk); eval two bytes (ne);
eval two bytes (np);
if lh < 2 then abort (´The header length is only ´, lh : 1, ´!´);
if nl > lig size then abort (´The lig/kern program is longer than I can handle!´);
if (bc > ec + 1) ∨ (ec > 255) then

abort (´The character code range ´, bc : 1, ´..´, ec : 1, ´ is illegal!´);
if (nw = 0) ∨ (nh = 0) ∨ (nd = 0) ∨ (ni = 0) then

abort (´Incomplete subfiles for character dimensions!´);
if ne > 256 then abort (´There are ´,ne : 1, ´ extensible recipes!´);
if lf 6= 6 + lh + (ec − bc + 1) + nw + nh + nd + ni + nl + nk + ne + np then

abort (´Subfile sizes don´´t add up to the stated total!´);
end

This code is used in section 96.

22. Once the input data successfully passes these basic checks, TFtoPL believes that it is a TFM file, and
the conversion to PL format will take place. Access to the various subfiles is facilitated by computing the
following base addresses. For example, the char info for character c will start in location 4 ∗ (char base + c)
of the tfm array.

〈Globals in the outer block 6 〉 +≡
char base ,width base , height base , depth base , italic base , lig kern base , kern base , exten base , param base :

integer ; {base addresses for the subfiles }

23. 〈Compute the base addresses 23 〉 ≡
begin char base ← 6 + lh − bc ; width base ← char base + ec + 1; height base ← width base + nw ;
depth base ← height base + nh ; italic base ← depth base + nd ; lig kern base ← italic base + ni ;
kern base ← lig kern base + nl ; exten base ← kern base + nk ; param base ← exten base + ne − 1;
end

This code is used in section 96.

§24 TFtoPL UNPACKED REPRESENTATION 211

24. Of course we want to define macros that suppress the detail of how the font information is actually
encoded. Each word will be referred to by the tfm index of its first byte. For example, if c is a character
code between bc and ec , then tfm [char info(c)] will be the first byte of its char info , i.e., the width index ;
furthermore width (c) will point to the fix word for c’s width.

define check sum = 24
define design size = check sum + 4
define scheme = design size + 4
define family = scheme + 40
define random word = family + 20
define char info(#) ≡ 4 ∗ (char base + #)
define width index (#) ≡ tfm [char info(#)]
define nonexistent (#) ≡ ((# < bc) ∨ (# > ec) ∨ (width index (#) = 0))
define height index (#) ≡ (tfm [char info(#) + 1] div 16)
define depth index (#) ≡ (tfm [char info(#) + 1] mod 16)
define italic index (#) ≡ (tfm [char info(#) + 2] div 4)
define tag (#) ≡ (tfm [char info(#) + 2] mod 4)
define reset tag (#) ≡ tfm [char info(#) + 2]← 4 ∗ italic index (#) + no tag
define remainder (#) ≡ tfm [char info(#) + 3]
define width (#) ≡ 4 ∗ (width base + width index (#))
define height (#) ≡ 4 ∗ (height base + height index (#))
define depth (#) ≡ 4 ∗ (depth base + depth index (#))
define italic(#) ≡ 4 ∗ (italic base + italic index (#))
define exten (#) ≡ 4 ∗ (exten base + remainder (#))
define lig step(#) ≡ 4 ∗ (lig kern base + (#))
define kern (#) ≡ 4 ∗ (kern base + #) {here # is an index, not a character }
define param (#) ≡ 4 ∗ (param base + #) { likewise }

25. One of the things we would like to do is take cognizance of fonts whose character coding scheme is
TeX math symbols or TeX math extension; we will set the font type variable to one of the three choices
vanilla , mathsy , or mathex .

define vanilla = 0 { not a special scheme }
define mathsy = 1 { TeX math symbols scheme }
define mathex = 2 { TeX math extension scheme }

〈Globals in the outer block 6 〉 +≡
font type : vanilla . . mathex ; { is this font special? }

212 BASIC OUTPUT SUBROUTINES TFtoPL §26

26. Basic output subroutines. Let us now define some procedures that will reduce the rest of TFtoPL’s
work to a triviality.

First of all, it is convenient to have an abbreviation for output to the PL file:

define out (#) ≡ write (pl file , #)

27. In order to stick to standard Pascal, we use three strings called ASCII 04 , ASCII 10 , and ASCII 14 ,
in terms of which we can do the appropriate conversion of ASCII codes. Three other little strings are used
to produce face codes like MIE.

〈Globals in the outer block 6 〉 +≡
ASCII 04 ,ASCII 10 ,ASCII 14 : packed array [1 . . 32] of char ;

{ strings for output in the user’s external character set }
MBL string ,RI string ,RCE string : packed array [1 . . 3] of char ;

{ handy string constants for face codes }

28. 〈 Set initial values 7 〉 +≡
ASCII 04 ← ´ !"#$%&´´()*+,−./0123456789:;<=>?´;
ASCII 10 ← ´@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_´;
ASCII 14 ← ´`abcdefghijklmnopqrstuvwxyz{|}~ ´;
MBL string ← ´MBL´; RI string ← ´RI ´; RCE string ← ´RCE´;

29. The array dig will hold a sequence of digits to be output.

〈Globals in the outer block 6 〉 +≡
dig : array [0 . . 11] of 0 . . 9;

30. Here, in fact, are two procedures that output dig [j − 1] . . . dig [0], given j > 0.

procedure out digs (j : integer); { outputs j digits }
begin repeat decr (j); out (dig [j] : 1);
until j = 0;
end;

procedure print digs (j : integer); { prints j digits }
begin repeat decr (j); print (dig [j] : 1);
until j = 0;
end;

31. The print octal procedure indicates how print digs can be used. Since this procedure is used only to
print character codes, it always produces three digits.

procedure print octal (c : byte); { prints octal value of c }
var j: 0 . . 2; { index into dig }
begin print (´´´´); { an apostrophe indicates the octal notation }
for j ← 0 to 2 do

begin dig [j]← cmod 8; c← c div 8;
end;

print digs (3);
end;

32. A PL file has nested parentheses, and we want to format the output so that its structure is clear. The
level variable keeps track of the depth of nesting.

〈Globals in the outer block 6 〉 +≡
level : 0 . . 5;

§33 TFtoPL BASIC OUTPUT SUBROUTINES 213

33. 〈 Set initial values 7 〉 +≡
level ← 0;

34. Three simple procedures suffice to produce the desired structure in the output.

procedure out ln ; {finishes one line, indents the next }
var l: 0 . . 5;
begin write ln (pl file);
for l← 1 to level do out (´ ´);
end;

procedure left ; { outputs a left parenthesis }
begin incr (level); out (´(´);
end;

procedure right ; { outputs a right parenthesis and finishes a line }
begin decr (level); out (´)´); out ln ;
end;

35. The value associated with a property can be output in a variety of ways. For example, we might want
to output a BCPL string that begins in tfm [k]:

procedure out BCPL(k : index); { outputs a string, preceded by a blank space }
var l: 0 . . 39; { the number of bytes remaining }
begin out (´ ´); l← tfm [k];
while l > 0 do

begin incr (k); decr (l);
case tfm [k] div 4́0 of
1: out (ASCII 04 [1 + (tfm [k] mod 4́0)]);
2: out (ASCII 10 [1 + (tfm [k] mod 4́0)]);
3: out (ASCII 14 [1 + (tfm [k] mod 4́0)]);
end;
end;

end;

36. The property value might also be a sequence of l bytes, beginning in tfm [k], that we would like to
output in octal notation. The following procedure assumes that l ≤ 4, but larger values of l could be handled
easily by enlarging the dig array and increasing the upper bounds on b and j.

procedure out octal (k, l : index); { outputs l bytes in octal }
var a: 0 . . 1́777 ; { accumulator for bits not yet output }
b: 0 . . 32; { the number of significant bits in a }
j: 0 . . 11; { the number of digits of output }

begin out (´ O ´); { specify octal format }
a← 0; b← 0; j ← 0;
while l > 0 do 〈Reduce l by one, preserving the invariants 37 〉;
while (a > 0) ∨ (j = 0) do

begin dig [j]← amod 8; a← a div 8; incr (j);
end;

out digs (j);
end;

214 BASIC OUTPUT SUBROUTINES TFtoPL §37

37. 〈Reduce l by one, preserving the invariants 37 〉 ≡
begin decr (l);
if tfm [k + l] 6= 0 then

begin while b > 2 do
begin dig [j]← amod 8; a← a div 8; b← b− 3; incr (j);
end;

case b of
0: a← tfm [k + l];
1: a← a+ 2 ∗ tfm [k + l];
2: a← a+ 4 ∗ tfm [k + l];
end;
end;

b← b+ 8;
end

This code is used in section 36.

38. The property value may be a character, which is output in octal unless it is a letter or a digit. This
procedure is the only place where a lowercase letter will be output to the PL file.

procedure out char (c : byte); { outputs a character }
begin if font type > vanilla then

begin tfm [0]← c; out octal (0, 1)
end

else if (c ≥ "0") ∧ (c ≤ "9") then out (´ C ´, c− "0" : 1)
else if (c ≥ "A") ∧ (c ≤ "Z") then out (´ C ´,ASCII 10 [c− "A" + 2])

else if (c ≥ "a") ∧ (c ≤ "z") then out (´ C ´,ASCII 14 [c− "a" + 2])
else begin tfm [0]← c; out octal (0, 1);

end;
end;

39. The property value might be a “face” byte, which is output in the curious code mentioned earlier,
provided that it is less than 18.

procedure out face (k : index); { outputs a face }
var s: 0 . . 1; { the slope }
b: 0 . . 8; { the weight and expansion }

begin if tfm [k] ≥ 18 then out octal (k, 1)
else begin out (´ F ´); { specify face-code format }
s← tfm [k] mod 2; b← tfm [k] div 2; out (MBL string [1 + (bmod 3)]); out (RI string [1 + s]);
out (RCE string [1 + (b div 3)]);
end;

end;

§40 TFtoPL BASIC OUTPUT SUBROUTINES 215

40. And finally, the value might be a fix word , which is output in decimal notation with just enough
decimal places for PLtoTF to recover every bit of the given fix word .

All of the numbers involved in the intermediate calculations of this procedure will be nonnegative and less
than 10 · 224.

procedure out fix (k : index); { outputs a fix word }
var a: 0 . . 7́777 ; { accumulator for the integer part }
f : integer ; { accumulator for the fraction part }
j: 0 . . 12; { index into dig }
delta : integer ; { amount if allowable inaccuracy }

begin out (´ R ´); { specify real format }
a← (tfm [k] ∗ 16) + (tfm [k+ 1] div 16); f ← ((tfm [k+ 1] mod 16) ∗ 4́00 + tfm [k+ 2]) ∗ 4́00 + tfm [k+ 3];
if a > 3́777 then 〈Reduce negative to positive 43 〉;
〈Output the integer part, a, in decimal notation 41 〉;
〈Output the fraction part, f/220, in decimal notation 42 〉;
end;

41. The following code outputs at least one digit even if a = 0.

〈Output the integer part, a, in decimal notation 41 〉 ≡
begin j ← 0;
repeat dig [j]← amod 10; a← a div 10; incr (j);
until a = 0;
out digs (j);
end

This code is used in section 40.

42. And the following code outputs at least one digit to the right of the decimal point.

〈Output the fraction part, f/220, in decimal notation 42 〉 ≡
begin out (´.´); f ← 10 ∗ f + 5; delta ← 10;
repeat if delta > 4́000000 then f ← f + 2́000000 − (delta div 2);

out (f div 4́000000 : 1); f ← 10 ∗ (f mod 4́000000); delta ← delta ∗ 10;
until f ≤ delta ;
end;

This code is used in section 40.

43. 〈Reduce negative to positive 43 〉 ≡
begin out (´−´); a← 1́0000 − a;
if f > 0 then

begin f ← 4́000000 − f ; decr (a);
end;

end

This code is used in section 40.

216 DOING IT TFtoPL §44

44. Doing it. TEX checks the information of a TFM file for validity as the file is being read in, so that
no further checks will be needed when typesetting is going on. And when it finds something wrong, it just
calls the file “bad,” without identifying the nature of the problem, since TFM files are supposed to be good
almost all of the time.

Of course, a bad file shows up every now and again, and that’s where TFtoPL comes in. This program
wants to catch at least as many errors as TEX does, and to give informative error messages besides. All of
the errors are corrected, so that the PL output will be correct (unless, of course, the TFM file was so loused
up that no attempt is being made to fathom it).

45. Just before each character is processed, its code is printed in octal notation. Up to eight such codes
appear on a line; so we have a variable to keep track of how many are currently there. We also keep track
of whether or not any errors have had to be corrected.

〈Globals in the outer block 6 〉 +≡
chars on line : 0 . . 8; { the number of characters printed on the current line }
perfect : boolean ; {was the file free of errors? }

46. 〈 Set initial values 7 〉 +≡
chars on line ← 0;
perfect ← true ; { innocent until proved guilty }

47. Error messages are given with the help of the bad and range error and bad char macros:

define bad (#) ≡
begin perfect ← false ;
if chars on line > 0 then print ln (´ ´);
chars on line ← 0; print ln (´Bad TFM file: ´, #);
end

define range error (#) ≡
begin perfect ← false ; print ln (´ ´); print (#, ´ index for character ´); print octal (c);
print ln (´ is too large;´); print ln (´so I reset it to zero.´);
end

define bad char tail (#) ≡ print octal (#); print ln (´.´);
end

define bad char (#) ≡
begin perfect ← false ;
if chars on line > 0 then print ln (´ ´);
chars on line ← 0; print (´Bad TFM file: ´, #, ´ nonexistent character ´); bad char tail

define correct bad char tail (#) ≡ print octal (tfm [#]); print ln (´.´); tfm [#]← bc ;
end

define correct bad char (#) ≡
begin perfect ← false ;
if chars on line > 0 then print ln (´ ´);
chars on line ← 0; print (´Bad TFM file: ´, #, ´ nonexistent character ´);
correct bad char tail

〈Globals in the outer block 6 〉 +≡
i: 0 . . 7́7777 ; { an index to words of a subfile }
c: 0 . . 256; { a random character }
d: 0 . . 3; {byte number in a word }
k: index ; { a random index }
r: 0 . . 65535; { a random two-byte value }
count : 0 . . 127; { for when we need to enumerate a small set }

§48 TFtoPL DOING IT 217

48. There are a lot of simple things to do, and they have to be done one at a time, so we might as well
get down to business. The first things that TFtoPL will put into the PL file appear in the header part.

〈Do the header 48 〉 ≡
begin font type ← vanilla ;
if lh ≥ 12 then

begin 〈Set the true font type 53 〉;
if lh ≥ 17 then

begin 〈Output the family name 55 〉;
if lh ≥ 18 then 〈Output the rest of the header 56 〉;
end;

〈Output the character coding scheme 54 〉;
end;
〈Output the design size 51 〉;
〈Output the check sum 49 〉;
〈Output the seven bit safe flag 57 〉;
end

This code is used in section 97.

49. 〈Output the check sum 49 〉 ≡
left ; out (´CHECKSUM´); out octal (check sum , 4); right

This code is used in section 48.

50. Incorrect design sizes are changed to 10 points.

define bad design (#) ≡
begin bad (´Design size ´, #, ´!´); print ln (´I´´ve set it to 10 points.´);
out (´ D 10´);
end

51. 〈Output the design size 51 〉 ≡
left ; out (´DESIGNSIZE´);
if tfm [design size] > 127 then bad design (´negative´)
else if (tfm [design size] = 0) ∧ (tfm [design size + 1] < 16) then bad design (´too small´)

else out fix (design size);
right ; out (´(COMMENT DESIGNSIZE IS IN POINTS)´); out ln ;
out (´(COMMENT OTHER SIZES ARE MULTIPLES OF DESIGNSIZE)´); out ln

This code is used in section 48.

218 DOING IT TFtoPL §52

52. Since we have to check two different BCPL strings for validity, we might as well write a subroutine to
make the check.

procedure check BCPL(k, l : index); { checks a string of length < l }
var j: index ; { runs through the string }
c: byte ; { character being checked }

begin if tfm [k] ≥ l then
begin bad (´String is too long; I´´ve shortened it drastically.´); tfm [k]← 1;
end;

for j ← k + 1 to k + tfm [k] do
begin c← tfm [j];
if (c = "(") ∨ (c = ")") then

begin bad (´Parenthesis in string has been changed to slash.´); tfm [j]← "/";
end

else if (c < " ") ∨ (c > "~") then
begin bad (´Nonstandard ASCII code has been blotted out.´); tfm [j]← "?";
end

else if (c ≥ "a") ∧ (c ≤ "z") then tfm [j]← c+ "A"− "a"; { upper-casify letters }
end;

end;

53. The font type starts out vanilla ; possibly we need to reset it.

〈 Set the true font type 53 〉 ≡
begin check BCPL(scheme , 40);
if (tfm [scheme] ≥ 11) ∧ (tfm [scheme + 1] = "T") ∧ (tfm [scheme + 2] = "E") ∧ (tfm [scheme + 3] = "X") ∧

(tfm [scheme + 4] = " ") ∧ (tfm [scheme + 5] = "M") ∧ (tfm [scheme + 6] = "A") ∧
(tfm [scheme + 7] = "T") ∧ (tfm [scheme + 8] = "H") ∧ (tfm [scheme + 9] = " ") then

begin if (tfm [scheme + 10] = "S") ∧ (tfm [scheme + 11] = "Y") then font type ← mathsy
else if (tfm [scheme + 10] = "E") ∧ (tfm [scheme + 11] = "X") then font type ← mathex ;
end;

end

This code is used in section 48.

54. 〈Output the character coding scheme 54 〉 ≡
left ; out (´CODINGSCHEME´); out BCPL(scheme); right

This code is used in section 48.

55. 〈Output the family name 55 〉 ≡
left ; out (´FAMILY´); check BCPL(family , 20); out BCPL(family); right

This code is used in section 48.

56. 〈Output the rest of the header 56 〉 ≡
begin left ; out (´FACE´); out face (random word + 3); right ;
for i← 18 to lh − 1 do

begin left ; out (´HEADER D ´, i : 1); out octal (check sum + 4 ∗ i, 4); right ;
end;

end

This code is used in section 48.

§57 TFtoPL DOING IT 219

57. This program does not check to see if the seven bit safe flag has the correct setting, i.e., if it really
reflects the seven-bit-safety of the TFM file; the stated value is merely put into the PL file. The PLtoTF

program will store a correct value and give a warning message if a file falsely claims to be safe.

〈Output the seven bit safe flag 57 〉 ≡
if (lh > 17) ∧ (tfm [random word] > 127) then

begin left ; out (´SEVENBITSAFEFLAG TRUE´); right ;
end

This code is used in section 48.

58. The next thing to take care of is the list of parameters.

〈Do the parameters 58 〉 ≡
if np > 0 then

begin left ; out (´FONTDIMEN´); out ln ;
for i← 1 to np do 〈Check and output the ith parameter 60 〉;
right ;
end;
〈Check to see if np is complete for this font type 59 〉;

This code is used in section 97.

59. 〈Check to see if np is complete for this font type 59 〉 ≡
if (font type = mathsy) ∧ (np 6= 22) then

print ln (´Unusual number of fontdimen parameters for a math symbols font (´,np : 1,
´ not 22).´)

else if (font type = mathex) ∧ (np 6= 13) then
print ln (´Unusual number of fontdimen parameters for an extension font (´,np : 1,

´ not 13).´)

This code is used in section 58.

60. All fix word values except the design size and the first parameter will be checked to make sure that
they are less than 16.0 in magnitude, using the check fix macro:

define check fix tail (#) ≡ bad (#, ´ ´, i : 1, ´ is too big;´); print ln (´I have set it to zero.´);
end

define check fix (#) ≡
if (tfm [#] > 0) ∧ (tfm [#] < 255) then

begin tfm [#]← 0; tfm [(#) + 1]← 0; tfm [(#) + 2]← 0; tfm [(#) + 3]← 0; check fix tail

〈Check and output the ith parameter 60 〉 ≡
begin left ;
if i = 1 then out (´SLANT´) { this parameter is not checked }
else begin check fix (param (i))(´Parameter´);
〈Output the name of parameter i 61 〉;
end;

out fix (param (i)); right ;
end

This code is used in section 58.

220 DOING IT TFtoPL §61

61. 〈Output the name of parameter i 61 〉 ≡
if i ≤ 7 then

case i of
2: out (´SPACE´); 3: out (´STRETCH´); 4: out (´SHRINK´);
5: out (´XHEIGHT´); 6: out (´QUAD´); 7: out (´EXTRASPACE´)
end

else if (i ≤ 22) ∧ (font type = mathsy) then
case i of
8: out (´NUM1´); 9: out (´NUM2´); 10: out (´NUM3´);
11: out (´DENOM1´); 12: out (´DENOM2´);
13: out (´SUP1´); 14: out (´SUP2´); 15: out (´SUP3´);
16: out (´SUB1´); 17: out (´SUB2´);
18: out (´SUPDROP´); 19: out (´SUBDROP´);
20: out (´DELIM1´); 21: out (´DELIM2´);
22: out (´AXISHEIGHT´)
end

else if (i ≤ 13) ∧ (font type = mathex) then
if i = 8 then out (´DEFAULTRULETHICKNESS´)
else out (´BIGOPSPACING´, i− 8 : 1)

else out (´PARAMETER D ´, i : 1)

This code is used in section 60.

62. We need to check the range of all the remaining fix word values, and to make sure that width [0] = 0,
etc.

define nonzero fix (#) ≡ (tfm [#] > 0) ∨ (tfm [# + 1] > 0) ∨ (tfm [# + 2] > 0) ∨ (tfm [# + 3] > 0)

〈Check the fix word entries 62 〉 ≡
if nonzero fix (4 ∗ width base) then bad (´width[0] should be zero.´);
if nonzero fix (4 ∗ height base) then bad (´height[0] should be zero.´);
if nonzero fix (4 ∗ depth base) then bad (´depth[0] should be zero.´);
if nonzero fix (4 ∗ italic base) then bad (´italic[0] should be zero.´);
for i← 0 to nw − 1 do check fix (4 ∗ (width base + i))(´Width´);
for i← 0 to nh − 1 do check fix (4 ∗ (height base + i))(´Height´);
for i← 0 to nd − 1 do check fix (4 ∗ (depth base + i))(´Depth´);
for i← 0 to ni − 1 do check fix (4 ∗ (italic base + i))(´Italic correction´);
if nk > 0 then

for i← 0 to nk − 1 do check fix (kern (i))(´Kern´);

This code is used in section 97.

§63 TFtoPL DOING IT 221

63. The ligature/kerning program comes next. Before we can put it out in PL format, we need to make a
table of “labels” that will be inserted into the program. For each character c whose tag is lig tag and whose
starting address is r, we will store the pair (c, r) in the label table array. If there’s a boundary-char program
starting at r, we also store the pair (256, r). This array is sorted by its second components, using the simple
method of straight insertion.

〈Globals in the outer block 6 〉 +≡
label table : array [0 . . 258] of record

cc : 0 . . 256;
rr : 0 . . lig size ;
end;

label ptr : 0 . . 257; { the largest entry in label table }
sort ptr : 0 . . 257; { index into label table }
boundary char : 0 . . 256; { boundary character, or 256 if none }
bchar label : 0 . . 7́7777 ; {beginning of boundary character program }

64. 〈 Set initial values 7 〉 +≡
boundary char ← 256; bchar label ← 7́7777 ;
label ptr ← 0; label table [0].rr ← 0; { a sentinel appears at the bottom }

65. We’ll also identify and remove inaccessible program steps, using the activity array.

define unreachable = 0 { a program step not known to be reachable }
define pass through = 1 { a program step passed through on initialization }
define accessible = 2 { a program step that can be relevant }

〈Globals in the outer block 6 〉 +≡
activity : array [0 . . lig size] of unreachable . . accessible ;
ai , acti : 0 . . lig size ; { indices into activity }

66. 〈Do the ligatures and kerns 66 〉 ≡
if nl > 0 then

begin for ai ← 0 to nl − 1 do activity [ai]← unreachable ;
〈Check for a boundary char 69 〉;
end;
〈Build the label table 67 〉;
if nl > 0 then

begin left ; out (´LIGTABLE´); out ln ;
〈Compute the activity array 70 〉;
〈Output and correct the ligature/kern program 71 〉;
right ; 〈Check for ligature cycles 90 〉;
end

This code is used in section 99.

222 DOING IT TFtoPL §67

67. We build the label table even when nl = 0, because this catches errors that would not otherwise be
detected.

〈Build the label table 67 〉 ≡
for c← bc to ec do

if tag (c) = lig tag then
begin r ← remainder (c);
if r < nl then

begin if tfm [lig step(r)] > stop flag then
begin r ← 256 ∗ tfm [lig step(r) + 2] + tfm [lig step(r) + 3];
if r < nl then

if activity [remainder (c)] = unreachable then activity [remainder (c)]← pass through ;
end;

end;
if r ≥ nl then

begin perfect ← false ; print ln (´ ´);
print (´Ligature/kern starting index for character ´); print octal (c);
print ln (´ is too large;´); print ln (´so I removed it.´); reset tag (c);
end

else 〈 Insert (c, r) into label table 68 〉;
end;

label table [label ptr + 1].rr ← lig size ; { put “infinite” sentinel at the end }
This code is used in section 66.

68. 〈 Insert (c, r) into label table 68 〉 ≡
begin sort ptr ← label ptr ; { there’s a hole at position sort ptr + 1 }
while label table [sort ptr].rr > r do

begin label table [sort ptr + 1]← label table [sort ptr]; decr (sort ptr); {move the hole }
end;

label table [sort ptr + 1].cc ← c; label table [sort ptr + 1].rr ← r; { fill the hole }
incr (label ptr); activity [r]← accessible ;
end

This code is used in section 67.

69. 〈Check for a boundary char 69 〉 ≡
if tfm [lig step(0)] = 255 then

begin left ; out (´BOUNDARYCHAR´); boundary char ← tfm [lig step(0) + 1]; out char (boundary char);
right ; activity [0]← pass through ;
end;

if tfm [lig step(nl − 1)] = 255 then
begin r ← 256 ∗ tfm [lig step(nl − 1) + 2] + tfm [lig step(nl − 1) + 3];
if r ≥ nl then

begin perfect ← false ; print ln (´ ´);
print (´Ligature/kern starting index for boundarychar is too large;´);
print ln (´so I removed it.´);
end

else begin label ptr ← 1; label table [1].cc ← 256; label table [1].rr ← r; bchar label ← r;
activity [r]← accessible ;
end;

activity [nl − 1]← pass through ;
end

This code is used in section 66.

§70 TFtoPL DOING IT 223

70. 〈Compute the activity array 70 〉 ≡
for ai ← 0 to nl − 1 do

if activity [ai] = accessible then
begin r ← tfm [lig step(ai)];
if r < stop flag then

begin r ← r + ai + 1;
if r ≥ nl then

begin bad (´Ligature/kern step ´, ai : 1, ´ skips too far;´);
print ln (´I made it stop.´); tfm [lig step(ai)]← stop flag ;
end

else activity [r]← accessible ;
end;

end

This code is used in section 66.

71. We ignore pass through items, which don’t need to be mentioned in the PL file.

〈Output and correct the ligature/kern program 71 〉 ≡
sort ptr ← 1; { point to the next label that will be needed }
for acti ← 0 to nl − 1 do

if activity [acti] 6= pass through then
begin i← acti ; 〈Take care of commenting out unreachable steps 73 〉;
〈Output any labels for step i 72 〉;
〈Output step i of the ligature/kern program 74 〉;
end;

if level = 2 then right { the final step was unreachable }
This code is used in section 66.

72. 〈Output any labels for step i 72 〉 ≡
while i = label table [sort ptr].rr do

begin left ; out (´LABEL´);
if label table [sort ptr].cc = 256 then out (´ BOUNDARYCHAR´)
else out char (label table [sort ptr].cc);
right ; incr (sort ptr);
end

This code is used in section 71.

73. 〈Take care of commenting out unreachable steps 73 〉 ≡
if activity [i] = unreachable then

begin if level = 1 then
begin left ; out (´COMMENT THIS PART OF THE PROGRAM IS NEVER USED!´); out ln ;
end

end
else if level = 2 then right

This code is used in section 71.

224 DOING IT TFtoPL §74

74. 〈Output step i of the ligature/kern program 74 〉 ≡
begin k ← lig step(i);
if tfm [k] > stop flag then

begin if 256 ∗ tfm [k + 2] + tfm [k + 3] ≥ nl then
bad (´Ligature unconditional stop command address is too big.´);

end
else if tfm [k + 2] ≥ kern flag then 〈Output a kern step 76 〉

else 〈Output a ligature step 77 〉;
if tfm [k] > 0 then

if level = 1 then 〈Output either SKIP or STOP 75 〉;
end

This code is used in sections 71 and 83.

75. The SKIP command is a bit tricky, because we will be omitting all inaccessible commands.

〈Output either SKIP or STOP 75 〉 ≡
begin if tfm [k] ≥ stop flag then out (´(STOP)´)
else begin count ← 0;

for ai ← i+ 1 to i+ tfm [k] do
if activity [ai] = accessible then incr (count);

out (´(SKIP D ´, count : 1, ´)´); {possibly count = 0, so who cares }
end;

out ln ;
end

This code is used in section 74.

76. 〈Output a kern step 76 〉 ≡
begin if nonexistent (tfm [k + 1]) then

if tfm [k + 1] 6= boundary char then correct bad char (´Kern step for´)(k + 1);
left ; out (´KRN´); out char (tfm [k + 1]); r ← 256 ∗ (tfm [k + 2]− kern flag) + tfm [k + 3];
if r ≥ nk then

begin bad (´Kern index too large.´); out (´ R 0.0´);
end

else out fix (kern (r));
right ;
end

This code is used in section 74.

§77 TFtoPL DOING IT 225

77. 〈Output a ligature step 77 〉 ≡
begin if nonexistent (tfm [k + 1]) then

if tfm [k + 1] 6= boundary char then correct bad char (´Ligature step for´)(k + 1);
if nonexistent (tfm [k + 3]) then correct bad char (´Ligature step produces the´)(k + 3);
left ; r ← tfm [k + 2];
if (r = 4) ∨ ((r > 7) ∧ (r 6= 11)) then

begin print ln (´Ligature step with nonstandard code changed to LIG´); r ← 0; tfm [k+ 2]← 0;
end;

if r mod 4 > 1 then out (´/´);
out (´LIG´);
if odd (r) then out (´/´);
while r > 3 do

begin out (´>´); r ← r − 4;
end;

out char (tfm [k + 1]); out char (tfm [k + 3]); right ;
end

This code is used in section 74.

78. The last thing on TFtoPL’s agenda is to go through the list of char info and spew out the information
about each individual character.

〈Do the characters 78 〉 ≡
sort ptr ← 0; { this will suppress ‘STOP’ lines in ligature comments }
for c← bc to ec do

if width index (c) > 0 then
begin if chars on line = 8 then

begin print ln (´ ´); chars on line ← 1;
end

else begin if chars on line > 0 then print (´ ´);
incr (chars on line);
end;

print octal (c); { progress report }
left ; out (´CHARACTER´); out char (c); out ln ; 〈Output the character’s width 79 〉;
if height index (c) > 0 then 〈Output the character’s height 80 〉;
if depth index (c) > 0 then 〈Output the character’s depth 81 〉;
if italic index (c) > 0 then 〈Output the italic correction 82 〉;
case tag (c) of
no tag : do nothing ;
lig tag : 〈Output the applicable part of the ligature/kern program as a comment 83 〉;
list tag : 〈Output the character link unless there is a problem 84 〉;
ext tag : 〈Output an extensible character recipe 85 〉;
end; { there are no other cases }
right ;
end

This code is used in section 98.

79. 〈Output the character’s width 79 〉 ≡
begin left ; out (´CHARWD´);
if width index (c) ≥ nw then range error (´Width´)
else out fix (width (c));
right ;
end

This code is used in section 78.

226 DOING IT TFtoPL §80

80. 〈Output the character’s height 80 〉 ≡
if height index (c) ≥ nh then range error (´Height´)
else begin left ; out (´CHARHT´); out fix (height (c)); right ;

end

This code is used in section 78.

81. 〈Output the character’s depth 81 〉 ≡
if depth index (c) ≥ nd then range error (´Depth´)
else begin left ; out (´CHARDP´); out fix (depth (c)); right ;

end

This code is used in section 78.

82. 〈Output the italic correction 82 〉 ≡
if italic index (c) ≥ ni then range error (´Italic correction´)
else begin left ; out (´CHARIC´); out fix (italic(c)); right ;

end

This code is used in section 78.

83. 〈Output the applicable part of the ligature/kern program as a comment 83 〉 ≡
begin left ; out (´COMMENT´); out ln ;
i← remainder (c); r ← lig step(i);
if tfm [r] > stop flag then i← 256 ∗ tfm [r + 2] + tfm [r + 3];
repeat 〈Output step i of the ligature/kern program 74 〉;

if tfm [k] ≥ stop flag then i← nl
else i← i+ 1 + tfm [k];

until i ≥ nl ;
right ;
end

This code is used in section 78.

84. We want to make sure that there is no cycle of characters linked together by list tag entries, since TEX
doesn’t want to risk endless loops. If such a cycle exists, the routine here detects it when processing the
largest character code in the cycle.

〈Output the character link unless there is a problem 84 〉 ≡
begin r ← remainder (c);
if nonexistent (r) then

begin bad char (´Character list link to´)(r); reset tag (c);
end

else begin while (r < c) ∧ (tag (r) = list tag) do r ← remainder (r);
if r = c then

begin bad (´Cycle in a character list!´); print (´Character ´); print octal (c);
print ln (´ now ends the list.´); reset tag (c);
end

else begin left ; out (´NEXTLARGER´); out char (remainder (c)); right ;
end;

end;
end

This code is used in section 78.

§85 TFtoPL DOING IT 227

85. 〈Output an extensible character recipe 85 〉 ≡
if remainder (c) ≥ ne then

begin range error (´Extensible´); reset tag (c);
end

else begin left ; out (´VARCHAR´); out ln ; 〈Output the extensible pieces that exist 86 〉;
right ;
end

This code is used in section 78.

86. 〈Output the extensible pieces that exist 86 〉 ≡
for k ← 0 to 3 do

if (k = 3) ∨ (tfm [exten (c) + k] > 0) then
begin left ;
case k of
0: out (´TOP´); 1: out (´MID´); 2: out (´BOT´); 3: out (´REP´)
end;
if nonexistent (tfm [exten (c) + k]) then out char (c)
else out char (tfm [exten (c) + k]);
right ;
end

This code is used in section 85.

87. Some of the extensible recipes may not actually be used, but TEX will complain about them anyway
if they refer to nonexistent characters. Therefore TFtoPL must check them too.

〈Check the extensible recipes 87 〉 ≡
if ne > 0 then

for c← 0 to ne − 1 do
for d← 0 to 3 do

begin k ← 4 ∗ (exten base + c) + d;
if (tfm [k] > 0) ∨ (d = 3) then

begin if nonexistent (tfm [k]) then
begin bad char (´Extensible recipe involves the´)(tfm [k]);
if d < 3 then tfm [k]← 0;
end;

end;
end

This code is used in section 99.

228 CHECKING FOR LIGATURE LOOPS TFtoPL §88

88. Checking for ligature loops. We have programmed almost everything but the most interesting
calculation of all, which has been saved for last as a special treat. TEX’s extended ligature mechanism allows
unwary users to specify sequences of ligature replacements that never terminate. For example, the pair of
commands

(/LIG x y) (/LIG y x)

alternately replaces character x by character y and vice versa. A similar loop occurs if (LIG/ z y) occurs
in the program for x and (LIG/ z x) occurs in the program for y.

More complicated loops are also possible. For example, suppose the ligature programs for x and y are

(LABEL x)(/LIG/ z w)(/LIG/> w y) . . . ,
(LABEL y)(LIG w x) . . . ;

then the adjacent characters xz change to xwz, xywz, xxz, xxwz, . . . , ad infinitum.

89. To detect such loops, TFtoPL attempts to evaluate the function f(x, y) for all character pairs x and y,
where f is defined as follows: If the current character is x and the next character is y, we say the “cursor”
is between x and y; when the cursor first moves past y, the character immediately to its left is f(x, y). This
function is defined if and only if no infinite loop is generated when the cursor is between x and y.

The function f(x, y) can be defined recursively. It turns out that all pairs (x, y) belong to one of five
classes. The simplest class has f(x, y) = y; this happens if there’s no ligature between x and y, or in
the cases LIG/> and /LIG/>>. Another simple class arises when there’s a LIG or /LIG> between x and y,
generating the character z; then f(x, y) = z. Otherwise we always have f(x, y) equal to either f(x, z) or
f(z, y) or f(f(x, z), y), where z is the inserted ligature character.

The first two of these classes can be merged; we can also consider (x, y) to belong to the simple class when
f(x, y) has been evaluated. For technical reasons we allow x to be 256 (for the boundary character at the
left) or 257 (in cases when an error has been detected).

For each pair (x, y) having a ligature program step, we store (x, y) in a hash table from which the values
z and class can be read.

define simple = 0 { f(x, y) = z }
define left z = 1 { f(x, y) = f(z, y) }
define right z = 2 { f(x, y) = f(x, z) }
define both z = 3 { f(x, y) = f(f(x, z), y) }
define pending = 4 { f(x, y) is being evaluated }

〈Globals in the outer block 6 〉 +≡
hash : array [0 . . hash size] of 0 . . 66048; { 256x+ y + 1 for x ≤ 257 and y ≤ 255 }
class : array [0 . . hash size] of simple . . pending ;
lig z : array [0 . . hash size] of 0 . . 257;
hash ptr : 0 . . hash size ; { the number of nonzero entries in hash }
hash list : array [0 . . hash size] of 0 . . hash size ; { list of those nonzero entries }
h, hh : 0 . . hash size ; { indices into the hash table }
x lig cycle , y lig cycle : 0 . . 256; {problematic ligature pair }

§90 TFtoPL CHECKING FOR LIGATURE LOOPS 229

90. 〈Check for ligature cycles 90 〉 ≡
hash ptr ← 0; y lig cycle ← 256;
for hh ← 0 to hash size do hash [hh]← 0; { clear the hash table }
for c← bc to ec do

if tag (c) = lig tag then
begin i← remainder (c);
if tfm [lig step(i)] > stop flag then i← 256 ∗ tfm [lig step(i) + 2] + tfm [lig step(i) + 3];
〈Enter data for character c starting at location i in the hash table 91 〉;
end;

if bchar label < nl then
begin c← 256; i← bchar label ;
〈Enter data for character c starting at location i in the hash table 91 〉;
end;

if hash ptr = hash size then
begin print ln (´Sorry, I haven´´t room for so many ligature/kern pairs!´); goto final end ;
end;

for hh ← 1 to hash ptr do
begin r ← hash list [hh];
if class [r] > simple then {make sure f is defined }
r ← f(r, (hash [r]− 1) div 256, (hash [r]− 1) mod 256);

end;
if y lig cycle < 256 then

begin print (´Infinite ligature loop starting with ´);
if x lig cycle = 256 then print (´boundary´) else print octal (x lig cycle);
print (´ and ´); print octal (y lig cycle); print ln (´!´);
out (´(INFINITE LIGATURE LOOP MUST BE BROKEN!)´); goto final end ;
end

This code is used in section 66.

91. 〈Enter data for character c starting at location i in the hash table 91 〉 ≡
repeat hash input ; k ← tfm [lig step(i)];

if k ≥ stop flag then i← nl
else i← i+ 1 + k;

until i ≥ nl

This code is used in sections 90 and 90.

230 CHECKING FOR LIGATURE LOOPS TFtoPL §92

92. We use an “ordered hash table” with linear probing, because such a table is efficient when the lookup
of a random key tends to be unsuccessful.

procedure hash input ; { enter data for character c and command i }
label 30; { go here for a quick exit }
var cc : simple . . both z ; { class of data being entered }

zz : 0 . . 255; { function value or ligature character being entered }
y: 0 . . 255; { the character after the cursor }
key : integer ; { value to be stored in hash }
t: integer ; { temporary register for swapping }

begin if hash ptr = hash size then goto 30;
〈Compute the command parameters y, cc , and zz 93 〉;
key ← 256 ∗ c+ y + 1; h← (1009 ∗ key) mod hash size ;
while hash [h] > 0 do

begin if hash [h] ≤ key then
begin if hash [h] = key then goto 30; { unused ligature command }
t← hash [h]; hash [h]← key ; key ← t; { do ordered-hash-table insertion }
t← class [h]; class [h]← cc ; cc ← t; {namely, do a swap }
t← lig z [h]; lig z [h]← zz ; zz ← t;
end;

if h > 0 then decr (h) else h← hash size ;
end;

hash [h]← key ; class [h]← cc ; lig z [h]← zz ; incr (hash ptr); hash list [hash ptr]← h;
30: end;

93. We must store kern commands as well as ligature commands, because the former might make the latter
inapplicable.

〈Compute the command parameters y, cc , and zz 93 〉 ≡
k ← lig step(i); y ← tfm [k + 1]; t← tfm [k + 2]; cc ← simple ; zz ← tfm [k + 3];
if t ≥ kern flag then zz ← y
else begin case t of

0, 6: do nothing ; { LIG,/LIG> }
5, 11: zz ← y; { LIG/>, /LIG/>> }
1, 7: cc ← left z ; { LIG/, /LIG/> }
2: cc ← right z ; { /LIG }
3: cc ← both z ; { /LIG/ }
end; { there are no other cases }
end

This code is used in section 92.

94. Evaluation of f(x, y) is handled by two mutually recursive procedures. Kind of a neat algorithm,
generalizing a depth-first search.

function f(h, x, y : index): index ; forward ; { compute f for arguments known to be in hash [h] }
function eval (x, y : index): index ; { compute f(x, y) with hashtable lookup }

var key : integer ; { value sought in hash table }
begin key ← 256 ∗ x+ y + 1; h← (1009 ∗ key) mod hash size ;
while hash [h] > key do

if h > 0 then decr (h) else h← hash size ;
if hash [h] < key then eval ← y { not in ordered hash table }
else eval ← f(h, x, y);
end;

§95 TFtoPL CHECKING FOR LIGATURE LOOPS 231

95. Pascal’s beastly convention for forward declarations prevents us from saying function f(h, x, y :
index): index here.

function f ;
begin case class [h] of
simple : do nothing ;
left z : begin class [h]← pending ; lig z [h]← eval (lig z [h], y); class [h]← simple ;

end;
right z : begin class [h]← pending ; lig z [h]← eval (x, lig z [h]); class [h]← simple ;

end;
both z : begin class [h]← pending ; lig z [h]← eval (eval (x, lig z [h]), y); class [h]← simple ;

end;
pending : begin x lig cycle ← x; y lig cycle ← y; lig z [h]← 257; class [h]← simple ;

end; { the value 257 will break all cycles, since it’s not in hash }
end; { there are no other cases }
f ← lig z [h];
end;

232 THE MAIN PROGRAM TFtoPL §96

96. The main program. The routines sketched out so far need to be packaged into separate procedures,
on some systems, since some Pascal compilers place a strict limit on the size of a routine. The packaging is
done here in an attempt to avoid some system-dependent changes.

First comes the organize procedure, which reads the input data and gets ready for subsequent events. If
something goes wrong, the routine returns false .

function organize : boolean ;
label final end , 30;
var tfm ptr : index ; { an index into tfm }
begin 〈Read the whole input file 20 〉;
〈 Set subfile sizes lh , bc , . . . , np 21 〉;
〈Compute the base addresses 23 〉;
organize ← true ; goto 30;

final end : organize ← false ;
30: end;

97. Next we do the simple things.

procedure do simple things ;
var i: 0 . . 7́7777 ; { an index to words of a subfile }
begin 〈Do the header 48 〉;
〈Do the parameters 58 〉;
〈Check the fix word entries 62 〉
end;

98. And then there’s a routine for individual characters.

procedure do characters ;
var c: byte ; { character being done }
k: index ; { a random index }
ai : 0 . . lig size ; { index into activity }

begin 〈Do the characters 78 〉;
end;

99. Here is where TFtoPL begins and ends.

begin initialize ;
if ¬organize then goto final end ;
do simple things ;
〈Do the ligatures and kerns 66 〉;
〈Check the extensible recipes 87 〉;
do characters ; print ln (´.´);
if level 6= 0 then print ln (´This program isn´´t working!´);
if ¬perfect then

begin out (´(COMMENT THE TFM FILE WAS BAD, SO THE DATA HAS BEEN CHANGED!)´);
write ln (pl file);
end;

final end : end.

§100 TFtoPL SYSTEM-DEPENDENT CHANGES 233

100. System-dependent changes. This section should be replaced, if necessary, by changes to the
program that are necessary to make TFtoPL work at a particular installation. It is usually best to design
your change file so that all changes to previous sections preserve the section numbering; then everybody’s
version will be consistent with the printed program. More extensive changes, which introduce new sections,
can be inserted here; then only the index itself will get a new section number.

234 INDEX TFtoPL §101

101. Index. Pointers to error messages appear here together with the section numbers where each ident-
ifier is used.

a: 36, 40.
abort : 20, 21.
accessible : 65, 68, 69, 70, 75.
acti : 65, 71.
activity : 65, 66, 67, 68, 69, 70, 71, 73, 75, 98.
ai : 65, 66, 70, 75, 98.
ASCII 04 : 27, 28, 35.
ASCII 10 : 27, 28, 35, 38.
ASCII 14 : 27, 28, 35, 38.
axis height : 15.
b: 36, 39.
bad : 47, 50, 52, 60, 62, 70, 74, 76, 84.
Bad TFM file : 47.
bad char : 47, 84, 87.
bad char tail : 47.
bad design : 50, 51.
banner : 1, 2.
bc : 8, 9, 11, 13, 21, 23, 24, 47, 67, 78, 90.
bchar label : 63, 64, 69, 90.
big op spacing1 : 15.
big op spacing5 : 15.
boolean : 45, 96.
bot : 14.
both z : 89, 92, 93, 95.
boundary char : 63, 64, 69, 76, 77.
byte : 18, 19, 31, 38, 52, 98.
c: 38, 47, 52, 98.
cc : 63, 68, 69, 72, 92, 93.
char : 27.
char base : 22, 23, 24.
char info : 11, 22, 24, 78.
char info word : 9, 11, 12.
Character list link... : 84.
chars on line : 45, 46, 47, 78.
check sum: 10.
check BCPL: 52, 53, 55.
check fix : 60, 62.
check fix tail : 60.
check sum : 24, 49, 56.
class : 89, 90, 92, 95.
coding scheme: 10.
correct bad char : 47, 76, 77.
correct bad char tail : 47.
count : 47, 75.
Cycle in a character list : 84.
d: 47.
decr : 5, 30, 34, 35, 37, 43, 68, 92, 94.
default rule thickness : 15.
delim1 : 15.
delim2 : 15.

delta : 40, 42.
denom1 : 15.
denom2 : 15.
depth : 11, 24, 81.
Depth index for char : 81.
Depth n is too big : 62.
depth base : 22, 23, 24, 62.
depth index : 11, 24, 78, 81.
design size: 10.
Design size wrong : 50.
design size : 24, 51.
DESIGNSIZE IS IN POINTS : 51.
dig : 29, 30, 31, 36, 37, 40, 41.
do characters : 98, 99.
do nothing : 5, 78, 93, 95.
do simple things : 97, 99.
ec : 8, 9, 11, 13, 21, 23, 24, 67, 78, 90.
eof : 20.
eval : 94, 95.
eval two bytes : 21.
ext tag : 12, 78.
exten : 12, 24, 86.
exten base : 22, 23, 24, 87.
Extensible index for char : 85.
Extensible recipe involves... : 87.
extensible recipe : 9, 14.
extra space : 15.
f : 40, 94, 95.
face : 10, 27, 39.
false : 47, 67, 69, 96.
family : 24, 55.
family name: 10.
final end : 3, 20, 90, 96, 99.
fix word : 9, 10, 15, 24, 40, 60, 62.
font identifier: 10.
font type : 25, 38, 48, 53, 59, 61.
forward : 94, 95.
h: 89, 94.
hash : 89, 90, 92, 94, 95.
hash input : 91, 92.
hash list : 89, 90, 92.
hash ptr : 89, 90, 92.
hash size : 4, 89, 90, 92, 94.
header : 10.
height : 11, 24, 80.
Height index for char... : 80.
Height n is too big : 62.
height base : 22, 23, 24, 62.
height index : 11, 24, 78, 80.
hh : 89, 90.

§101 TFtoPL INDEX 235

i: 47, 97.
Incomplete subfiles... : 21.
incr : 5, 34, 35, 36, 37, 41, 68, 72, 75, 78, 92.
index : 18, 35, 36, 39, 40, 47, 52, 94, 95, 96, 98.
Infinite ligature loop... : 90.
initialize : 2, 99.
integer : 22, 30, 40, 92, 94.
italic : 11, 24, 82.
Italic correction index for char... : 82.
Italic correction n is too big : 62.
italic base : 22, 23, 24, 62.
italic index : 11, 24, 78, 82.
j: 31, 36, 40, 52.
k: 35, 36, 39, 40, 47, 52, 98.
kern : 13, 24, 62, 76.
Kern index too large : 76.
Kern n is too big : 62.
Kern step for nonexistent... : 76.
kern base : 22, 23, 24.
kern flag : 13, 74, 76, 93.
key : 92, 94.
l: 34, 35, 36, 52.
label ptr : 63, 64, 67, 68, 69.
label table : 63, 64, 67, 68, 69, 72.
left : 34, 49, 51, 54, 55, 56, 57, 58, 60, 66, 69, 72,

73, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86.
left z : 89, 93, 95.
level : 32, 33, 34, 71, 73, 74, 99.
lf : 8, 18, 20, 21.
lh : 8, 9, 21, 23, 48, 56, 57.
Lig...skips too far : 70.
lig kern : 4, 12, 13.
lig kern base : 22, 23, 24.
lig kern command : 9, 13.
lig size : 4, 21, 63, 65, 67, 98.
lig step : 24, 67, 69, 70, 74, 83, 90, 91, 93.
lig tag : 12, 63, 67, 78, 90.
lig z : 89, 92, 95.
Ligature step for nonexistent... : 77.
Ligature step produces... : 77.
Ligature unconditional stop... : 74.
Ligature/kern starting index... : 67, 69.
list tag : 12, 78, 84.
mathex : 25, 53, 59, 61.
mathsy : 25, 53, 59, 61.
MBL string : 27, 28, 39.
mid : 14.
nd : 8, 9, 21, 23, 62, 81.
ne : 8, 9, 21, 23, 85, 87.
next char : 13.
nh : 8, 9, 21, 23, 62, 80.
ni : 8, 9, 21, 23, 62, 82.

nk : 8, 9, 21, 23, 62, 76.
nl : 8, 9, 13, 21, 23, 66, 67, 69, 70, 71, 74, 83, 90, 91.
no tag : 12, 24, 78.
nonexistent : 24, 76, 77, 84, 86, 87.
Nonstandard ASCII code... : 52.
nonzero fix : 62.
np : 8, 9, 21, 58, 59.
num1 : 15.
num2 : 15.
num3 : 15.
nw : 8, 9, 21, 23, 62, 79.
odd : 77.
One of the subfile sizes... : 21.
op byte : 13.
organize : 96, 99.
out : 26, 30, 34, 35, 36, 38, 39, 40, 42, 43, 49, 50,

51, 54, 55, 56, 57, 58, 60, 61, 66, 69, 72, 73, 75,
76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 90, 99.

out BCPL: 35, 54, 55.
out char : 38, 69, 72, 76, 77, 78, 84, 86.
out digs : 30, 36, 41.
out face : 39, 56.
out fix : 40, 51, 60, 76, 79, 80, 81, 82.
out ln : 34, 51, 58, 66, 73, 75, 78, 83, 85.
out octal : 36, 38, 39, 49, 56.
output : 2.
param : 10, 15, 24, 60.
param base : 22, 23, 24.
Parameter n is too big : 60.
Parenthesis...changed to slash : 52.
pass through : 65, 67, 69, 71.
pending : 89, 95.
perfect : 45, 46, 47, 67, 69, 99.
pl file : 2, 16, 17, 26, 34, 99.
print : 2, 30, 31, 47, 67, 69, 78, 84, 90.
print digs : 30, 31.
print ln : 2, 20, 47, 50, 59, 60, 67, 69, 70, 77,

78, 84, 90, 99.
print octal : 31, 47, 67, 78, 84, 90.
quad : 15.
r: 47.
random word : 24, 56, 57.
range error : 47, 79, 80, 81, 82, 85.
RCE string : 27, 28, 39.
read : 20.
remainder : 11, 12, 13, 24, 67, 83, 84, 85, 90.
rep : 14.
reset : 7.
reset tag : 24, 67, 84, 85.
rewrite : 17.
RI string : 27, 28, 39.

236 INDEX TFtoPL §101

right : 34, 49, 51, 54, 55, 56, 57, 58, 60, 66, 69, 71,
72, 73, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86.

right z : 89, 93, 95.
rr : 63, 64, 67, 68, 69, 72.
s: 39.
scheme : 24, 53, 54.
seven bit safe flag : 10, 57.
should be zero : 62.
simple : 89, 90, 92, 93, 95.
skip byte : 13.
slant : 15.
Sorry, I haven’t room... : 90.
sort ptr : 63, 68, 71, 72, 78.
space : 15.
space shrink : 15.
space stretch : 15.
stop flag : 13, 67, 70, 74, 75, 83, 90, 91.
String is too long... : 52.
stuff : 9.
subdrop : 15.
Subfile sizes don’t add up... : 21.
sub1 : 15.
sub2 : 15.
supdrop : 15.
sup1 : 15.
sup2 : 15.
sup3 : 15.
system dependencies: 2, 7, 38, 100.
t: 92.
tag : 11, 12, 24, 63, 67, 78, 84, 90.
text : 16.
tfm : 4, 18, 19, 20, 21, 22, 24, 35, 36, 37, 38, 39,

40, 47, 51, 52, 53, 57, 60, 62, 67, 69, 70, 74,
75, 76, 77, 83, 86, 87, 90, 91, 93, 96.

tfm file : 2, 6, 7, 18, 20.
tfm ptr : 20, 21, 96.
tfm size : 4, 18, 19, 20.
TFtoPL: 2.
The character code range... : 21.
The file claims... : 20.
The file has fewer bytes... : 20.
The file is bigger... : 20.
The first byte... : 20.
The header length... : 21.
The input...one byte long : 20.
The lig/kern program... : 21.
THE TFM FILE WAS BAD... : 99.
There are ... recipes : 21.
There’s some extra junk... : 20.
This program isn’t working : 99.
top : 14.
true : 46, 96.

unreachable : 65, 66, 67, 73.
Unusual number of fontdimen... : 59.
vanilla : 25, 38, 48, 53.
width : 11, 24, 62, 79.
Width n is too big : 62.
width base : 22, 23, 24, 62.
width index : 11, 24, 78, 79.
write : 2, 26.
write ln : 2, 34, 99.
x: 94.
x height : 15.
x lig cycle : 89, 90, 95.
y: 92, 94.
y lig cycle : 89, 90, 95.
zz : 92, 93.

TFtoPL NAMES OF THE SECTIONS 237

〈Build the label table 67 〉 Used in section 66.

〈Check and output the ith parameter 60 〉 Used in section 58.

〈Check for a boundary char 69 〉 Used in section 66.

〈Check for ligature cycles 90 〉 Used in section 66.

〈Check the extensible recipes 87 〉 Used in section 99.

〈Check the fix word entries 62 〉 Used in section 97.

〈Check to see if np is complete for this font type 59 〉 Used in section 58.

〈Compute the base addresses 23 〉 Used in section 96.

〈Compute the command parameters y, cc , and zz 93 〉 Used in section 92.

〈Compute the activity array 70 〉 Used in section 66.

〈Constants in the outer block 4 〉 Used in section 2.

〈Do the characters 78 〉 Used in section 98.

〈Do the header 48 〉 Used in section 97.

〈Do the ligatures and kerns 66 〉 Used in section 99.

〈Do the parameters 58 〉 Used in section 97.

〈Enter data for character c starting at location i in the hash table 91 〉 Used in sections 90 and 90.

〈Globals in the outer block 6, 8, 16, 19, 22, 25, 27, 29, 32, 45, 47, 63, 65, 89 〉 Used in section 2.

〈 Insert (c, r) into label table 68 〉 Used in section 67.

〈Labels in the outer block 3 〉 Used in section 2.

〈Output a kern step 76 〉 Used in section 74.

〈Output a ligature step 77 〉 Used in section 74.

〈Output an extensible character recipe 85 〉 Used in section 78.

〈Output and correct the ligature/kern program 71 〉 Used in section 66.

〈Output any labels for step i 72 〉 Used in section 71.

〈Output either SKIP or STOP 75 〉 Used in section 74.

〈Output step i of the ligature/kern program 74 〉 Used in sections 71 and 83.

〈Output the applicable part of the ligature/kern program as a comment 83 〉 Used in section 78.

〈Output the character coding scheme 54 〉 Used in section 48.

〈Output the character link unless there is a problem 84 〉 Used in section 78.

〈Output the character’s depth 81 〉 Used in section 78.

〈Output the character’s height 80 〉 Used in section 78.

〈Output the character’s width 79 〉 Used in section 78.

〈Output the check sum 49 〉 Used in section 48.

〈Output the design size 51 〉 Used in section 48.

〈Output the extensible pieces that exist 86 〉 Used in section 85.

〈Output the family name 55 〉 Used in section 48.

〈Output the fraction part, f/220, in decimal notation 42 〉 Used in section 40.

〈Output the integer part, a, in decimal notation 41 〉 Used in section 40.

〈Output the italic correction 82 〉 Used in section 78.

〈Output the name of parameter i 61 〉 Used in section 60.

〈Output the rest of the header 56 〉 Used in section 48.

〈Output the seven bit safe flag 57 〉 Used in section 48.

〈Read the whole input file 20 〉 Used in section 96.

〈Reduce l by one, preserving the invariants 37 〉 Used in section 36.

〈Reduce negative to positive 43 〉 Used in section 40.

〈 Set initial values 7, 17, 28, 33, 46, 64 〉 Used in section 2.

〈 Set subfile sizes lh , bc , . . . , np 21 〉 Used in section 96.

〈 Set the true font type 53 〉 Used in section 48.

〈Take care of commenting out unreachable steps 73 〉 Used in section 71.

〈Types in the outer block 18 〉 Used in section 2.

	 Introduction
	 Font metric data
	 Unpacked representation
	 Basic output subroutines
	 Doing it
	 Checking for ligature loops
	 The main program
	 System-dependent changes
	 Index
	Names of the sections
	Build the label table
	Check and output the ith parameter
	Check for a boundary char
	Check for ligature cycles
	Check the extensible recipes
	Check the fix_word entries
	Check to see if np is complete for this font type
	Compute the base addresses
	Compute the command parameters y, cc, and zz
	Compute the activity array
	Constants in the outer block
	Do the characters
	Do the header
	Do the ligatures and kerns
	Do the parameters
	Enter data for character c starting at location i in the hash table
	Globals in the outer block
	Insert (c,r) into label_table
	Labels in the outer block
	Output a kern step
	Output a ligature step
	Output an extensible character recipe
	Output and correct the ligature/kern program
	Output any labels for step i
	Output either SKIP or STOP
	Output step i of the ligature/kern program
	Output the applicable part of the ligature/kern program as a comment
	Output the character coding scheme
	Output the character link unless there is a problem
	Output the character's depth
	Output the character's height
	Output the character's width
	Output the check sum
	Output the design size
	Output the extensible pieces that exist
	Output the family name
	Output the fraction part, f/2^20, in decimal notation
	Output the integer part, a, in decimal notation
	Output the italic correction
	Output the name of parameter i
	Output the rest of the header
	Output the seven_bit_safe_flag
	Read the whole input file
	Reduce 1)l by one, preserving the invariants
	Reduce 2)negative to positive
	Set initial values
	Set subfile sizes lh, bc, ... , np
	Set the true font_type
	Take care of commenting out unreachable steps
	Types in the outer block

