Appendix D

The WEAVE processor

(Version 4.5)

15

Section Page

Introduction e 1
The character Setot 11
Input and outputo 19
Reporting errors to the user 29
Data structures 36
Searching for identifiers i 55
Initializing the table of reserved words 63
Searching for module names 65
Lexical SCAnIINGot 70
Inputting the next token 93
Phase one processingt e 108
Low-level output routines e 121
Routines that copy TEX material 132
Parsing ... 139
Implementing the productions e 144
Initializing the SCraps o 183
Output of tOKENS . . .o 200
Phase two ProCessingt 218
Phase three processing i 239
Debugging . . . oo 258
The main PrOgramlottt e e e et e e e e e e 261
System-dependent changes i 264
IndeX .o 265

March 12, 2025 at 15:39

16
19
23
25
27
32
34
36
38
47
33
o7
61
64
71
85
92
99
106
111
113
114
115

16 INTRODUCTION WEAVE 61

1. Introduction. This program converts a WEB file to a TEX file. It was written by D. E. Knuth in
October, 1981; a somewhat similar SAIL program had been developed in March, 1979, although the earlier
program used a top-down parsing method that is quite different from the present scheme.

The code uses a few features of the local Pascal compiler that may need to be changed in other installations:

1) Case statements have a default.
2) Input-output routines may need to be adapted for use with a particular character set and/or for printing
messages on the user’s terminal.

These features are also present in the Pascal version of TEX, where they are used in a similar (but more
complex) way. System-dependent portions of WEAVE can be identified by looking at the entries for ‘system
dependencies’ in the index below.

The “banner line” defined here should be changed whenever WEAVE is modified.

define banner = “This_is WEAVE, Version 4.5

2. The program begins with a fairly normal header, made up of pieces that will mostly be filled in later.
The WEB input comes from files web_file and change_file, and the TEX output goes to file tex_file.

If it is necessary to abort the job because of a fatal error, the program calls the ‘jump_out’ procedure,
which goes to the label end_of WEAVE.

define end_of WEAVE = 9999 {go here to wrap it up }

(Compiler directives 4)
program WEAVE (web_file, change_file, tex_file);
label end_of WEAVE; {go here to finish }
const (Constants in the outer block 8)
type (Types in the outer block 11)
var (Globals in the outer block 9)
(Error handling procedures 30)
procedure initialize;
var (Local variables for initialization 16)
begin (Set initial values 10)
end;

3. Some of this code is optional for use when debugging only; such material is enclosed between the
delimiters debug and gubed. Other parts, delimited by stat and tats, are optionally included if statistics
about WEAVE’s memory usage are desired.

define debug = @{ {change this to ‘debug =’ when debugging }
define gubed = @} {change this to ‘gubed =’ when debugging }
format debug = begin

format gubed = end

define stat = @{ {change this to ‘stat =’ when gathering usage statistics }
define tats = @+ {change this to ‘tats =’ when gathering usage statistics }
format stat = begin

format tats = end

4. The Pascal compiler used to develop this system has “compiler directives” that can appear in comments
whose first character is a dollar sign. In production versions of WEAVE these directives tell the compiler that
it is safe to avoid range checks and to leave out the extra code it inserts for the Pascal debugger’s benefit,
although interrupts will occur if there is arithmetic overflow.

(Compiler directives 4) =
@{e&$C—, A+, D—@} {no range check, catch arithmetic overflow, no debug overhead }
debug 0{0&$C+, D+0} gubed {but turn everything on when debugging }

This code is used in section 2.

§5 WEAVE INTRODUCTION 17

5. Labels are given symbolic names by the following definitions. We insert the label ‘exit:’ just before
the ‘end’ of a procedure in which we have used the ‘return’ statement defined below; the label ‘restart’
is occasionally used at the very beginning of a procedure; and the label ‘reswitch’ is occasionally used just
prior to a case statement in which some cases change the conditions and we wish to branch to the newly
applicable case. Loops that are set up with the loop construction defined below are commonly exited by
going to ‘done’ or to ‘found’ or to ‘not_found’, and they are sometimes repeated by going to ‘continue’.

define ezit =10 {go here to leave a procedure }

define restart =20 {go here to start a procedure again }

define reswitch =21 {go here to start a case statement again }
define continue =22 {go here to resume a loop }

define done =30 {go here to exit a loop }

define found =31 {go here when you’ve found it }

define not_found = 32 {go here when you’ve found something else }

6. Here are some macros for common programming idioms.

define incr(#) =# < #+1 {increase a variable by unity }

define decr(#) =#+ #—1 {decrease a variable by unity }

define loop = while true do {repeat over and over until a goto happens }
define do_nothing = {empty statement }

define return = goto exit {terminate a procedure call }

format return = nil

format loop = zclause

7. We assume that case statements may include a default case that applies if no matching label is found.
Thus, we shall use constructions like

case z of

1: {code for x = 1);

3: (code for z = 3);

othercases (code for x # 1 and z # 3)
endcases

since most Pascal compilers have plugged this hole in the language by incorporating some sort of default
mechanism. For example, the compiler used to develop WEB and TEX allows ‘others:” as a default label, and
other Pascals allow syntaxes like ‘else’ or ‘otherwise’ or ‘otherwise:’, etc. The definitions of othercases
and endcases should be changed to agree with local conventions. (Of course, if no default mechanism is
available, the case statements of this program must be extended by listing all remaining cases.)

define othercases = others: { default for cases not listed explicitly }

define endcases = end {follows the default case in an extended case statement }
format othercases = else

format endcases = end

18 INTRODUCTION WEAVE 68

8. The following parameters are set big enough to handle TEX, so they should be sufficient for most
applications of WEAVE.

(Constants in the outer block 8) =

maz_bytes = 45000; {1/ww times the number of bytes in identifiers, index entries, and module names;
must be less than 65536 }

maz_names = 5000; {number of identifiers, index entries, and module names; must be less than 10240 }
maz-modules = 2000; { greater than the total number of modules }
hash_size = 353; {should be prime }
buf-size = 100; { maximum length of input line }
longest_-name = 400; { module names shouldn’t be longer than this }
long_buf_size = 500; { buf_size + longest_name }
line_length = 80; {lines of TEX output have at most this many characters, should be less than 256 }
maz-refs = 30000; { number of cross references; must be less than 65536 }
maz_toks = 30000; {number of symbols in Pascal texts being parsed; must be less than 65536 }
maz_texts = 2000; {number of phrases in Pascal texts being parsed; must be less than 10240 }
maz_scraps = 1000; { number of tokens in Pascal texts being parsed }
stack_size = 200; {number of simultaneous output levels }

This code is used in section 2.

9. A global variable called history will contain one of four values at the end of every run: spotless means that
no unusual messages were printed; harmless_message means that a message of possible interest was printed
but no serious errors were detected; error_message means that at least one error was found; fatal_message
means that the program terminated abnormally. The value of history does not influence the behavior of the
program; it is simply computed for the convenience of systems that might want to use such information.

define spotless =0 { history value for normal jobs }
define harmless_message =1 { history value when non-serious info was printed }
define error_message =2 { history value when an error was noted }
define fatal_message =3 { history value when we had to stop prematurely }
define mark_harmless = if history = spotless then history < harmless_message
define mark_error = history < error_message
define mark_fatal = history < fatal_message

(Globals in the outer block 9) =

history: spotless .. fatal_message; {how bad was this run? }

See also sections 13, 20, 23, 25, 27, 29, 37, 39, 45, 48, 53, 55, 63, 65, 71, 73, 93, 108, 114, 118, 121, 129, 144, 177, 202, 219, 229,
234, 240, 242, 244, 246, and 258.

This code is used in section 2.

10. (Set initial values 10) =
history <— spotless;
See also sections 14, 17, 18, 21, 26, 41, 43, 49, 54, 57, 94, 102, 124, 126, 145, 203, 245, 248, and 259.

This code is used in section 2.

811 WEAVE THE CHARACTER SET 19

11. The character set. One of the main goals in the design of WEB has been to make it readily portable
between a wide variety of computers. Yet WEB by its very nature must use a greater variety of characters than
most computer programs deal with, and character encoding is one of the areas in which existing machines
differ most widely from each other.

To resolve this problem, all input to WEAVE and TANGLE is converted to an internal eight-bit code that is
essentially standard ASCII, the “American Standard Code for Information Interchange.” The conversion is
done immediately when each character is read in. Conversely, characters are converted from ASCII to the
user’s external representation just before they are output. (The original ASCII code was seven bits only;
WEB now allows eight bits in an attempt to keep up with modern times.)

Such an internal code is relevant to users of WEB only because it is the code used for preprocessed constants
like "A". If you are writing a program in WEB that makes use of such one-character constants, you should
convert your input to ASCII form, like WEAVE and TANGLE do. Otherwise WEB’s internal coding scheme does
not affect you.

Here is a table of the standard visible ASCII codes:

0 1 2 3 4 5 7
040 U ! " # $ h & ’
050 () * + , - /
‘060 0 1 2 3 4 5 6 7
‘070 8 9 ; < = > ?
‘100 c] A B C D E F G
‘110 H I J K L M N 0
120 P Q R S T U V' W
130 X Y V/ [\] B -
‘140 ¢ a b c d e f g
‘150 h i j k 1 m n
‘160 p q r S t u v W
‘170 X y z { | } -

(Actually, of course, code 040 is an invisible blank space.) Code 186 was once an upward arrow (1), and
code 137 was once a left arrow (+), in olden times when the first draft of ASCII code was prepared; but
WEB works with today’s standard ASCII in which those codes represent circumflex and underline as shown.
(Types in the outer block 11) =

ASCII_code =0 ..255; {eight-bit numbers, a subrange of the integers }
See also sections 12, 36, 38, 47, 52, and 201.

This code is used in section 2.

20 THE CHARACTER SET WEAVE 812

12. The original Pascal compiler was designed in the late 60s, when six-bit character sets were common,
so it did not make provision for lowercase letters. Nowadays, of course, we need to deal with both capital
and small letters in a convenient way, so WEB assumes that it is being used with a Pascal whose character set
contains at least the characters of standard ASCII as listed above. Some Pascal compilers use the original
name char for the data type associated with the characters in text files, while other Pascals consider char
to be a 64-element subrange of a larger data type that has some other name.

In order to accommodate this difference, we shall use the name tezt_char to stand for the data type of
the characters in the input and output files. We shall also assume that text_char consists of the elements
chr (first_text_char) through chr(last_text_char), inclusive. The following definitions should be adjusted if
necessary.

define text_char = char {the data type of characters in text files }
define first_text_char =0 {ordinal number of the smallest element of text_char }
define last_text_char = 255 {ordinal number of the largest element of text_char }

(Types in the outer block 11) +=
text_file = packed file of text_char;

13. The WEAVE and TANGLE processors convert between ASCII code and the user’s external character set
by means of arrays zord and xchr that are analogous to Pascal’s ord and chr functions.

(Globals in the outer block 9) +=

zord: array [text_char] of ASCII_code; {specifies conversion of input characters }

xzchr: array [ASCIL code] of text_char; {specifies conversion of output characters }

8§14 WEAVE

14.

example, the statement xchr[@°101]:=

(Set initial values 10) +=

[4
[
K
X
X
[7
[
[100]
zchr|105] +
xzchr[’110] +
[115]
xchr|[’120] <
xchr[125] <
zchr|'130] +
xchr|’135] +
xchr|'140] <
xchr|'145] <

[(150] «

['155] «

[(160] +

[(165] +

[(170] +

[[175] «

[

xchr
xchr
xchr
xchr
xchr
xchr

zchr|0] «— 75 zchr[177] +

15.

xchr|
xchr|
xchr|
xchr|
xchr|
xchr|
xchr|

xchr[7

\

“s xchr

)

)

i

; [41] 717
"% xchr[46] «+ &7
“(75 xchr[51]) «+)7
=75 xehr[56] «+ .7
07 xchr[61]+ "17;
57 xchr[66] <+ "67;
87 wchr[71] < "97;
=7 xchr[6] < ">
Q7 xchr[101] + "A7
‘E7; xchr[106] + F7,
‘HY; wxchr[111] + "I7
‘M7, xchr[’116] < N7,
‘P wchr[’121] <+ "Q7;
U xchr[126] «+ V-
X7 xchr['131] + Y’
175 zchr[136] +
7 mehr['141] < “a

“e”; wchr['146] < “f°
“h7; wehr['151] < "i°
‘m”; xzchr[’156] + ‘n”
‘P’ xchr[’161] + “q
‘u’; xchr[’166] <+ “v°
“x7; wchr['171] < y
Y wehr['176] <
|_|

they are used with a special meaning.

define
define
define
define
define
define
define
define
define
define
define
define
define

not_sign = ‘5

tab_mark = 11

not_equal =

greater_or_equal =

{ these ASCII codes are not used }

42« "
YT~ 0
52| +— “*°
57— /7
62] <+ “2°
67« 77
721
7

]
]
]
]
]
]
]
]

-
xchr[102] +
xchr[107] +
xchr[112] +
xchr[’117]
['122]
xchr|'127]
xchr|’1582]
xchr|[’187]
[142]
[147]
[152]
[157]
[162]
[167]
[172]

T

zchr| 142
xchr|147
152
157
‘162
‘167
‘172

xchr
xchr
xchr
xchr
xchr

TTTTTTTTTTT

and_sign = °4 {equivalent to ‘and’ }

{ equivalent to ‘not’}
set_element_sign = 6 { equivalent to ‘in’ }
{ ASCII code used as tab-skip }

line_feed = "12 { ASCII code thrown away at end of line }
form_feed = 14 { ASCII code used at end of page }
carriage_return = ‘15 { ASCII code used at end of line }
left_arrow = "30 {equivalent to ‘:="}

32 {equivalent to ‘<>’ }
less_or_equal = "84 {equivalent to ‘<="}
35 {equivalent to ‘>="}
equivalence_sign = 36 { equivalent to ‘=="}
or_sign = ‘87 {equivalent to ‘or’}

,.?,.

i xchr[58]

; xchr[63] + "37;
Ty mehr[18] <

‘B xzchr[103] +

G

"I achr[118] +

0%

Ry achr[’123] +

W

“Z7; achr[’188] +

1;, xchr['148] +

g%

"3 wchr[’158]

O 7

‘r7; achr[168] +

W 7

‘z7; xchr[178]

5 oachr[48] < “#7; wchr[44] < $°

T+ xehr[54— 7,7

3)

xchr[64] «+ 47
T3y wehr[T4] + <7
“C7; xchr][’104] «
K7y xehr|'114] «
“S7; wehr['124] +
L7 xehr['134] +
‘¢ wchr[’144) +
“k°; zchr]'154] «
“s7; xchr|'164]
{7 achr[174] +

THE CHARACTER SET

If we assume that every system using WEB is able to read and write the visible characters of stan-
dard ASCII (although not necessarily using the ASCII codes to represent them), the following assignment
statements initialize most of the zchr array properly, without needing any system-dependent changes. For
“A° that appears in the present WEB file might be encoded in, say,
EBCDIC code on the external medium on which it resides, but TANGLE will convert from this external code to
ASCII and back again. Therefore the assignment statement XCHR[65] : =
Pascal file, and Pascal will compile this statement so that zchr[65] receives the character A in the external
(char) code. Note that it would be quite incorrect to say xchr[@°101]:="A" because "A" is a constant of
type integer, not char, and because we have "A" = 65 regardless of the external character set.

“A° will appear in the corresponding

Some of the ASCII codes below 40 have been given symbolic names in WEAVE and TANGLE because

22 THE CHARACTER SET WEAVE 816

16. When we initialize the zord array and the remaining parts of zchr, it will be convenient to make use
of an index variable, i.

(Local variables for initialization 16) =
i: 0..255;
See also sections 40, 56, and 247.

This code is used in section 2.

17. Here now is the system-dependent part of the character set. If WEB is being implemented on a garden-
variety Pascal for which only standard ASCII codes will appear in the input and output files, you don’t
need to make any changes here. But if you have, for example, an extended character set like the one in
Appendix C of The TEXbook, the first line of code in this module should be changed to

for ¢ «+ 1to 37 do zchr[i] + chr(i);

WEB’s character set is essentially identical to TEX’s, even with respect to characters less than 40.

Changes to the present module will make WEB more friendly on computers that have an extended character
set, so that one can type things like # instead of <>. If you have an extended set of characters that are easily
incorporated into text files, you can assign codes arbitrarily here, giving an zchr equivalent to whatever
characters the users of WEB are allowed to have in their input files, provided that unsuitable characters do
not correspond to special codes like carriage_return that are listed above.

(The present file WEAVE.WEB does not contain any of the non-ASCII characters, because it is intended
to be used with all implementations of WEB. It was originally created on a Stanford system that has a
convenient extended character set, then “sanitized” by applying another program that transliterated all of
the non-standard characters into standard equivalents.)

(Set initial values 10) +=
for i < 1to 87 do zchr[i] < "u;
for i < 200 to "377 do zchr[i] < "u”;

18. The following system-independent code makes the zord array contain a suitable inverse to the infor-
mation in zchr.

(Set initial values 10) +=
for i « first_text_char to last_text_char do zord[chr(i)] + "u";
for i < 1to 377 do wzord[zchr[i]] < i;
zord["L7] + "u";

§19 WEAVE INPUT AND OUTPUT 23

19. Input and output. The input conventions of this program are intended to be very much like those
of TEX (except, of course, that they are much simpler, because much less needs to be done). Furthermore
they are identical to those of TANGLE. Therefore people who need to make modifications to all three systems
should be able to do so without too many headaches.

We use the standard Pascal input/output procedures in several places that TEX cannot, since WEAVE does
not have to deal with files that are named dynamically by the user, and since there is no input from the
terminal.

20. Terminal output is done by writing on file term_out, which is assumed to consist of characters of type
text_char:

define print(#) = write(term_out,#) {‘print’ means write on the terminal }

define print_In(#) = write_In(term_out,#) {‘print’ and then start new line }

define new_line = write_In(term_out) {start new line }

define print_nl(#) = {print information starting on a new line }
begin new_line; print(#);
end

(Globals in the outer block 9) +=
term_out: text_file; {the terminal as an output file }

21. Different systems have different ways of specifying that the output on a certain file will appear on
the user’s terminal. Here is one way to do this on the Pascal system that was used in TANGLE’s initial
development:
(Set initial values 10) +=

rewrite (term_out, "TTY: "); {send term_out output to the terminal }

22. The update_terminal procedure is called when we want to make sure that everything we have output
to the terminal so far has actually left the computer’s internal buffers and been sent.

define update_terminal = break (term_out) {empty the terminal output buffer }

23. The main input comes from web_file; this input may be overridden by changes in change_file. (If
change_file is empty, there are no changes.)

{ Globals in the outer block 9) +=
web_file: text_file; {primary input }
change_file: text_file; {updates}

24. The following code opens the input files. Since these files were listed in the program header, we assume
that the Pascal runtime system has already checked that suitable file names have been given; therefore no
additional error checking needs to be done. We will see below that WEAVE reads through the entire input
twice.

procedure open_input; { prepare to read web_file and change_file }
begin reset(web_file); reset(change_file);
end;

25. The main output goes to tex_file.

(Globals in the outer block 9) +=
tex_file: text_file;

24 INPUT AND OUTPUT WEAVE §26

26. The following code opens tex_file. Since this file was listed in the program header, we assume that the
Pascal runtime system has checked that a suitable external file name has been given.

(Set initial values 10) +=
rewrite (tex_file);

27. Input goes into an array called buffer.

(Globals in the outer block 9) +=
buffer: array [0 .. long_buf_size] of ASCII_code;

28. The input_In procedure brings the next line of input from the specified file into the buffer array and
returns the value true, unless the file has already been entirely read, in which case it returns false. The
conventions of TEX are followed; i.e., ASCII_code numbers representing the next line of the file are input
into buffer[0], buffer[1], ..., buffer[limit — 1]; trailing blanks are ignored; and the global variable limit is set
to the length of the line. The value of limit must be strictly less than buf size.

We assume that none of the ASCII_code values of buffer[j] for 0 < j < limit is equal to 0, 177, line_feed,
form_feed, or carriage_return. Since buf-size is strictly less than long_buf_size, some of WEAVE’s routines use
the fact that it is safe to refer to buffer[limit + 2] without overstepping the bounds of the array.

function input_ln(var f : text_file): boolean; {inputs a line or returns false }
var final_limit: O .. buf_size; { limit without trailing blanks }
begin limit < 0; final_limit < 0O;
if eof (f) then input_ln « false
else begin while —eoln(f) do
begin buffer[limit] < zord [f1]; get(f); incr(limit);
if buffer[limit — 1] # "," then final limit + limit;
if limit = buf_size then
begin while —eoln(f) do get(f);
decr(limit); {keep buffer[buf-size] empty }
if final_-limit > limit then final_limit < limit;
print-nl(~ ', Input line too long”); loc < 0; error;
end;
end;
read_In(f); limit < final_limit; input_ln <+ true;
end;
end;

§29 WEAVE REPORTING ERRORS TO THE USER 25

29. Reporting errors to the user. The WEAVE processor operates in three phases: first it inputs the
source file and stores cross-reference data, then it inputs the source once again and produces the TEX output
file, and finally it sorts and outputs the index.

The global variables phase_one and phase_three tell which Phase we are in.

{ Globals in the outer block 9) +=
phase_one: boolean; { true in Phase I, false in Phases IT and 111}
phase_three: boolean; {true in Phase III, false in Phases I and II }

30. If an error is detected while we are debugging, we usually want to look at the contents of memory. A
special procedure will be declared later for this purpose.

(Error handling procedures 30) =
debug procedure debug_help; forward; gubed
See also sections 31 and 33.

This code is used in section 2.

31. The command ‘err_print(~! Error message”)’ will report a syntax error to the user, by printing the
error message at the beginning of a new line and then giving an indication of where the error was spotted
in the source file. Note that no period follows the error message, since the error routine will automatically
supply a period.

The actual error indications are provided by a procedure called error. However, error messages are not
actually reported during phase one, since errors detected on the first pass will be detected again during the
second.

define err_print(#) =
begin if —phase_one then
begin new_line; print(#); error;
end;
end
(Error handling procedures 30) 4+=
procedure error; {prints ‘.’ and location of error message }
var k,l: 0 .. long_-buf_size; {indices into buffer }
begin (Print error location based on input buffer 32);
update_terminal; mark_error;
debug debug_skipped < debug_cycle; debug_help; gubed
end;

26 REPORTING ERRORS TO THE USER WEAVE 832

32. The error locations can be indicated by using the global variables loc, line, and changing, which tell
respectively the first unlooked-at position in buffer, the current line number, and whether or not the current
line is from change_file or web_file. This routine should be modified on systems whose standard text editor
has special line-numbering conventions.

(Print error location based on input buffer 32) =
begin if changing then print(~.,(change file,") else print(~.,(");
print_in("1. 7 line : 1,7)7);
if loc > limit then [< limit
else | « loc;
for k<~ 1to!l do
if buffer[k — 1] = tab_mark then print(")
else print(xzchr[buffer[k — 1]]); { print the characters already read }
new_line;
for k< 1toldo print("y"); {space out the next line }
for k < 1+ 1 to limit do print(zchr|[buffer[k — 1]]); {print the part not yet read }

if buffer[limit] = "|" then print(xzchr["|"]); {end of Pascal text in module names }
print(“y”); {this space separates the message from future asterisks }
end

This code is used in section 31.

33. The jump_out procedure just cuts across all active procedure levels and jumps out of the program.
This is the only non-local goto statement in WEAVE. It is used when no recovery from a particular error has
been provided.

Some Pascal compilers do not implement non-local goto statements. In such cases the code that appears
at label end_of WEAVE should be copied into the jump_out procedure, followed by a call to a system
procedure that terminates the program.

define fatal_error(#) =

begin new_line; print(#); error; mark_fatal; jump_out;
end
(Error handling procedures 30) +=
procedure jump_out;
begin goto end_of WEAVE;
end;

34. Sometimes the program’s behavior is far different from what it should be, and WEAVE prints an error
message that is really for the WEAVE maintenance person, not the user. In such cases the program says
confusion(“indication of where we are)

define confusion (#) = fatal_error(~ ! This can” "t happen (", #, "))

35. An overflow stop occurs if WEAVE’s tables aren’t large enough.

define overflow (#) = fatal_error(” ! Sorry,, ,#, "Lcapacity exceeded")

§36 WEAVE DATA STRUCTURES 27

36. Data structures. During the first phase of its processing, WEAVE puts identifier names, index entries,
and module names into the large byte_mem array, which is packed with eight-bit integers. Allocation is
sequential, since names are never deleted.

An auxiliary array byte_start is used as a directory for byte_mem, and the link, ilk, and xref arrays give
further information about names. These auxiliary arrays consist of sixteen-bit items.

(Types in the outer block 11) +=
eight_bits = 0 .. 255; {unsigned one-byte quantity }
sizteen_bits = 0 .. 65535; { unsigned two-byte quantity }

37. WEAVE has been designed to avoid the need for indices that are more than sixteen bits wide, so that it
can be used on most computers. But there are programs that need more than 65536 bytes; TEX is one of
these. To get around this problem, a slight complication has been added to the data structures: byte_mem is
a two-dimensional array, whose first index is either 0 or 1. (For generality, the first index is actually allowed
to run between 0 and ww — 1, where ww is defined to be 2; the program will work for any positive value of
ww, and it can be simplified in obvious ways if ww = 1.)

define ww =2 {we multiply the byte capacity by approximately this amount }

{ Globals in the outer block 9) +=

byte_mem: packed array [0.. ww — 1,0 .. maz_-bytes] of ASCII_code; {characters of names }
byte_start: array [0 .. maz_names] of sixzteen_bits; {directory into byte_mem }

link: array [0 .. max_names] of sixzteen_bits; {hash table or tree links }

ilk: array [0 .. maz_names] of sizteen_bits; {type codes or tree links }

aref: array [0 .. maz_names] of sizteen_bits; {heads of cross-reference lists }

38. The names of identifiers are found by computing a hash address A and then looking at strings of
bytes signified by hash[h], link[hash[h]], link[link[hash[h]]], ..., until either finding the desired name or
encountering a zero.

A ‘name_pointer’ variable, which signifies a name, is an index into byte_start. The actual sequence of
characters in the name pointed to by p appears in positions byte_start[p] to byte_start[p+ ww] — 1, inclusive,
in the segment of byte_mem whose first index is p mod ww. Thus, when ww = 2 the even-numbered name
bytes appear in byte_mem|0,] and the odd-numbered ones appear in byte_mem|1,*]. The pointer 0 is used
for undefined module names; we don’t want to use it for the names of identifiers, since 0 stands for a null
pointer in a linked list.

We usually have byte_start[name_ptr + w] = byte_ptr[(name_ptr + w) mod ww] for 0 < w < ww, since
these are the starting positions for the next ww names to be stored in byte_mem.

define length(#) = byte_start[# + ww] — byte_start[#] {the length of a name }

(Types in the outer block 11) +=
name_pointer = 0 .. max_names; {identifies a name }

39. (Globals in the outer block 9) +=
name_ptr: name_pointer; {first unused position in byte_start }
byte_ptr: array [0.. ww — 1] of 0 .. maz_bytes; {first unused position in byte_mem }

40. (Local variables for initialization 16) +=
wi: 0.. ww —1; {to initialize the byte_mem indices }

41. (Set initial values 10) +=
for wi <~ 0to ww — 1 do
begin byte_start[wi] < 0; byte_ptr[wi] + 0;
end;
byte_start|ww] < 0; { this makes name 0 of length zero }
name_ptr < 1;

28 DATA STRUCTURES WEAVE ~ §42

42. Several types of identifiers are distinguished by their ilk:
normal identifiers are part of the Pascal program and will appear in italic type.
roman identifiers are index entries that appear after @ in the WEB file.
wildcard identifiers are index entries that appear after @: in the WEB file.
typewriter identifiers are index entries that appear after @. in the WEB file.

array_like, begin_like, ..., var_like identifiers are Pascal reserved words whose ilk explains how they are
to be treated when Pascal code is being formatted.

Finally, if ¢ is an ASCII code, an ilk equal to char_like + ¢ denotes a reserved word that will be converted
to character c.

define normal =0 {ordinary identifiers have normal ilk }

define roman =1 {normal index entries have roman ilk }

define wildcard =2 {user-formatted index entries have wildcard ilk }
define typewriter =3 {‘typewriter type’ entries have typewriter ilk }
define reserved (#) = (ilk[#] > typewriter) {tells if a name is a reserved word }
define array_like =4 {array, file, set }

define begin_like =5 {begin }

define case_like =6 {case}

define const_like =7 {const, label, type }

define div_like =8 {div, mod }

define do_like =9 {do, of, then}

define else_like =10 {else}

define end_like =11 {end}

define for_like =12 {for, while, with }

define goto_like =13 {goto, packed }

define if-like =14 {if }

define intercal_like =15 {not used }

define nil_like =16 {nil}

define proc_like =17 {function, procedure, program }

define record_like = 18 {record }

define repeat_like =19 {repeat }

define to_like =20 {downto, to}

define until_like =21 {until }

define var_like =22 {var}

define loop_like =23 {loop, xclause }

define char_like =24 {and, or, not, in }

43. The names of modules are stored in byte_mem together with the identifier names, but a hash table is
not used for them because WEAVE needs to be able to recognize a module name when given a prefix of that
name. A conventional binary search tree is used to retrieve module names, with fields called llink and rlink
in place of link and ilk. The root of this tree is rlink[0].

define llink = link {left link in binary search tree for module names }
define rlink = ilk {right link in binary search tree for module names }
define root = rlink[0] {the root of the binary search tree for module names }

(Set initial values 10) +=
root < 0; {the binary search tree starts out with nothing in it }

§44 ~ WEAVE DATA STRUCTURES 29

44. Here is a little procedure that prints the text of a given name on the user’s terminal.

procedure print_id(p : name_pointer); { print identifier or module name }

var k: 0 .. max_bytes; {index into byte_mem }
w: 0..ww —1; {row of byte_mem }

begin if p > name_ptr then print(IMPOSSIBLE")

else begin w + p mod ww;
for k «+ byte_start[p] to byte_start[p + ww] — 1 do print(zchr[byte_mem[w, kl]);
end;

end;

45. We keep track of the current module number in module_count, which is the total number of modules
that have started. Modules which have been altered by a change file entry have their changed_module flag
turned on during the first phase.

{ Globals in the outer block 9) +=

module_count: 0 .. maz_modules; {the current module number }

changed_module: packed array [0 .. maz-modules] of boolean; {is it changed? }
change_exists: boolean; {has any module changed? }

46. The other large memory area in WEAVE keeps the cross-reference data. All uses of the name p are
recorded in a linked list beginning at zref [p], which points into the zmem array. Entries in zmem consist of
two sixteen-bit items per word, called the num and zlink fields. If z is an index into xmem, reached from
name p, the value of num(zx) is either a module number where p is used, or it is def-flag plus a module
number where p is defined; and alink (z) points to the next such cross reference for p, if any. This list of
cross references is in decreasing order by module number. The current number of cross references is zref_ptr.

The global variable zref_switch is set either to def flag or to zero, depending on whether the next cross
reference to an identifier is to be underlined or not in the index. This switch is set to def.flag when @!
or @d or @f is scanned, and it is cleared to zero when the next identifier or index entry cross reference has
been made. Similarly, the global variable mod_zref_switch is either def_flag or zero, depending on whether a
module name is being defined or used.

define num (#) = zmem [#].num_field
define zlink (#) = cmem [#].zlink_field
define def-flag = 10240 {must be strictly larger than maz_modules }

47. (Types in the outer block 11) 4+=
zref - number = 0 .. mazx_refs;

48. (Globals in the outer block 9) +=

xmem: array [zref-number] of packed record
num_field: sizteen_bits; {module number plus zero or def-flag }
alink_field: sizteen_bits; { pointer to the previous cross reference }
end;

aref-ptr: xref-number; {the largest occupied position in zmem }

aref_switch, mod_xref_switch: 0 .. def-flag; {either zero or def flag }

49. (Set initial values 10) +=
zref-ptr < 0; zref_switch < 0; mod_xref_switch < 0; num(0) + 0; zref[0] « 0;
{ cross references to undefined modules }

30 DATA STRUCTURES WEAVE 850

50. A new cross reference for an identifier is formed by calling new_zref , which discards duplicate entries
and ignores non-underlined references to one-letter identifiers or Pascal’s reserved words.

define append_xref (#) =
if zref-ptr = max_refs then overflow(cross reference”)
else begin incr(zref_ptr); num (zref_ptr) < #;
end
procedure new_zref (p : name_pointer);
label ezit;
var q: zref-number; { pointer to previous cross reference }
m,n: sizteen_bits; {new and previous cross-reference value }
begin if (reserved(p) V (byte_start[p] + 1 = byte_start[p + ww])) A (zref-switch = 0) then return;
m < module_count + zref_switch; zref-switch < 0; q « zref [p];
if ¢ > 0 then
begin n + num(q);
if (n=m)V (n=m+ def-flag) then return
else if m = n + def_flag then
begin num(q) + m; return;
end;
end;
append_zref (m); zlink (zref_ptr) < q; zref[p] < zref_ptr;
exit: end;

51. The cross reference lists for module names are slightly different. Suppose that a module name is

defined in modules my, ..., mg and used in modules nq, ..., n;. Then its list will contain my + def flag,
my + def-flag, ..., mo + def_-flag, n;, ..., nq, in this order. After Phase II, however, the order will be
mq + def_flag, ..., my + def-flag, ny, ..., n;.

procedure new_mod_zref (p : name_pointer);
var q,r: xref-number; { pointers to previous cross references }
begin q + zref [p]; r + 0;
if ¢ > 0 then
begin if mod_zref_switch = 0 then
while num(q) > def-flag do
begin r < ¢; q + zlink(q);
end
else if num(q) > def-flag then
begin r < ¢; q <+ alink(q);
end;
end;
append_zref (module_count + mod_xref-switch); zlink (xref_ptr) <— q; mod_xref_switch < 0;
if » =0 then aref [p] + zref_ptr
else alink (r) < aref_ptr;
end;

52. A third large area of memory is used for sixteen-bit ‘tokens’, which appear in short lists similar to
the strings of characters in byte_mem. Token lists are used to contain the result of Pascal code translated
into TEX form; further details about them will be explained later. A text_pointer variable is an index into
tok_start.

(Types in the outer block 11) +=
text_pointer = 0 .. maz_texts; {identifies a token list }

853 WEAVE DATA STRUCTURES 31

53. The first position of tok_mem that is unoccupied by replacement text is called tok_ptr, and the first
unused location of tok_start is called text_ptr. Thus, we usually have tok_start[text_ptr] = tok_ptr.

(Globals in the outer block 9) +=
tok-mem: packed array [0 .. maz_toks] of sizteen_bits; {tokens}
tok_start: array [text_pointer| of sizteen_bits; {directory into tok-mem }
text_ptr: text_pointer; {first unused position in tok_start }
tok_ptr: 0 .. max_toks; {first unused position in tok_mem }
stat maz_tok_ptr, max_tzt_ptr: 0 .. maz_toks; {largest values occurring }
tats

54. (Set initial values 10) +=
tok_ptr « 1; text_ptr < 1; tok_start[0] < 1; tok_start[1] + 1;
stat maz_tok_ptr < 1; max_txt_ptr < 1; tats

32 SEARCHING FOR IDENTIFIERS WEAVE 855

55. Searching for identifiers. The hash table described above is updated by the id_lookup procedure,
which finds a given identifier and returns a pointer to its index in byte_start. The identifier is supposed
to match character by character and it is also supposed to have a given ilk code; the same name may be
present more than once if it is supposed to appear in the index with different typesetting conventions. If the
identifier was not already present, it is inserted into the table.

Because of the way WEAVE'’s scanning mechanism works, it is most convenient to let id_lookup search for
an identifier that is present in the buffer array. Two other global variables specify its position in the buffer:
the first character is buffer[id_first], and the last is buffer[id_loc — 1].

(Globals in the outer block 9) +=
id_first: 0 .. long-buf_size; { where the current identifier begins in the buffer }
id-loc: 0 .. long-buf-size; {just after the current identifier in the buffer }

hash: array [0 .. hash_size] of sizteen_bits; {heads of hash lists }

56. Initially all the hash lists are empty.

(Local variables for initialization 16) +=
h: 0.. hash_size; {index into hash-head array }

57. (Set initial values 10) +=
for h + 0 to hash_size — 1 do hash[h] «+ 0;

58. Here now is the main procedure for finding identifiers (and index entries). The parameter ¢ is set to
the desired ilk code. The identifier must either have ilk = ¢, or we must have ¢ = normal and the identifier
must be a reserved word.

function id_lookup (t : eight_bits): name_pointer; {finds current identifier }
label found;
var i: 0 .. long-buf-size; {index into buffer }

h: 0 .. hash_size; {hash code}

k: 0..maz_bytes; {index into byte_mem }

w: 0..ww —1; {row of byte_mem }

I: 0..long_buf_size; {length of the given identifier }

p: name_pointer; { where the identifier is being sought }
begin [« id_loc — id_first; {compute the length }
(Compute the hash code h 59);
(Compute the name location p 60);
if p = name_ptr then (Enter a new name into the table at position p 62);
id_lookup < p;
end;

59. A simple hash code is used: If the sequence of ASCII codes is ¢ics ... ¢,, its hash value will be

(2"*101 42" 200 4 ¢n) mod hash_size.

(Compute the hash code h 59) =
h < buffer[id_first]; i < id_first + 1;
while ¢ < id_loc do
begin h + (h + h + buffer[i]) mod hash_size; incr(i);
end

This code is used in section 58.

860 WEAVE SEARCHING FOR IDENTIFIERS 33

60. If the identifier is new, it will be placed in position p = name_ptr, otherwise p will point to its existing
location.

(Compute the name location p 60) =
p < hash[h];
while p # 0 do
begin if (length(p) =1) A ((ilk[p] = t) V ((t = normal) A reserved(p))) then
(Compare name p with current identifier, goto found if equal 61);
p <« link[p];
end;
p < name_ptr; {the current identifier is new }
link[p] <— hash|h]; hash[h] < p; {insert p at beginning of hash list }
found:

This code is used in section 58.

61. (Compare name p with current identifier, goto found if equal 61) =
begin i < id_first; k < byte_start[p]; w < p mod ww;
while (i < id_loc) A (buffer[i] = byte_mem[w, k]) do
begin incr(i); incr(k);
end;
if ¢ = id_loc then goto found; {all characters agree }
end

This code is used in section 60.

62. When we begin the following segment of the program, p = name_ptr.

(Enter a new name into the table at position p 62) =
begin w < name_ptr mod ww;
if byte_ptr{w] + 1 > maz_bytes then overflow(byte memory”);
if name_ptr + ww > maz_names then overflow(name’);
i < id_first; k < byte_ptr|w]; {get ready to move the identifier into byte_mem }
while ¢ < id_loc do
begin byte_mem[w, k] < buffer[i]; incr(k); incr(i);
end;
byte_ptrw] < k; byte_start[name_ptr + ww] < k; incr(name_ptr); ilk[p] < t; xref[p] < 0;
end

This code is used in section 58.

34 INITIALIZING THE TABLE OF RESERVED WORDS WEAVE 863

63. Initializing the table of reserved words. We have to get Pascal’s reserved words into the hash
table, and the simplest way to do this is to insert them every time WEAVE is run. A few macros permit us to
do the initialization with a compact program.

define sid9 (#) = buffer[9] < #; cur_name + id_lookup

[
define sid8 (#) = buffer(8] < #; sid9
define sid7(#) = buffer[7] < #; sid8
define sid6 (#) = buffer|6] < #; sid7
define sid5 (#) = buffer[5] «+ #; sid6
define sid/ (#) = buffer[4] + #; sid5
define sid3 (#) = buffer[3] < #; sid/
define sid2(#) = buffer[2] < #; sid3
define sid! (#) = buffer[l] + #; sid2

define id2 = id_first < 8; sid8
define id3 = id_first < 7; sid7
define id/ = id_first < 6; sid6
define id5 = id_first < 5; sid5
define id6 = id_first < 4; sidj
define id7 = id_first < 3; sid3
define id8 = id_first < 2; sid2
define id9 = id_first < 1; sidl

(Globals in the outer block 9) +=
cur_name: name_pointer; { points to the identifier just inserted }

864 WEAVE INITIALIZING THE TABLE OF RESERVED WORDS 35

64. The intended use of the macros above might not be immediately obvious, but the riddle is answered
by the following:

(Store all the reserved words 64) =
1d_loc < 10;

id3("a")("n ')("d")(char like + and_sign);

id5("am)("r")("r")("a")("y") (array_like);

id5 ("o")("e")("g")("i")("n")(begin_like);

id4 ("c")("a")("s")("e")(case-like);

id5("c")("o")("n")("s")("t")(const_like);

ng("d")("l")("v")(i le@)

id2("d")("o")(do like);

id6 (") (o) (") ("n") (") (") (fo_like)

id4 ("e")("1")("s")("e")(else like);

id3 ("e")("n")("d")(end like);

idg ("£")("1")("1")("e")(array_like);

zd3("f")("o')("r’)(for like);

id8 (") ("u) (") (") ("6 (") (0" () (proc ke)

idf ("g")("0") ("&")("o")(goto.like);

id2("im)("£") (iflike);

id2("i")("n")(char_like 4+ set_element_sign);

Z‘d5(nln)(nan)(ubn)(n ")("1")(007’l8t hke)

id3 ("m")("o")("d")(div_like);

id3 ("n")("1i")("1")(nil_like);

id3 ("n")("o")("t")(char.like + not_sign);

id2("o")("£")(do_like);

id2("o")("r")(char_like 4+ or_sign);

id6 ("p")("a")("c")("k")("e")("d") (goto like);

id9 (1) (") ("o")(") (e (") (ru) (") (e (proclike):

id7("p")("r")("o") ("g") ("r*)("a") ("m*) (proc.like);

id6 ("r")("e")("c")("o")("r")("d") (record like);

id6 ("r")("e")("p")("e™)("a")("t")(repeat_like);

id3("s")("e")("t")(array_like);

i ("6) ("h) (") ("n") (do.like)

id2("t")("o")(to like);

i ("6)("y")("p") ("™ (const like)

id5 ("u")("n")("t") (i) ("1") (until_like);

z'df)’("v")("a")("r")(var,like)'

id5 ("w")("h")("i")("1")("e") (for_like);

idf (") ("3) (") ("h) (for-Like);

id7 (") () (1) (") ("u) (") (e (loop.like)
This code is used in section 261.

36 SEARCHING FOR MODULE NAMES WEAVE 865

65. Searching for module names. The mod_lookup procedure finds the module name mod_text[1 .. [
in the search tree, after inserting it if necessary, and returns a pointer to where it was found.

(Globals in the outer block 9) +=
mod_text: array [0 .. longest-name] of ASCII_code; {name being sought for }

66. According to the rules of WEB, no module name should be a proper prefix of another, so a “clean”
comparison should occur between any two names. The result of mod_lookup is 0 if this prefix condition is
violated. An error message is printed when such violations are detected during phase two of WEAVE.

define less =0 {the first name is lexicographically less than the second }
define equal =1 {the first name is equal to the second }

define greater =2 {the first name is lexicographically greater than the second }
define prefix =3 {the first name is a proper prefix of the second }

define extension =4 {the first name is a proper extension of the second }

function mod_lookup (1 : sizteen_bits): name_pointer; {finds module name }
label found;
var c: less .. extension; {comparison between two names }
j: 0..longest_name; {index into mod_text }
k: 0 .. maz_bytes; {index into byte_mem }
w: 0..ww —1; {row of byte_mem }
p: name_pointer; { current node of the search tree }
q: name_pointer; { father of node p }
begin c < greater; q < 0; p < root;
while p # 0 do
begin (Set variable ¢ to the result of comparing the given name to name p 68);
q <D
if ¢ = less then p «+ llink[q]
else if ¢ = greater then p < rlink[q]
else goto found;
end;
(Enter a new module name into the tree 67);
found: if ¢ # equal then
begin err_print(~!,Incompatible section names”); p + 0;
end;
mod_lookup < p;
end;

67. (Enter a new module name into the tree 67) =
w < name_ptr mod ww; k < byte_ptr|w];
if k+1> maz_bytes then overflow(byte memory~);
if name_ptr > maz_names — ww then overflow(name");
p 4 name_pir;
if ¢ = less then llink[q] + p
else rlink[q] < p;
llink[p] <= 0; rlink[p] < 0; aref [p] < 0; ¢ < equal;
for j « 1to !l do byte-mem[w,k + j — 1] + mod_tezt[j];
byte_ptr|w] < k +1; byte_start[name_ptr + ww] < k +I; incr(name_ptr);

This code is used in section 66.

568 WEAVE SEARCHING FOR MODULE NAMES 37

68. (Set variable ¢ to the result of comparing the given name to name p 68) =
begin k < byte_start[p]; w + pmod ww; ¢ < equal; j < 1;
while (k < byte_start[p + ww]) A (§ < 1) A (mod_text[j] = byte_mem[w, k]) do
begin incr(k); incr(j);
end;
if k = byte_start[p + ww] then
if j > [then ¢+ equal
else c < extension
else if j > [then c + prefix
else if mod_text[j] < byte_mem[w, k] then c < less
else c < greater;
end

This code is used in sections 66 and 69.

69. The prefiz_lookup procedure is supposed to find exactly one module name that has mod_text[l .. 1] as
a prefix. Actually the algorithm silently accepts also the situation that some module name is a prefix of
mod_text[1 ..], because the user who painstakingly typed in more than necessary probably doesn’t want to
be told about the wasted effort.

Recall that error messages are not printed during phase one. It is possible that the prefiz_lookup procedure
will fail on the first pass, because there is no match, yet the second pass might detect no error if a matching
module name has occurred after the offending prefix. In such a case the cross-reference information will be
incorrect and WEAVE will report no error. However, such a mistake will be detected by the TANGLE processor.

function prefiz_lookup (I : sizteen_bits): name_pointer; {finds name extension }
var c: less .. extension; {comparison between two names }
count: 0 .. maz-names; {the number of hits }
j: 0. longest_-name; {index into mod_text }
k: 0..maz_bytes; {index into byte_mem }
w: 0..ww —1; {row of byte_mem }
p: name_pointer; {current node of the search tree }
q: name_pointer; {another place to resume the search after one branch is done }
r: name_pointer; {extension found }
begin ¢ « 0; p « root; count < 0; r < 0; {begin search at root of tree }
while p # 0 do
begin (Set variable ¢ to the result of comparing the given name to name p 68);
if ¢ = less then p « llink[p]
else if ¢ = greater then p + rlink[p]
else begin r + p; incr(count); q < rlink[p]; p < llink[pl;
end;
if p =0 then
begin p < ¢; q < 0;
end;
end;
if count # 1 then
if count = 0 then err_print(~! Name_does_ not match~)
else err_print(~ ! Ambiguous prefix”);
prefiz_lookup < r; {the result will be 0 if there was no match }
end;

38 LEXICAL SCANNING WEAVE §70

70. Lexical scanning. Let us now consider the subroutines that read the WEB source file and break it
into meaningful units. There are four such procedures: One simply skips to the next ‘@’ or ‘@*’ that begins
a module; another passes over the TEX text at the beginning of a module; the third passes over the TEX
text in a Pascal comment; and the last, which is the most interesting, gets the next token of a Pascal text.

71. DBut first we need to consider the low-level routine get_line that takes care of merging change_file into
web_file. The get_line procedure also updates the line numbers for error messages.

(Globals in the outer block 9) +=
ii: integer; {general purpose for loop variable in the outer block }
line: integer; {the number of the current line in the current file }
other_line: integer; {the number of the current line in the input file that is not currently being read }
temp_line: integer; {used when interchanging line with other_line }
limit: 0 .. long_buf_size; {the last character position occupied in the buffer }
loc: 0 .. long-buf-size; {the next character position to be read from the buffer }
input_has_ended: boolean; {if true, there is no more input }
changing: boolean; {if true, the current line is from change_file }
change_pending: boolean;
{if true, the current change is not yet recorded in changed-module|[module_count] }

72. As we change changing from true to false and back again, we must remember to swap the values of
line and other_line so that the err_print routine will be sure to report the correct line number.

define change_changing = changing < —changing; temp_line < other_line; other_line < line;
line < temp_line {line <> other_line }

73. When changing is false, the next line of change_file is kept in change_buffer[0 .. change_limit], for
purposes of comparison with the next line of web_file. After the change file has been completely input, we
set change_limit < 0, so that no further matches will be made.

{ Globals in the outer block 9) +=
change_buffer: array [0 .. buf-size] of ASCII code;
change_limit: 0 .. buf_size; {the last position occupied in change_buffer }

74. Here’s a simple function that checks if the two buffers are different.

function lines_dont_match: boolean;
label ezit;
var k: 0 .. buf_size; {index into the buffers }
begin lines_dont_match <+ true;
if change_limit # limit then return;
if limit > 0 then
for k < 0 to limit — 1 do
if change_buffer[k] # buffer k] then return;
lines_dont_match «+ false;
exit: end;

§75 ~ WEAVE LEXICAL SCANNING 39

75. Procedure prime_the_change_buffer sets change_buffer in preparation for the next matching operation.
Since blank lines in the change file are not used for matching, we have (change_limit = 0) A —changing if
and only if the change file is exhausted. This procedure is called only when changing is true; hence error
messages will be reported correctly.

procedure prime_the_change_buffer;
label continue, done, exit;
var k: 0 .. buf_size; {index into the buffers }
begin change_limit < 0; {this value will be used if the change file ends }
(Skip over comment lines in the change file; return if end of file 76);
(Skip to the next nonblank line; return if end of file 77);
(Move buffer and limit to change_buffer and change_limit 78);

exit: end;

76. While looking for a line that begins with @x in the change file, we allow lines that begin with @, as
long as they don’t begin with @y or @z (which would probably indicate that the change file is fouled up).

(Skip over comment lines in the change file; return if end of file 76) =
loop begin incr(line);
if —input_In(change_file) then return;
if limit < 2 then goto continue;
if buffer[0] # "@" then goto continue;
if (buffer[1] > "X") A (buffer[1] < "2") then buffer[1] + buffer[l] + "z" —"Z"; {lowercasify }
if buffer[1] = "x" then goto done;
if (buffer[l] ="y") V (buffer[l] = "z") then
begin loc + 2; err_print(”! Where is the matching @x?");
end;
continue: end;
done:

This code is used in section 75.

77. Here we are looking at lines following the @x.

(Skip to the next nonblank line; return if end of file 77) =
repeat incr(line);
if —input_In(change_file) then
begin err_print(~! Change file ended after 0x"); return;
end;
until limit > 0;

This code is used in section 75.

78. (Move buffer and limit to change_buffer and change_limit 78) =
begin change_limit « limit;
if limit > 0 then
for k «+ 0 to limit — 1 do change_buffer k] < buffer|k];
end

This code is used in sections 75 and 79.

40 LEXICAL SCANNING WEAVE 879

79. The following procedure is used to see if the next change entry should go into effect; it is called only
when changing is false. The idea is to test whether or not the current contents of buffer matches the current
contents of change_buffer. If not, there’s nothing more to do; but if so, a change is called for: All of the
text down to the @y is supposed to match. An error message is issued if any discrepancy is found. Then the
procedure prepares to read the next line from change._file.

When a match is found, the current module is marked as changed unless the first line after the @x and
after the @y both start with either “@*~ or “@,~ (possibly preceded by whitespace).

define if-module_start_then-make_change_pending (#) = loc < 0; buffer[limit] <+ "!";
while (buffer[loc] = "") V (buffer[loc] = tab-mark) do incr(loc);
buffer[limit] < "";
if buffer[loc] = "@" then
if (buffer[loc + 1] = "*") V (buffer[loc + 1] = ",") V (buffer[loc + 1] = tab_mark) then
change_pending <+ #
procedure check_change; {switches to change_file if the buffers match }
label ezit;
var n: integer; {the number of discrepancies found }
k: 0 .. buf-size; {index into the buffers }
begin if lines_dont_match then return;
change_pending < false;
if —changed_module|[module_count] then
begin if-module_start_then_make_change_pending (true);
if —change_pending then changed_module|[module_count] + true;
end;
n < 0;
loop begin change_changing; {now it’s true }
incr(line);
if —input_In(change_file) then
begin err_print(~ ! Change file ended before Qy~); change_limit + 0; change_changing;
{ false again }
return;
end;
(If the current line starts with @y, report any discrepancies and return 80);
(Move buffer and limit to change_buffer and change_limit 78);
change_changing; {now it’s false }
incr (line);
if —input_In(web_file) then
begin err_print(~ ! WEB_file ended during a change”); input_has_ended < true; return;
end;
if lines_dont_match then incr(n);
end;
erit: end;

680 WEAVE LEXICAL SCANNING 41

80. (If the current line starts with @y, report any discrepancies and return 80) =
if limit > 1 then
if buffer[0] = "@" then
begin if (buffer[l] > "X") A (buffer[1] < "Z") then buffer[l] < buffer[l] + "z" — "Z";
{ lowercasify }
if (buffer[l] = "x") V (buffer[l] = "z") then
begin loc + 2; err_print(~ ! Where_is_ the matching Qy?");
end
else if buffer[l] = "y" then
begin if n > 0 then
begin loc <+ 2;
err,print(’ ' VHmm. .., ,n:1, ’uofutheuprecedingulinesufai1ed|_,to._|match');
end;
return;
end;
end

This code is used in section 79.

81. The reset_input procedure, which gets WEAVE ready to read the user’s WEB input, is used at the beginning
of phases one and two.

procedure reset_input;
begin open_input; line < 0; other_line + 0;
changing < true; prime_the_change_buffer; change_changing;
limit < 0; loc < 1; buffer[0] < "u"; input_has_ended + false;
end;

82. The get_line procedure is called when loc > limit; it puts the next line of merged input into the buffer
and updates the other variables appropriately. A space is placed at the right end of the line.

procedure get_line; {inputs the next line }
label restart;
begin restart: if changing then (Read from change_file and maybe turn off changing 84);
if —changing then
begin (Read from web_file and maybe turn on changing 83);
if changing then goto restart;
end;
loc < 0; buffer[limit] «+ ","
end;

3

83. (Read from web_file and maybe turn on changing 83) =
begin incr(line);
if —input_In(web_file) then input_has_ended < true
else if change_limit > 0 then check_change;
end

This code is used in section 82.

42 LEXICAL SCANNING WEAVE §84

84. (Read from change_file and maybe turn off changing 84) =
begin incr(line);
if —input_In(change_file) then
begin err_print(~! Change file ended without,,0z"); buffer[0] «— "@"; buffer[l] < "z"; limit < 2;
end;
if limit > 0 then {check if the change has ended }
begin if change_pending then
begin if module_start_then_make_change_pending (false);
if change_pending then
begin changed_module[module_count] + true; change_pending <+ false;
end;
end;
buffer[limit] < "";
if buffer[0] = "@" then
begin if (buffer[l] > "X") A (buffer[1] < "Z") then buffer[l] < buffer[l] + "z" — "Z";
{ lowercasify }
if (buffer[l] = "x") V (buffer[l] = "y") then
begin loc < 2; err_print(~ ! Where_ is_ the matching 0z7");
end
else if buffer[1] = "z" then
begin prime_the_change_buffer; change_changing;
end;
end;
end;
end

This code is used in section 82.

85. At the end of the program, we will tell the user if the change file had a line that didn’t match any
relevant line in web_file.

(Check that all changes have been read 85) =
if change_limit # 0 then { changing is false }
begin for i < 0 to change_limit — 1 do buffer[ii] + change_buffer|ii];
limit < change_limit; changing < true; line < other_line; loc < change_limit;
err_print(~ ' Change file entry did not_match~);
end

This code is used in section 261.

686 ~ WEAVE LEXICAL SCANNING 43

86. Control codes in WEB, which begin with ‘@, are converted into a numeric code designed to simplify
WEAVE’s logic; for example, larger numbers are given to the control codes that denote more significant
milestones, and the code of new_module should be the largest of all. Some of these numeric control codes
take the place of ASCII control codes that will not otherwise appear in the output of the scanning routines.

define ignore =0 {control code of no interest to WEAVE }

define verbatim = "2 { extended ASCII alpha will not appear }

define force_ line = 3 {extended ASCII beta will not appear }

define begin_comment = ‘11 { ASCII tab mark will not appear }

define end_comment = 12 { ASCII line feed will not appear }

define octal = 14 { ASCII form feed will not appear }

define hex = 15 { ASCII carriage return will not appear }

define double_dot = 40 { ASCII space will not appear except in strings }
define no_underline = ‘175 { this code will be intercepted without confusion }
define underline = 176 {this code will be intercepted without confusion }
define param = 177 { ASCII delete will not appear }

define aref-roman = 203 { control code for ‘@’ }

define aref wildcard = 204 { control code for ‘@:’}

define zref_typewriter = 205 { control code for ‘@.’ }

define TeX_string = 206 { control code for ‘@t’ }

define check_sum = 207 { control code for ‘@$’ }

define join = 210 { control code for ‘@&’ }

define thin_space = 211 { control code for ‘@, }

define math_break = 212 { control code for ‘@|’ }

define line_break = 213 { control code for ‘@/’ }

define big_line_break = 21/ { control code for ‘@#’ }

define no_line_break = 215 { control code for ‘@+’}

define pseudo_semi = 216 { control code for ‘@;’}

define format = 217 {control code for ‘@f’}

define definition = 220 { control code for ‘@d’ }

define begin_Pascal = 221 { control code for ‘@p’ }

define module_name = 222 { control code for ‘@<’ }

define new_module = 223 { control code for ‘@’ and ‘@*’}

44 LEXICAL SCANNING

WEAVE

§87

87. Control codes are converted from ASCII to WEAVE’s internal representation by the control_code routine.

function control_code(c : ASCII_code): eight_bits; {convert c¢ after @}
begin case c of
"@": control_code < "@"; {‘quoted’ at sign }
"n: control_code < octal; { precedes octal constant }
wunn: control_code < hex; { precedes hexadecimal constant }
"$": control_code < check_sum; {precedes check sum constant }
" " tab_mark, "*": control_code < new_module; { beginning of a new module }
"=": control_code < verbatim;
"\": control_code < force_line;
"D","d": control_code < definition; {macro definition }
"F" "E": control_code < format; {format definition }
"{": control_code <+ begin_comment; { begin-comment delimiter }
"}": control_code <+ end_comment; {end-comment delimiter }
"P" "p": control_code < begin_Pascal; {Pascal text in unnamed module }
"&": control_code < join; {concatenate two tokens }
"<": control_code < module_name; {beginning of a module name }
">": begin err_print(~ ! Extra @> "); control_code + ignore;
end; {end of module name should not be discovered in this way }
nTU ome": control_code +— TeX_string; { TEX box within Pascal }
"M control_code < underline; {set definition flag }
nen: control_code < no_underline; {reset definition flag }
nmn control_code +— xref roman; {index entry to be typeset normally }
"M control_code < xref-wildcard; {index entry to be in user format }
"M control_code < xref-typewriter; {index entry to be in typewriter type }
", ": control_code < thin_space; {puts extra space in Pascal format }
"|": control_code <— math_break; {allows a break in a formula }
"/": control_code < line_break; {forces end-of-line in Pascal format }
"#": control_code < big_line_break; {forces end-of-line and some space besides }
"+1: control_code <+ no_line_break; {cancels end-of-line down to single space }
";": control_code <+ pseudo_semi; {acts like a semicolon, but is invisible }
(Spec1a1 control codes allowed only when debugging 88)

othercases begin err_print(~ ! Unknown control code”); control_code ignore;

end
endcases;
end;

88. If WEAVE is compiled with debugging commands, one can write @2, @1, and @0 to turn tracing fully on,

partly on, and off, respectively.

{ Special control codes allowed only when debugging 88) =
debug

"o, M1 2" begin tracing < ¢ — "0"; control_code < ignore;
end;
gubed

This code is used in section 87.

689 WEAVE LEXICAL SCANNING 45
89. The skip_limbo routine is used on the first pass to skip through portions of the input that are not
in any modules, i.e., that precede the first module. After this procedure has been called, the value of
input_has_ended will tell whether or not a new module has actually been found.

procedure skip_limbo; {skip to next module }
label ezit;
var c¢: ASCII code; {character following @ }
begin loop
if loc > limit then
begin get_line;
if input_has_ended then return;
end
else begin buffer[limit + 1] + "@";
while buffer[loc] # "@" do incr(loc);
if loc < limit then
begin loc < loc 4+ 2; ¢ + buffer[loc — 1];
if (c=".")V (c=tab_mark)V (c = "*") then return;
end;
end;
exit: end;

90. The skip_-TeX routine is used on the first pass to skip through the TEX code at the beginning of a
module. It returns the next control code or ‘|’ found in the input. A new_module is assumed to exist at the

very end of the file.

function skip_TeX: eight_bits; {skip past pure TEX code }
label done;
var c: eight_bits; {control code found }
begin loop
begin if loc > limit then
begin get_line;
if input_has_ended then
begin ¢ < new_-module; goto done;
end;
end;
buffer[limit 4+ 1] + "@";
repeat c < buffer[loc]; incr(loc);
if c="|" then goto done;
until ¢="e";
if loc < limit then
begin ¢ < control_code (buffer[loc]); incr(loc); goto done;
end;
end;
done: skip_-TeX < c;
end;

46 LEXICAL SCANNING WEAVE §91

91. The skip_comment routine is used on the first pass to skip through TEX code in Pascal comments. The
bal parameter tells how many left braces are assumed to have been scanned when this routine is called, and
the procedure returns a corresponding value of bal at the point that scanning has stopped. Scanning stops
either at a ‘|’ that introduces Pascal text, in which case the returned value is positive, or it stops at the end
of the comment, in which case the returned value is zero. The scanning also stops in anomalous situations
when the comment doesn’t end or when it contains an illegal use of @. One should call skip_comment (1)
when beginning to scan a comment.

function skip_comment (bal : eight_bits): eight_bits; {skips TEX code in comments }
label done;
var ¢: ASCII code; {the current character }
begin loop
begin if loc > limit then
begin get_line;
if input_has_ended then
begin bal < 0; goto done;
end; {an error message will occur in phase two }
end;
¢ < buffer[loc]; incr(loc);
if c="|" then goto done;
(Do special things when ¢ = "@","\","{","}"; goto done at end 92);
end;
done: skip_comment < bal;
end;

92. (Do special things when ¢ = "@","\", "{", "}"; goto done at end 92) =
if ¢ ="@" then
begin ¢ < buffer|loc];
if (c# "U") A (¢ # tab_mark) A (¢ # "*") then incr(loc)
else begin decr(loc); bal < 0; goto done;
end {an error message will occur in phase two }
end
else if (¢ ="\") A (buffer[loc] # "@") then incr(loc)
else if ¢ = "{" then incr(bal)
else if ¢ ="3}" then
begin decr(bal);
if bal = 0 then goto done;
end

This code is used in section 91.

893 WEAVE INPUTTING THE NEXT TOKEN 47

93. Inputting the next token. As stated above, WEAVE’s most interesting lexical scanning routine
is the get_next function that inputs the next token of Pascal input. However, get_mezt is not especially
complicated.

The result of get_next is either an ASCII code for some special character, or it is a special code representing
a pair of characters (e.g., ‘:=" or ‘..”), or it is the numeric value computed by the control_code procedure,
or it is one of the following special codes:

exponent: The ‘E’ in a real constant.

identifier: In this case the global variables id_first and id_loc will have been set to the appropriate values
needed by the id_lookup routine.

string: In this case the global variables id_first and id_loc will have been set to the beginning and ending-
plus-one locations in the buffer. The string ends with the first reappearance of its initial delimiter;
thus, for example,

"This isn” "t a single string”
will be treated as two consecutive strings, the first being “This isn”.
Furthermore, some of the control codes cause get_next to take additional actions:

aref-roman, xref-wildcard , xref-typewriter, TeX_string: The values of id_first and id_loc will be set so that
the string in question appears in buffer[id_first .. (id_loc — 1)].

module_name: In this case the global variable cur_module will point to the byte_start entry for the module
name that has just been scanned.

If get_next sees ‘@!" or ‘@7, it sets zref_switch to def_flag or zero and goes on to the next token.

A global variable called scanning_hex is set true during the time that the letters A through F should be
treated as if they were digits.

define ezponent = 200 {E or e following a digit }

define string = 201 { Pascal string or WEB precomputed string }

define identifier = 202 {Pascal identifier or reserved word }

{ Globals in the outer block 9) +=
cur_module: name_pointer; {name of module just scanned }
scanning-hex: boolean; {are we scanning a hexadecimal constant? }

94. (Set initial values 10) +=
scanning_hexr < false;

48 INPUTTING THE NEXT TOKEN WEAVE 895

95. As one might expect, get_next consists mostly of a big switch that branches to the various special cases
that can arise.

define up_to(#) =# —24,# — 23, # — 22 # — 21, # — 20,4 — 10,4 — 18, # — 17,# — 16,# — 15,# — 14, # — 13,
#12#—11,#—10,#— O, #— S, #—T,#— 6 #—5# 4, #—3#—2.#— 1 #
function get_next: eight_bits; {produces the next input token }

label restart, done, found;
var c: eight_bits; {the current character }

d: eight_bits; {the next character }

jyk: 0..longest_.name; {indices into mod_text }
begin restart: if loc > limit then

begin get_line;

if input_has_ended then

begin ¢ + new_module; goto found;
end;

end;
¢ « buffer|loc]; incr(loc);
if scanning_hex then (Go to found if ¢ is a hexadecimal digit, otherwise set scanning_hex < false 96);
case c of
"A" up_to("Z"),"a", up_to("z"): { Get an identifier 98);
mon s (Get a string 99);
"@": (Get control code and possible module name 100);
(Compress two-symbol combinations like ‘:=" 97)
" " tab_mark: goto restart; {ignore spaces and tabs }
"}": begin err_print(! Extra_ }"); goto restart;

end;

3

othercases if ¢ > 128 then goto restart {ignore nonstandard characters }
else do_nothing
endcases;
found: debug if trouble_shooting then debug_help; gubed
get_next < c;
end;

96. (Go to found if c is a hexadecimal digit, otherwise set scanning_hex + false 96) =
if ((c=2"0")A(c<"9")V ((c="A")A(c<"F")) then goto found
else scanning_hex < false

This code is used in section 95.

897 WEAVE

INPUTTING THE NEXT TOKEN

49

97. Note that the following code substitutes @{ and @} for the respective combinations ‘(*’ and ‘*)’.

Explicit braces should be used for TEX comments in Pascal text.

define compress (#) =
begin if loc < limit then
begin ¢ + #; incr(loc);

end;
end

{ Compress two-symbol combinations like ‘:=" 97) =
v if buffer[loc] =" then compress(double_dot)

else if buffer[loc] =")" then compress("1");
" if buffer[loc] = "=" then compress(left_arrow);
"=": if buffer[loc] = "=" then compress(equivalence_sign);
"> if buffer[loc] = "=" then compress(greater_or_equal);
n<: if buffer[loc] = "=" then compress(less_or_equal)

else if buffer|loc] = ">" then compress(not_equal);
" if buffer[loc] = "*" then compress(begin_comment)

else if buffer[loc] ="." then compress("[");
"t if buffer[loc] = ")" then compress(end_comment);

This code is used in section 95.

98. (Get an identifier 98) =
begin if ((c="E")V (c="e")) A (loc > 1) then

if (buffer[loc —2] < "9") A (buffer[loc — 2] > "0") then c <+ exponent;

if ¢ # exponent then
begin decr(loc); id_first < loc;
repeat incr(loc); d < buffer[loc];

until ((d < "0")V ((d>"9") A (d < "A"))V ((d > "Z") A (d < "a")) V (d > "2z")) A (d £ "_");

¢ + identifier; id_loc + loc;
end;
end

This code is used in section 95.

99. A string that starts and ends with single or double quote marks is scanned by the following piece of

the program.
(Get a string 99) =
begin id_first < loc — 1;
repeat d « buffer[loc]; incr(loc);
if loc > limit then

begin err_print(” ! String constant_ didn” "tuend”); loc < limit; d + c;

end;
until d = ¢;
id_loc < loc; c < string;
end

This code is used in section 95.

50 INPUTTING THE NEXT TOKEN WEAVE §100

100. After an @ sign has been scanned, the next character tells us whether there is more work to do.

(Get control code and possible module name 100) =
begin ¢ < control_code (buffer[loc]); incr(loc);
if ¢ = underline then
begin zref switch < def flag; goto restart;
end
else if ¢ = no_underline then
begin zref_switch < 0; goto restart;
end
else if (¢ < TeX_string) A (¢ > aref-roman) then (Scan to the next @> 106)
else if ¢ = hexr then scanning_hex < true
else if ¢ = module_name then (Scan the module name and make cur_module point to it 101)
else if ¢ = verbatim then (Scan a verbatim string 107);
end

This code is used in section 95.

101. The occurrence of a module name sets zref_switch to zero, because the module name might (for
example) follow var.

{Scan the module name and make cur_module point to it 101) =
begin (Put module name into mod_text[1 .. k] 103);
if k£ > 3 then
begin if (mod_text[k] =".") A (mod_text[k — 1] = ".") A (mod_text[k — 2] = ".") then
cur-module < prefix_lookup (k — 3)
else cur-module < mod_lookup (k);
end
else cur_module < mod_lookup (k);
aref_switch < 0;
end

This code is used in section 100.

102. Module names are placed into the mod_text array with consecutive spaces, tabs, and carriage-returns
replaced by single spaces. There will be no spaces at the beginning or the end. (We set mod_text[0] < ""
to facilitate this, since the mod_lookup routine uses mod_text[1] as the first character of the name.)
(Set initial values 10) +=

mod_text [0] < ",";

8103 WEAVE INPUTTING THE NEXT TOKEN 51

103. (Put module name into mod_text[l .. k] 103) =
k<« 0;
loop begin if loc > limit then
begin get_line;
if input_has_ended then
begin err_print(”!,Input ended, in section name”); loc < 1; goto done;
end;
end;
d < buffer[loc]; (If end of name, goto done 104);
incr(loc);
if k < longest_-name — 1 then incr(k);
if (d="u")V (d = tab-mark) then
begin d + " ";
if mod_text[k — 1] = "" then decr(k);
end;
mod_text k] < d;
end;
done: (Check for overlong name 105);
if (mod_text[k] = "u") A (k > 0) then decr(k)

This code is used in section 101.

104. (If end of name, goto done 104) =
if d ="@" then

begin d < buffer|[loc + 1];

if d =">" then
begin loc < loc 4+ 2; goto done;
end;

if (d="u")V (d=tab-mark)V (d = "%") then
begin err_print(~!,Section name didn”"t,end’); goto done;
end;

incr(k); mod_text[k] < "@"; incr(loc); {now d = buffer[loc] again }

end

This code is used in section 103.

105. (Check for overlong name 105) =
if k > longest_-name — 2 then
begin print_nl(~ ! Section name too,long:,");
for j < 1to 25 do print(zchr[mod_text[j]]);
print(~..."); mark_harmless;
end

This code is used in section 103.

52 INPUTTING THE NEXT TOKEN WEAVE 8106

106. (Scan to the next @> 106) =

begin id_first < loc; buffer[limit + 1] < "@";

while buffer[loc] # "@" do incr(loc);

id_loc < loc;

if loc > limit then
begin err_print(! Control text didn” “tyuend”); loc < limit;
end

else begin loc < loc + 2;
if buffer[loc — 1] # ">" then err_print(! Control codes are forbidden in control text’);
end;

end

This code is used in section 100.

107. A verbatim Pascal string will be treated like ordinary strings, but with no surrounding delimiters. At
the present point in the program we have buffer[loc — 1] = verbatim; we must set id_first to the beginning
of the string itself, and ¢d_loc to its ending-plus-one location in the buffer. We also set loc to the position
just after the ending delimiter.
(Scan a verbatim string 107) =

begin id_first « loc; incr(loc); buffer[limit + 1] < "@"; buffer[limit + 2] < ">";

while (buffer[loc] # "@") V (buffer[loc + 1] # ">") do incr(loc);

if loc > limit then err_print(~!_Verbatim string didn”"tuend’);

id_loc < loc; loc < loc + 2;

end

This code is used in section 100.

§108 WEAVE PHASE ONE PROCESSING 53

108. Phase one processing. We now have accumulated enough subroutines to make it possible to
carry out WEAVE'’s first pass over the source file. If everything works right, both phase one and phase two of
WEAVE will assign the same numbers to modules, and these numbers will agree with what TANGLE does.

The global variable next_control often contains the most recent output of get_nezt; in interesting cases,
this will be the control code that ended a module or part of a module.

(Globals in the outer block 9) +=
next_control: eight_bits; {control code waiting to be acting upon }

109. The overall processing strategy in phase one has the following straightforward outline.

(Phase I: Read all the user’s text and store the cross references 109) =
phase_one < true; phase_three < false; reset_input; module_count < 0; changed_module[0] < false;
skip_limbo; change_exists < false;
while —input_has_ended do (Store cross reference data for the current module 110);
changed_module[module_count] < change_exists; {the index changes if anything does }
phase_one < false; {prepare for second phase }
(Print error messages about unused or undefined module names 120);

This code is used in section 261.

110. (Store cross reference data for the current module 110) =

begin incr(module_count);

if module_count = max_modules then overflow(section number ~);

changed_module [module_count] < changing; {it will become true if any line changes }

if buffer[loc — 1] = "*" then
begin print(“*°, module_count : 1); update_terminal; {print a progress report }
end;

(Store cross references in the TEX part of a module 113);

(Store cross references in the definition part of a module 115);

(Store cross references in the Pascal part of a module 117);

if changed_module[module_count] then change_exists + true;

end

This code is used in section 109.

54 PHASE ONE PROCESSING WEAVE §111

111. The Pascal_zref subroutine stores references to identifiers in Pascal text material beginning with the
current value of next_control and continuing until next_control is ‘{’ or ‘|’, or until the next “milestone”
is passed (i.e., next_control > format). If next_control > format when Pascal_zref is called, nothing will
happen; but if next_control = "|" upon entry, the procedure assumes that this is the ‘|’ preceding Pascal
text that is to be processed.

The program uses the fact that our internal code numbers satisfy the relations xref -roman = identifier +
roman and xref wildcard = identifier + wildcard and zref_typewriter = identifier + typewriter and normal =
0. An implied ‘@!’ is inserted after function, procedure, program, and var.

procedure Pascal_zref; {makes cross references for Pascal identifiers }
label ezit;
var p: name_pointer; {a referenced name }
begin while next_control < format do
begin if (next_control > identifier) A (next_control < zref-typewriter) then
begin p + id_lookup (next_control — identifier); new_zref (p);
if (ilk[p] = proc_like) V (ilk[p] = var_like) then axref_switch < def-flag; {implied ‘@!’}

end;
next_control < get_next;
if (next_control = "1")V (next_control = "{") then return;
end;
exit: end;
112. The outer_zref subroutine is like Pascal_zref but it begins with next_control # "|" and ends with

next_control > format. Thus, it handles Pascal text with embedded comments.

procedure outer_zref; {extension of Pascal_zref }
var bal: eight_bits; {brace level in comment }
begin while next_control < format do
if next_control # "{" then Pascal_zref
else begin bal + skip_comment(1); next_control + "|";
while bal > 0 do
begin Pascal_zref;

if next_control = "|" then bal < skip_comment (bal)
else bal + 0; {an error will be reported in phase two }
end;

end;

end;

)

6113 WEAVE PHASE ONE PROCESSING 95

113. In the TEX part of a module, cross reference entries are made only for the identifiers in Pascal texts
enclosed in | ... |, or for control texts enclosed in @~ ...@> or @....@> or @: ...@>.

(Store cross references in the TEX part of a module 113) =
repeat next_control < skip_TeX;
case next_control of
underline: xref_switch < def_flag;
no_underline: xref switch < 0;
" Pascal_zref;
zref_-roman, zref wildcard , xref_typewriter , module_name: begin loc «+ loc — 2;
next_control < get_next; {scan to @ }
if next_control # module_name then new_xref (id_lookup (next_control — identifier));
end;
othercases do_nothing
endcases;
until next_control > format

This code is used in section 110.

114. During the definition and Pascal parts of a module, cross references are made for all identifiers except
reserved words; however, the identifiers in a format definition are referenced even if they are reserved. The
TEX code in comments is, of course, ignored, except for Pascal portions enclosed in | ... [|; the text of a
module name is skipped entirely, even if it contains | ... | constructions.

The variables lhs and rhs point to the respective identifiers involved in a format definition.

(Globals in the outer block 9) +=
lhs, rhs: name_pointer; {indices into byte_start for format identifiers }

115. When we get to the following code we have next_control > format.

(Store cross references in the definition part of a module 115) =
while nezt_control < definition do { format or definition }
begin aref_switch < def-flag; {implied @' }
if next_control = definition then next_control < get_next
else (Process a format definition 116);
outer_zref ;
end

This code is used in section 110.

56 PHASE ONE PROCESSING WEAVE 6116

116. Error messages for improper format definitions will be issued in phase two. Our job in phase one is
to define the ilk of a properly formatted identifier, and to fool the new_zref routine into thinking that the
identifier on the right-hand side of the format definition is not a reserved word.

(Process a format definition 116) =
begin next_control < get_next;
if next_control = identifier then
begin lhs < id_lookup (normal); ilk[lhs] < normal; new_zref (lhs); next_control < get_next;
if next_control = equivalence_sign then
begin next_control < get_next;
if next_control = identifier then
begin rhs < id_lookup (normal); ilk[lhs] < ilk[rhs]; ilk[rhs] < normal; new_zref (rhs);
ilk[rhs] < ilk[lhs]; next_control < get_next;
end;
end;
end;
end

This code is used in section 115.

117. Finally, when the TEX and definition parts have been treated, we have next_control > begin_Pascal.

{ Store cross references in the Pascal part of a module 117) =
if next_control < module_name then { begin_Pascal or module_name }
begin if next_control = begin_Pascal then mod_xref-switch < 0
else mod_xref_switch < def_flag;
repeat if next_control = module_name then new_mod_zref (cur_module);
next_control < get_next; outer_zref;
until nezt_control > module_name;
end

This code is used in section 110.

118. After phase one has looked at everything, we want to check that each module name was both defined
and used. The variable cur_zref will point to cross references for the current module name of interest.

(Globals in the outer block 9) +=
cur_xref . xref-number; {temporary cross reference pointer }

119. The following recursive procedure walks through the tree of module names and prints out anomalies.

procedure mod_check (p : name_pointer); {print anomalies in subtree p }
begin if p > 0 then
begin mod_check (llink [p));
cur_xref < aref [p|;
if num (cur_zref) < def-flag then
begin print_nl(~ ! Never defined: <"); print_id(p); print(~>"); mark_harmless;
end;
while num (cur_zref) > def-flag do cur_zref < zlink (cur_zref);
if cur_zref =0 then
begin print_nl(" ! Never used: <"); print_id(p); print(~>"); mark_harmless;
end;
mod_check (rlink [p]);
end;
end;

120. (Print error messages about unused or undefined module names 120) = mod_check (root)

This code is used in section 109.

8121 WEAVE LOW-LEVEL OUTPUT ROUTINES 57

121. Low-level output routines. The TEX output is supposed to appear in lines at most line_length
characters long, so we place it into an output buffer. During the output process, out_line will hold the
current line number of the line about to be output.

(Globals in the outer block 9) +=

out_buf: array [0 .. line_length] of ASCII_code; {assembled characters }
out_ptr: 0 .. line_length; {number of characters in out_buf }

out_line: integer; {coordinates of next line to be output }

122. The flush_buffer routine empties the buffer up to a given breakpoint, and moves any remaining
characters to the beginning of the next line. If the per_cent parameter is true, a "%" is appended to the line
that is being output; in this case the breakpoint b should be strictly less than line_length. If the per_cent
parameter is false, trailing blanks are suppressed. The characters emptied from the buffer form a new line
of output; if the carryover parameter is true, a "%" in that line will be carried over to the next line (so that
TEX will ignore the completion of commented-out text).

procedure flush_buffer (b : eight_bits; per_cent, carryover : boolean);
{ outputs out_buf[1 .. b], where b < out_ptr }
label done, found;
var j,k: 0 .. line_length;
begin j < b;
if —per_cent then {remove trailing blanks }
loop begin if ;7 =0 then goto done;
if out_buf[j] # "L" then goto done;
decr (j);
end;
done: for k <+ 1to j do write(tex_file, xchrout_buf [k]]);
if per_cent then write(tex_file, zchr["%"]);
write_ln (tex_file); incr(out_line);
if carryover then
for k< 1to j do
if out_buf[k] = "%" then
if (k=1)V (out-buf [k — 1] # "\") then {comment mode should be preserved }
begin out_buf [b] + "%"; decr(b); goto found;
end;
found: if (b < out_ptr) then
for k < b+ 1 to out_ptr do out_buf [k — b] < out_buf [k];
out_ptr < out_ptr — b;
end;

58 LOW-LEVEL OUTPUT ROUTINES WEAVE 8123

123. When we are copying TEX source material, we retain line breaks that occur in the input, except that
an empty line is not output when the TEX source line was nonempty. For example, a line of the TEX file
that contains only an index cross-reference entry will not be copied. The finish_line routine is called just
before get_line inputs a new line, and just after a line break token has been emitted during the output of
translated Pascal text.

procedure finish_line; {do this at the end of a line }
label ezit;
var k: 0 .. buf_size; {index into buffer }
begin if out_ptr > 0 then flush_buffer (out_ptr, false, false)
else begin for k < 0 to limit do
if (buffer[k] # "u") A (buffer[k] # tab_mark) then return;
flush_buffer (0, false, false);
end;
exit: end;

124. In particular, the finish_line procedure is called near the very beginning of phase two. We initialize
the output variables in a slightly tricky way so that the first line of the output file will be ‘\input webmac’.

(Set initial values 10) +=
out_ptr < 1; out_line < 1; out_buf[1] + "c"; write(tex_file, "\input webma’);

125. When we wish to append the character ¢ to the output buffer, we write ‘out(c)’; this will cause the
buffer to be emptied if it was already full. Similarly, ‘out2(c1)(c2)’ appends a pair of characters. A line
break will occur at a space or after a single-nonletter TEX control sequence.

define oot (#) =
if out_ptr = line_length then break_out;
incr (out_ptr); out_buf [out_ptr] < #;

define oot! (#) = oot (#) end

define 00t2 (#) = oot (#) oot1

define 00t3 (#) = oot (#) oot2

define oot/ (#) = oot (#) oot3

define oot5 (#) = oot (#) oot/

define out = begin oot1

define out2 = begin oot2

define out3 = begin oot3

define out/ = begin oot/

define out5 = begin oot5

#
#

126. The break_out routine is called just before the output buffer is about to overflow. To make this
routine a little faster, we initialize position 0 of the output buffer to ‘\’; this character isn’t really output.

(Set initial values 10) +=
out_buf [0] < "\";

8127 WEAVE LOW-LEVEL OUTPUT ROUTINES 59

127. A long line is broken at a blank space or just before a backslash that isn’t preceded by another
backslash. In the latter case, a "%" is output at the break.

procedure break_out; {finds a way to break the output line }
label exit;
var k: 0 .. line_length; {index into out_buf }
d: ASCII_code; {character from the buffer }
begin k < out_ptr;
loop begin if £ =0 then (Print warning message, break the line, return 128);
d + out_buf [k];
if d="_" then
begin flush_buffer (k, false, true); return;
end;
if (d="\")A (out-buf[k —1] # "\") then {in thiscasek >1}
begin flush_buffer (k — 1, true, true); return;
end;
decr (k);
end;
exit: end;

128. We get to this module only in unusual cases that the entire output line consists of a string of
backslashes followed by a string of nonblank non-backslashes. In such cases it is almost always safe to break
the line by putting a "%" just before the last character.

(Print warning message, break the line, return 128) =
begin print_nl(~ ! Line had to_be_ broken (output,l. ", out line : 1); printin("):");
for k < 1 to out_ptr — 1 do print(zchr[out_buf [k]]);
new_line; mark_harmless; flush-buffer (out_ptr — 1, true, true); return;
end

This code is used in section 127.

129. Here is a procedure that outputs a module number in decimal notation.

(Globals in the outer block 9) +=
dig: array [0..4] of 0..9; {digits to output }

130. The number to be converted by out_mod is known to be less than def flag, so it cannot have more
than five decimal digits. If the module is changed, we output ‘*’ just after the number.

procedure out_mod(m : integer); {output a module number }
var k: 0..5; {index into dig }
a: integer; {accumulator }
begin k <+ 0; a < m;
repeat dig[k] < amod 10; a < a div 10; incr(k);
until a = 0;
repeat decr(k); out(dig[k] + "0");
until k£ = 0;
if changed_-module[m] then out2("\")("*");
end;

60 LOW-LEVEL OUTPUT ROUTINES WEAVE 8131

131. The out_name subroutine is used to output an identifier or index entry, enclosing it in braces.

procedure out_name(p : name_pointer); {outputs a name }
var k: 0 .. max_bytes; {index into byte_mem }
w: 0..ww —1; {row of byte_mem }
begin out("{"); w <+ p mod ww;
for k + byte_start[p] to byte_start[p + ww] — 1 do
begin if byte.mem[w, k] = "_" then out("\");
out (byte_mem [w, k));
end;
out("}");

end;

b

8132 WEAVE ROUTINES THAT COPY TEX MATERIAL 61

132. Routines that copy TEX material. During phase two, we use the subroutines copy_limbo,
copy_TeX , and copy_comment in place of the analogous skip_limbo, skip_TeX , and skip_comment that were
used in phase one.

The copy_limbo routine, for example, takes TEX material that is not part of any module and transcribes
it almost verbatim to the output file. No ‘@ signs should occur in such material except in ‘@@’ pairs; such
pairs are replaced by singletons.

procedure copy_limbo; {copy TEX code until the next module begins }
label exit;
var ¢: ASCII code; {character following @ sign }
begin loop
if loc > limit then
begin finish_line; get_line;
if input_has_ended then return;
end
else begin buffer[limit + 1] + "@"; (Copy up to control code, return if finished 133);
end;
erit: end;

133. (Copy up to control code, return if finished 133) =

while buffer[loc] # "@" do
begin out (buffer[loc]); incr(loc);
end;

if loc < limit then
begin loc + loc + 2; ¢ < buffer[loc — 1];
if (c="_")V (c=tab_mark)V (c ="*") then return;
OU,t("@");
if ¢ # "@" then err_print(~!_ Double @ required outside of sections’);
end

This code is used in section 132.

134. The copy-TeX routine processes the TEX code at the beginning of a module; for example, the words
you are now reading were copied in this way. It returns the next control code or ‘|’ found in the input.

function copy_TeX: eight_bits; { copy pure TEX material }
label done;
var c: eight_bits; { control code found }
begin loop
begin if loc > limit then
begin finish_line; get_line;
if input_has_ended then
begin ¢ < new_module; goto done;
end;
end;
buffer[limit + 1] < "@"; (Copy up to ‘|’ or control code, goto done if finished 135);
end;
done: copy-TeX <« c;
end;

b

62 ROUTINES THAT COPY TgX MATERIAL WEAVE 8135

135. We don’t copy spaces or tab marks into the beginning of a line. This makes the test for empty lines
in finish_line work.

(Copy up to ‘|’ or control code, goto done if finished 135) =
repeat c « buffer[loc]; incr(loc);
if ¢c="|" then goto done;
if ¢ # "@" then
begin out(c);
if (out_ptr = 1) A ((¢ ="u") V (c = tab_mark)) then decr (out_ptr);
end;
until ¢="e";
if loc < limit then
begin ¢ < control_code (buffer[loc]); incr(loc); goto done;
end

This code is used in section 134.

136. The copy_comment uses and returns a brace-balance value, following the conventions of skip_comment
above. Instead of copying the TEX material into the output buffer, this procedure copies it into the token
memory. The abbreviation app_tok (t) is used to append token ¢ to the current token list, and it also makes
sure that it is possible to append at least one further token without overflow.

define app_tok(#) =
begin if tok_ptr + 2 > maz_toks then overflow(token~);
tok_mem [tok_ptr] < #; incr(tok_ptr);
end
function copy_comment (bal : eight_bits): eight_bits; { copies TEX code in comments }
label done;
var ¢: ASCII code; {current character being copied }
begin loop
begin if loc > limit then
begin get_line;
if input_has_ended then
begin err_print(~!,Input_ended, in mid-comment); loc < 1; (Clear bal and goto done 138);
end;
end;
¢ < buffer[loc]; incr(loc);
if c="1" then goto done;
app-tok(c); (Copy special things when ¢ = "@", "\","{", "}"; goto done at end 137);
end;
done: copy_comment < bal;
end;

k)

8137 WEAVE ROUTINES THAT COPY TEX MATERIAL 63

137. (Copy special things when ¢ = "@","\","{", "}"; goto done at end 137) =
if ¢ = "@" then

begin incr(loc);
if buffer[loc — 1] # "@" then
begin err_print(~!,I1legal use o0f @, in comment *); loc < loc — 2; decr(tok_ptr);
(Clear bal and goto done 138);
end;
end
else if (¢ ="\") A (buffer[loc] # "@") then
begin app_tok (buffer[loc]); incr(loc);
end
else if ¢ = "{" then incr(bal)
else if ¢ ="}" then
begin decr(bal);
if bal = 0 then goto done;
end

This code is used in section 136.

138. When the comment has terminated abruptly due to an error, we output enough right braces to keep
TEX happy.

(Clear bal and goto done 138) =

app-tok(","); {this is done in case the previous character was ‘\’ }
repeat app_tok("}"); decr(bal);

until bal = 0;

goto done;

This code is used in sections 136 and 137.

64 PARSING WEAVE §139

139. Parsing. The most intricate part of WEAVE is its mechanism for converting Pascal-like code into
TEX code, and we might as well plunge into this aspect of the program now. A “bottom up” approach is
used to parse the Pascal-like material, since WEAVE must deal with fragmentary constructions whose overall
“part of speech” is not known.

At the lowest level, the input is represented as a sequence of entities that we shall call scraps, where each
scrap of information consists of two parts, its category and its translation. The category is essentially a
syntactic class, and the translation is a token list that represents TEX code. Rules of syntax and semantics
tell us how to combine adjacent scraps into larger ones, and if we are lucky an entire Pascal text that starts
out as hundreds of small scraps will join together into one gigantic scrap whose translation is the desired
TEX code. If we are unlucky, we will be left with several scraps that don’t combine; their translations will
simply be output, one by one.

The combination rules are given as context-sensitive productions that are applied from left to right.
Suppose that we are currently working on the sequence of scraps sj s3...s,. We try first to find the longest
production that applies to an initial substring s; so .. .; but if no such productions exist, we try to find the
longest production applicable to the next substring ss s3...; and if that fails, we try to match s3s4..., etc.

A production applies if the category codes have a given pattern. For example, one of the productions is

open math semi — open math

and it means that three consecutive scraps whose respective categories are open, math, and semi are con-
verted to two scraps whose categories are open and math. This production also has an associated rule that
tells how to combine the translation parts:

Oy =0,
Mg:Mls\,optS

This means that the open scrap has not changed, while the new math scrap has a translation Ms composed
of the translation M; of the original math scrap followed by the translation S of the semi scrap followed by
‘\,’ followed by ‘opt’ followed by ‘5’. (In the TEX file, this will specify an additional thin space after the
semicolon, followed by an optional line break with penalty 50.) Translation rules use subscripts to distinguish
between translations of scraps whose categories have the same initial letter; these subscripts are assigned
from left to right.
WEAVE also has the production rule
semt — terminator

(meaning that a semicolon can terminate a Pascal statement). Since productions are applied from left to
right, this rule will be activated only if the semi is not preceded by scraps that match other productions; in
particular, a semi that is preceded by ‘open math’ will have disappeared because of the production above,
and such semicolons do not act as statement terminators. This incidentally is how WEAVE is able to treat
semicolons in two distinctly different ways, the first of which is intended for semicolons in the parameter list
of a procedure declaration.

The translation rule corresponding to semi — terminator is

T=S

but we shall not mention translation rules in the common case that the translation of the new scrap on the
right-hand side is simply the concatenation of the disappearing scraps on the left-hand side.

§140 WEAVE PARSING

140. Here is a list of the category codes that scraps can have.

define simp =1 {the translation can be used both in horizontal mode and in math mode of TEX }

define math =2 {the translation should be used only in TEX math mode }
define intro =3 {a statement is expected to follow this, after a space and an optional break }
define open =4 {denotes an incomplete parenthesized quantity to be used in math mode }

define beginning =5 {denotes an incomplete compound statement to be used in horizontal mode }

define close =6 {ends a parenthesis or compound statement }

define alpha =7 {denotes the beginning of a clause }

define omega =8 {denotes the ending of a clause and possible comment following }
define semi =9 {denotes a semicolon and possible comment following it }
define terminator = 10 {something that ends a statement or declaration }
define stmt =11 {denotes a statement or declaration including its terminator }
define cond =12 {precedes an if clause that might have a matching else }
define clause = 13 { precedes a statement after which indentation ends }
define colon =14 {denotes a colon }

define exp = 15 {stands for the E in a floating point constant }

define proc = 16 {denotes a procedure or program or function heading }
define case_head = 17 {denotes a case statement or record heading }

define record_head = 18 {denotes a record heading without indentation }
define var_head =19 {denotes a variable declaration heading }

define elsie =20 {else}

define casey =21 {case}

define mod_scrap = 22 {denotes a module name }

debug procedure print_cat(c: eight_bits); {symbolic printout of a category }
begin case c of

simp: print(“simp”);
math: print(math);
intro: print(“intro~);

open: print(open”);

beginning: print(beginning”);
close: print(“close”);

alpha: print(alpha’);

omega: print(omega’);

semi: print(semi’);

terminator: print(terminator ”);
stmt: print(“stmt”);

cond: print(cond”);

clause: print(“clause”);

colon: print(“colon”);

exp: print(exp’);

proc: print(“proc’);

case_head: print(casehead”);
record_head: print(recordhead”);
var_head: print(varhead’);

elsie: print(“elsie’);

casey: print(“casey”);

mod_scrap: print(module”);
othercases print(“UNKNOWN *)
endcases;

end;

gubed

65

66 PARSING WEAVE §141

141. The token lists for translated TEX output contain some special control symbols as well as ordinary
characters. These control symbols are interpreted by WEAVE before they are written to the output file.

break_space denotes an optional line break or an en space;
force denotes a line break;
big_force denotes a line break with additional vertical space;

opt denotes an optional line break (with the continuation line indented two ems with respect to the normal
starting position)—this code is followed by an integer n, and the break will occur with penalty 10n;

backup denotes a backspace of one em;

cancel obliterates any break_space or force or big_force tokens that immediately precede or follow it and
also cancels any backup tokens that follow it;

indent causes future lines to be indented one more em;
outdent causes future lines to be indented one less em.

All of these tokens are removed from the TEX output that comes from Pascal text between | ... | signs;
break_space and force and big_force become single spaces in this mode. The translation of other Pascal texts
results in TEX control sequences \1, \2, \3, \4, \5, \6, \7 corresponding respectively to indent, outdent,
opt, backup, break_space, force, and big_force. However, a sequence of consecutive ‘’, break_space, force,
and/or big_force tokens is first replaced by a single token (the maximum of the given ones).

The tokens math_rel, math_bin, math_op will be translated into \mathrel{, \mathbin{, and \mathop{,
respectively. Other control sequences in the TEX output will be ‘\\{ ...}’ surrounding identifiers, ‘\&{ ...}’
surrounding reserved words, ‘\.{...}’ surrounding strings, ‘\C{...} force’ surrounding comments, and
‘A\Xn: ...\X’ surrounding module names, where n is the module number.

define math_bin = 203

define math_rel = 204

define math_op = 205

define big_cancel = 206 {like cancel, also overrides spaces }

define cancel = 207 {overrides backup, break_space, force, big_force }
define indent = cancel +1 {one more tab (\1)}

define outdent = cancel +2 {one less tab (\2) }

define opt = cancel +3 {optional break in mid-statement (\3) }

define backup = cancel +4 {stick out one unit to the left (\4) }

define break_space = cancel +5 {optional break between statements (\5) }
define force = cancel +6 {forced break between statements (\6) }

define big_force = cancel +7 {forced break with additional space (\7) }
define end_translation = big_force +1 {special sentinel token at end of list }

8142 WEAVE PARSING 67

142. The raw input is converted into scraps according to the following table, which gives category codes
followed by the translations. Sometimes a single item of input produces more than one scrap. (The symbol
‘*xx’ stands for ‘\&{identifier}’, i.e., the identifier itself treated as a reserved word. In a few cases the category
is given as ‘comment’; this is not an actual category code, it means that the translation will be treated as a
comment, as explained below.)

<> math: \I
<= math: \L
>= math: \G
= math: \K
== math: \S
(* math: \B
*) math: \T
C. open: [
) close:]
" string " simp: \.{" modified string "}
“ string ~ simp: \.{\ “ modified string \ "}
@=string @> simp: \={modified string }
math: \#
$ math: \$
_ math: _
% math: \%
- math: \"
(open: (
) close:)
[open: [
] close:]
* math: \ast
s math: , opt 9
math: \to
simp: .
colon: :
; semi: ;
identifier simp: \\{identifier }
E in constant exp: \E{
digit d simp: d
other character ¢ math: ¢
and math: \W
array alpha: *x*
begin beginning: force ** cancel intro:
case casey: alpha: force **
const intro: force backup **
div math: math_bin **}
do omega: **
downto math: math_rel **}
else terminator: elsie: force backup **
end terminator: close: force **
file alpha: **
for alpha: force *x
function proc: force backup ** cancel intro: indent \|
goto mitro: **
if cond: alpha: force **

in math: \in

68 PARSING WEAVE ~ §142
label intro: force backup **
mod math: math_bin ** }
nil simp: *%
not math: \R
of omega: **
or math: \V
packed miro: *x
procedure proc: force backup ** cancel intro: indent \.,
program proc: force backup ** cancel intro: indent \.,
record record_head: ** intro:
repeat beginning: force indent ** cancel intro:
set alpha: **
then omega: **
to math: math_rel x* 3}
type intro: force backup **
until terminator: close: force backup ** clause:
var var_head: force backup ** cancel intro:
while alpha: force *x
with alpha: force *x
xclause alpha: force \~ omega: **
@~ const simp: \O{const}
@" const simp: \H{const}
o$ simp: \)
e\ simp: \]
o, math: \,
@t stuff @> simp: \hbox{ stuff >
@<module @> mod_scrap: \Xn: module \X
o comment: big_force
e/ comment: force
el stmp: opt 0
o+ comment: big_cancel _, big_cancel
Q; semsi:
& math: \J
o{ math: \B
@} math: \T

When a string is output, certain characters are preceded by ‘\’ signs so that they will print properly.

A comment in the input will be combined with the preceding omega or semi scrap, or with the following
terminator scrap, if possible; otherwise it will be inserted as a separate terminator scrap. An additional
“comment” is effectively appended at the end of the Pascal text, just before translation begins; this consists
of a cancel token in the case of Pascal text in | ... |, otherwise it consists of a force token.

From this table it is evident that WEAVE will parse a lot of non-Pascal programs. For example, the
reserved words ‘for’ and ‘array’ are treated in an identical way by WEAVE from a syntactic standpoint, and
semantically they are equivalent except that a forced line break occurs just before ‘for’; Pascal programmers
may well be surprised at this similarity. The idea is to keep WEAVE’s rules as simple as possible, consistent
with doing a reasonable job on syntactically correct Pascal programs. The production rules below have been
formulated in the same spirit of “almost anything goes.”

8143 WEAVE

143.

PARSING 69

Here is a table of all the productions. The reader can best get a feel for how they work by trying

them out by hand on small examples; no amount of explanation will be as effective as watching the rules in

action. Parsing can also be watched by debugging with ‘@2’.

Production categories [translations]

1 alpha math colon — alpha math
2 alpha math omega — clause [C = A,$ M $. indent O]
3 alpha omega — clause [C = A indent O]
4 alpha simp — alpha math
5 beginning close (terminator or stmt) — stmt
6 beginning stmt — beginning [Bo = Bj break_space S|
7 case_head casey clause — case_head [Cy = C} outdent Co Cs3]
8 case_head close terminator — stmt [S = Cy cancel outdent Cy T
9 case_head stmt — case_head [Cy = Cy force S|
10 casey clause — case_head
11 clause stmt — stmt [S2 = C break_space Sy cancel outdent force]
12 cond clause stmt elsie — clause [Cs = Cy Cy break_space S E |, cancel]
18 cond clause stmt — stmt
[S2 = Cy Cy break_space Sy cancel outdent force]
1/ elsie — intro
15 exp math simp* — math [My = E M; S}]
16 exp simp* — math [M = ES}]
17 intro stmt — stmt [Sa = I opt 7 cancel Si]
18 math close — stmt close [S =$ M $]
19 math colon — intro [I = force backup $ M $ C]
20 math math — math
21 math simp — math
22 math stmt — stmt
[S2 = $ M $ indent break_space Sy cancel outdent force]
23 math terminator — stmt [S=MT]
24 mod_scrap (terminator or semi) — stmt
25 mod_scrap — simp
26 open case_head close — math [M = O$ cancel Cy cancel outdent $ Cs]
27 open close — math [M =0\, C]
28 open math case_head close — math
[Mz = O M $ cancel Cy cancel outdent $ Ca]
29 open math close — math
30 open math colon — open math
31 open math proc intro — open math [My = My math_op cancel P}]
32 open math semi — open math [Ms = M; S\, opt 5]
33 open math var_head intro — open math [Ma = My math_op cancel V' }]
34 open proc intro — open math [M = math_op cancel P}]
35 open simp — open math
36 open stmt close — math [M = O$ cancel S cancel $ C]
37 open var_head intro — open math [M = math_op cancel V' }]
38 proc beginning close terminator — stmt [S = P cancel outdent BC T
39 proc stmt — proc [Py = Py break_space S|
40 record_head intro casey — casey [Ca = RI cancel C1]
41 record_head — case_head [C = indent R cancel]
42 semi — terminator
43 simp close — stmt close
44 simp colon — intro [I = force backup S C]
45 simp math — math

[S = MT force]

Remarks

e.g., case v : boolean of
e.g., while x > 0 do

e.g., file of

convert to math mode
compound statement ends
compound statement grows
variant records

end of case statement

case statement grows
beginning of case statement
end of controlled statement
complete conditional

incomplete conditional
unmatched else

signed exponent
unsigned exponent
labeled statement, etc.
end of field list
compound label
simple concatenation
simple concatenation

macro or type definition
statement involving math
module like a statement
module unlike a statement
case in field list

empty set []

case in field list
parenthesized group

colon in parentheses
procedure in parentheses
semicolon in parentheses
var in parentheses
procedure in parentheses
convert to math mode

field list

var in parentheses

end of procedure declaration
procedure declaration grows
record case ...

other record structures
semicolon after statement
end of field list

simple label

simple concatenation

70 PARSING WEAVE §143

46 simp mod_scrap — mod_scrap in emergencies

47 stmp simp — simp simple concatenation

48 simp terminator — stmt simple statement

49 stmt stmt — stmt [Ss = Sy break_space Ss] adjacent statements

50 terminator — stmt empty statement

51 var_head beginning — stmt beginning end of variable declarations
52 var_head math colon — var_head intro [I =$M $C] variable declaration

58 var_head simp colon — var_head intro variable declaration

54 var_head stmt — var_head [Va = Vi break_space S] variable declarations grow

Translations are not specified here when they are simple concatenations of the scraps that change. For
example, the full translation of ‘open math colon — open math’ is O = O1, My = M, C.

The notation ‘simp™’, in the exp-related productions above, stands for a simp scrap that isn’t followed by
another simp.

8144 WEAVE IMPLEMENTING THE PRODUCTIONS 71

144. Implementing the productions. When Pascal text is to be processed with the grammar above,
we put its initial scraps s ... s, into two arrays cat[l .. n] and trans[l .. n]. The value of cat[k] is simply
a category code from the list above; the value of trans[k] is a text pointer, i.e., an index into tok_start. Our
production rules have the nice property that the right-hand side is never longer than the left-hand side.
Therefore it is convenient to use sequential allocation for the current sequence of scraps. Five pointers are
used to manage the parsing:

pp (the parsing pointer) is such that we are trying to match the category codes cat[pp] cat[pp +1]... to
the left-hand sides of productions.

scrap_base, lo_ptr, hi_ptr, and scrap_ptr are such that the current sequence of scraps appears in positions
scrap-base through lo_ptr and hi_ptr through scrap_ptr, inclusive, in the cat and trans arrays. Scraps
located between scrap_base and lo_ptr have been examined, while those in positions > hi_ptr have
not yet been looked at by the parsing process.

Initially scrap_ptr is set to the position of the final scrap to be parsed, and it doesn’t change its value.
The parsing process makes sure that lo_ptr > pp + 3, since productions have as many as four terms, by
moving scraps from hi_ptr to lo_ptr. If there are fewer than pp 4+ 3 scraps left, the positions up to pp + 3
are filled with blanks that will not match in any productions. Parsing stops when pp = lo_ptr + 1 and
hi_ptr = scrap_ptr + 1.

The trans array elements are declared to be of type 0 .. 10239 instead of type text_pointer, because the
final sorting phase of WEAVE uses this array to contain elements of type name_pointer. Both of these types
are subranges of 0 .. 10239.

(Globals in the outer block 9) +=
cat: array [0 .. maz_scraps] of eight_bits; {category codes of scraps }
trans: array [0 .. maz_scraps] of 0..10239; {translation texts of scraps }
pp: 0 .. maz_scraps; { current position for reducing productions }
scrap_base: 0 .. maz_scraps; { beginning of the current scrap sequence }
scrap_ptr: 0 .. maz_scraps; {ending of the current scrap sequence }
lo_ptr: 0 .. max_scraps; {last scrap that has been examined }
hi_ptr: 0 .. maz_scraps; {first scrap that has not been examined }
stat maz_scr_ptr: 0 .. maz_scraps; {largest value assumed by scrap_ptr }
tats

145. (Set initial values 10) +=
scrap_base < 1; scrap_ptr < 0;
stat maz_scr_ptr < 0; tats

72 IMPLEMENTING THE PRODUCTIONS WEAVE

146. Token lists in tok-mem are composed of the following kinds of items for TEX output.

define
define
define
define
define

define
define

ASCII codes and special codes like force and math_rel represent themselves;

id_flag + p represents \\{identifier p};

res_flag + p represents \&{identifier p};

mod_flag + p represents module name p;

tok_flag + p represents token list number p;

inner_tok_flag + p represents token list number p, to be translated without line-break controls.

id_flag = 10240 { signifies an identifier }

res_flag = id_flag + id_flag {signifies a reserved word }
mod_flag = res_flag + id_flag { signifies a module name }
tok_flag = mod_flag + id_flag { signifies a token list }

inner_tok_flag = tok_flag + id_flag {signifies a token list in ‘| ... "}
Ibrace = zchr["{"] {this avoids possible Pascal compiler confusion }
rbrace = xchr["}"] {because these braces might occur within comments }

debug procedure print_tezt(p : text_pointer); {prints a token list }
var j: 0.. maz_toks; {index into tok-mem }

r: 0

.. id_flag — 1; {remainder of token after the flag has been stripped off }

begin if p > text_ptr then print(BAD")
else for j < tok_start[p] to tok_start[p+ 1] — 1 do
begin r + tok-mem[j] mod id_flag;
case tok-mem/[j] div id_flag of
1: begin print ("\\", lbrace); print_id(r); print(rbrace);
end; {idflag}
2: begin print(“\&", lbrace); print_id(r); print(rbrace);
end; {resflag}
3: begin print(°<"); print_id(r); print(~>");
end; {mod_flag }
4: print("CL7,r:1,7117); {tok-flag }
5: print ("1 CL7,r:1,71117); {inner_tok_flag }
othercases (Print token r in symbolic form 147)
endcases;
end;

end;
gubed

§146

8147 WEAVE IMPLEMENTING THE PRODUCTIONS 73

147. (Print token r in symbolic form 147) =
case r of
math_bin: print(“\mathbin~, lbrace);
math_rel: print(\mathrel~, lbrace);
math-op: print(\mathop ", lbrace);
big_cancel: print(~[ccancell 7);
cancel: print(~ [cancel] 7);
indent: print(” [indent] °);
outdent: print(”~ [outdent] 7);
backup: print(” [backup] 7);
opt: print(~ Lopt]);
break_space: print(~ [break] ~);
force: print(~ [force] °);
big_force: print(~ [fforcel 7);
end_translation: print(~ [quit] 7);
othercases print(zchr(r])
endcases

This code is used in section 146.

74 IMPLEMENTING THE PRODUCTIONS WEAVE ~ §148

148. The production rules listed above are embedded directly into the WEAVE program, since it is easier
to do this than to write an interpretive system that would handle production systems in general. Several
macros are defined here so that the program for each production is fairly short.

All of our productions conform to the general notion that some k consecutive scraps starting at some
position j are to be replaced by a single scrap of some category ¢ whose translation is composed from the
translations of the disappearing scraps. After this production has been applied, the production pointer pp
should change by an amount d. Such a production can be represented by the quadruple (j,k,c,d). For
example, the production ‘simp math — math’ would be represented by ‘(pp,2, math,—1)’; in this case the
pointer pp should decrease by 1 after the production has been applied, because some productions with math
in their second positions might now match, but no productions have math in the third or fourth position of
their left-hand sides. Note that the value of d is determined by the whole collection of productions, not by an
individual one. Consider the further example ‘var_head math colon — wvar_head intro’, which is represented
by ‘(pp + 1,2, intro,+1)’; the +1 here is deduced by looking at the grammar and seeing that no matches
could possibly occur at positions < pp after this production has been applied. The determination of d has
been done by hand in each case, based on the full set of productions but not on the grammar of Pascal or
on the rules for constructing the initial scraps.

We also attach a serial number to each production, so that additional information is available when
debugging. For example, the program below contains the statement ‘reduce(pp + 1,2, intro, +1)(52)” when
it implements the production just mentioned.

Before calling reduce, the program should have appended the tokens of the new translation to the tok_mem
array. We commonly want to append copies of several existing translations, and macros are defined to simplify
these common cases. For example, app2 (pp) will append the translations of two consecutive scraps, trans|[pp]
and trans[pp + 1], to the current token list. If the entire new translation is formed in this way, we write
‘squash (j, k, c,d)’ instead of ‘reduce(j, k,c,d)’. For example, ‘squash(pp,2, math,—1)’ is an abbreviation for
‘app2(pp); reduce(pp, 2, math,—1) .

The code below is an exact translation of the production rules into Pascal, using such macros, and
the reader should have no difficulty understanding the format by comparing the code with the symbolic
productions as they were listed earlier.

Caution: The macros app, appl, app2, and app8 are sequences of statements that are not enclosed with
begin and end, because such delimiters would make the Pascal program much longer. This means that it
is necessary to write begin and end explicitly when such a macro is used as a single statement. Several
mysterious bugs in the original programming of WEAVE were caused by a failure to remember this fact. Next
time the author will know better.

define production (#) =
debug prod (#)
gubed;
goto found
define reduce(#) = red (#); production
define production_end (#) =
debug prod (#)
gubed;
goto found;
end
define squash(#) =
begin sq(#); production_end
define app (#) = tok-mem[tok_ptr]| < #; incr(tok_ptr)

{ this is like app_tok, but it doesn’t test for overflow }
define app! (#) = tok-mem[tok_ptr] < tok_flag + trans[#]; incr(tok_ptr)
define app2(#) = appl (#); appl (#+ 1)
define app3 (#) = app2 (#); appl (#+2)

8149 WEAVE IMPLEMENTING THE PRODUCTIONS 75

149. Let us consider the big case statement for productions now, before looking at its context. We want
to design the program so that this case statement works, so we might as well not keep ourselves in suspense
about exactly what code needs to be provided with a proper environment.

The code here is more complicated than it need be, since some popular Pascal compilers are unable to
deal with procedures that contain a lot of program text. The translate procedure, which incorporates the
case statement here, would become too long for those compilers if we did not do something to split the cases
into parts. Therefore a separate procedure called five_cases has been introduced. This auxiliary procedure
contains approximately half of the program text that translate would otherwise have had. There’s also a
procedure called alpha_cases, which turned out to be necessary because the best two-way split wasn’t good
enough. The procedure could be split further in an analogous manner, but the present scheme works on all
compilers known to the author.

(Match a production at pp, or increase pp if there is no match 149) =

if cat[pp] < alpha then

if cat[pp] < alpha then five_cases else alpha_cases
else begin case cat[pp] of

case_head: (Cases for case_head 153);

casey: (Cases for casey 154);

clause: (Cases for clause 155);

cond: (Cases for cond 156);

elsie: (Cases for elsie 157);

exp: (Cases for exp 158);

mod_scrap: (Cases for mod_scrap 161);

proc: (Cases for proc 164);

record_head: (Cases for record_head 165);

semi: (Cases for semi 166);

stmt: { Cases for stmt 168);

terminator: (Cases for terminator 169);

var_head: (Cases for var_head 170);

othercases do_nothing

endcases;

incr(pp); {if no match was found, we move to the right }
found: end

This code is used in section 175.

76 IMPLEMENTING THE PRODUCTIONS WEAVE §150

150. Here are the procedures that need to be present for the reason just explained.

(Declaration of subprocedures for translate 150) =
procedure five_cases; {handles almost half of the syntax }

label found;

begin case cat[pp] of

beginning: { Cases for beginning 152);

intro: (Cases for intro 159);

math: (Cases for math 160);

open: (Cases for open 162);

simp: (Cases for simp 167);

othercases do_nothing

endcases;

incr(pp); {if no match was found, we move to the right }
found: end;

procedure alpha_cases;

label found;

begin (Cases for alpha 151);

incr(pp); {if no match was found, we move to the right }
found: end;

This code is used in section 179.

151. Now comes the code that tries to match each production starting with a particular type of scrap.
Whenever a match is discovered, the squash or reduce macro will cause the appropriate action to be
performed, followed by goto found.
(Cases for alpha 151) =
if cat[pp + 1] = math then
begin if cat[pp + 2] = colon then squash(pp + 1,2, math,0)(1)
else if cat[pp + 2] = omega then
begin app! (pp); app("u"); app("$"); appl (pp +1); app("$"); app("u"); app(indent);
appl (pp + 2); reduce(pp, 3, clause, —2)(2);
end;
end
else if cat[pp + 1] = omega then
begin app1 (pp); app("u"); app(indent); appl (pp + 1); reduce(pp,2, clause, —2)(3);
end
else if cat[pp + 1] = simp then squash(pp + 1,1, math,0)(4)

This code is used in section 150.

152. (Cases for beginning 152) =
if cat[pp + 1] = close then
begin if (cat[pp + 2] = terminator) V (cat[pp + 2] = stmt) then squash(pp,3, stmt, —2)(5);
end
else if cat[pp + 1] = stmt then
begin appl (pp); app(break_space); appl (pp + 1); reduce(pp, 2, beginning, —1)(6);
end

This code is used in section 150.

8153 WEAVE IMPLEMENTING THE PRODUCTIONS

153. (Cases for case_head 153) =
if cat[pp + 1] = casey then
begin if cat[pp + 2] = clause then
begin appl (pp); app(outdent); app2(pp + 1); reduce(pp,3, case_head,0)(7);
end;
end
else if cat[pp + 1] = close then
begin if cat[pp + 2] = terminator then
begin appl! (pp); app(cancel); app(outdent); app2(pp + 1); reduce(pp, 3, stmt, —2)(8);
end;
end
else if cat[pp + 1] = stmt then
begin app! (pp); app(force); appl (pp +1); reduce(pp,2, case_head,0)(9);
end

This code is used in section 149.

154. (Cases for casey 154) =
if cat[pp + 1] = clause then squash(pp,2, case_head,0)(10)

This code is used in section 149.

155. (Cases for clause 155) =
if cat[pp + 1] = stmt then

begin appl (pp); app(break_space); appl (pp + 1); app(cancel); app(outdent); app(force);
reduce (pp, 2, stmt, —2)(11);
end

This code is used in section 149.

156. (Cases for cond 156) =
if (catpp + 1] = clause) A (cat[pp + 2] = stmt) then
if cat[pp + 3] = elsie then
begin app2(pp); app(break_space); app2(pp + 2); app("u"); app(cancel);
reduce (pp, 4, clause, —2)(12);
end

else begin app2(pp); app(break_space); appl (pp + 2); app(cancel); app(outdent); app(force);
reduce (pp, 3, stmt, —2)(13);
end

This code is used in section 149.

157. (Cases for elsie 157) =
squash(pp, 1, intro, —3)(14)

This code is used in section 149.

7

78 IMPLEMENTING THE PRODUCTIONS WEAVE §158

158. (Cases for exp 158) =
if cat[pp + 1] = math then
begin if cat[pp + 2] = simp then
if cat[pp + 3] # simp then
begin app3 (pp); app("}"); reduce(pp,3, math, —1)(15);
end;
end
else if cat[pp + 1] = simp then
if cat[pp + 2] # simp then
begin app2(pp); app("}"); reduce(pp,2, math,—1)(16);
end

This code is used in section 149.

159. (Cases for intro 159) =
if cat[pp + 1] = stmt then
begin app1 (pp); app("u"); app(opt); app("7"); app(cancel); appl (pp +1);
reduce (pp, 2, stmt, —2)(17);
end

This code is used in section 150.

160. (Cases for math 160) =
if cat[pp + 1] = close then
begin app("$"); appl(pp); app("$"); reduce(pp,1, stmt, —2)(18);
end
else if cat[pp + 1] = colon then
begin app (force); app(backup); app("$"); appl(pp); app("$"); appl (pp +1);
reduce (pp, 2, intro, —3)(19);
end
else if cat[pp + 1] = math then squash(pp,2, math, —1)(20)
else if cat[pp + 1] = simp then squash(pp,2, math, —1)(21)
else if cat[pp + 1] = stmt then
begin app("$"); appl(pp); app("$"); app(indent); app(break_space); appl(pp + 1);
app (cancel); app (outdent); app (force); reduce(pp,2, stmt, —2)(22);
end
else if cat[pp + 1] = terminator then
begin app("$"); appl (pp); app("$"); appl (pp +1); reduce(pp,2, stmt, —2)(23);
end

This code is used in section 150.

161. (Cases for mod_scrap 161) =
if (cat[pp + 1] = terminator) V (cat[pp + 1] = semi) then
begin app2(pp); app(force); reduce(pp,?2, stmt, —2)(24);
end
else squash(pp, 1, simp, —2)(25)

This code is used in section 149.

8162 WEAVE IMPLEMENTING THE PRODUCTIONS 79

162. (Cases for open 162) =
if (cat[pp + 1] = case_head) A (cat[pp + 2] = close) then
begin app1 (pp); app("$"); app(cancel); appl(pp + 1); app(cancel); app(outdent); app("$");
appl (pp + 2); reduce(pp, 3, math,—1)(26);
end
else if cat[pp + 1] = close then
begin app1 (pp); app("\"); app(","); appl (pp +1); reduce(pp,?2, math,—1)(27);
end
else if cat[pp + 1] = math then (Cases for open math 163)
else if cat[pp + 1] = proc then
begin if cat[pp + 2] = intro then
begin app(math_op); app(cancel); appl (pp + 1); app("}"); reduce(pp + 1,2, math,0)(34);
end;
end
else if cat[pp + 1] = simp then squash(pp + 1,1, math,0)(35)
else if (cat[pp + 1] = stmt) A (cat[pp + 2] = close) then
begin app! (pp); app("$"); app(cancel); appl (pp + 1); app(cancel); app("$");
appl (pp + 2); reduce(pp, 3, math,—1)(36);
end
else if cat[pp + 1] = var_head then
begin if cat[pp + 2] = intro then
begin app(math-op); app(cancel); appl(pp +1); app("}");
reduce (pp + 1,2, math,0)(37);
end;
end

This code is used in section 150.

163. (Cases for open math 163) =
begin if (cat[pp + 2] = case_head) A (cat[pp + 3] = close) then
begin app2(pp); app("$"); app(cancel); appl (pp + 2); app(cancel); app(outdent); app("$");
appl (pp + 3); reduce(pp, 4, math,—1)(28);
end
else if cat[pp + 2] = close then squash(pp,3, math,—1)(29)
else if cat[pp + 2] = colon then squash(pp + 1,2, math,0)(30)
else if cat[pp + 2] = proc then
begin if cat[pp + 3] = intro then
begin appl (pp + 1); app(math-op); app(cancel); appl (pp +2); app("}");
reduce (pp + 1,3, math,0)(31);
end;
end
else if cat[pp + 2] = semi then
begin app2(pp +1); app("\"); app(","); app(opt); app("8");
reduce (pp + 1,2, math,0)(32);
end
else if cat[pp + 2] = var_head then
begin if cat[pp + 3] = intro then
begin app! (pp +1); app(math_op); app(cancel); appl (pp +2); app("}");
reduce(pp + 1,3, math,0)(33);
end;
end;
end

This code is used in section 162.

80 IMPLEMENTING THE PRODUCTIONS WEAVE 8164

164. (Cases for proc 164) =
if cat[pp + 1] = beginning then
begin if (cat[pp + 2] = close) A (cat[pp + 3] = terminator) then
begin appl (pp); app(cancel); app(outdent); app3(pp + 1); reduce(pp,4, stmt, —2)(38);
end;
end
else if cat[pp + 1] = stmt then

begin app1 (pp); app(break_space); appl (pp + 1); reduce(pp,2, proc, —2)(39);
end

This code is used in section 149.

165. (Cases for record_head 165) =
if (cat[pp + 1] = intro) A (cat[pp + 2] = casey) then
begin app2(pp); app("u"); app(cancel); appl (pp + 2); reduce(pp, 3, casey, —2)(40);
end
else begin app(indent); appl (pp); app(cancel); reduce(pp, 1, case_head,0)(41);
end

This code is used in section 149.

166. (Cases for semi 166) =
squash (pp, 1, terminator, —3)(42)

This code is used in section 149.

167. (Cases for simp 167) =

if cat[pp + 1] = close then squash(pp, 1, stmt, —2)(43)

else if cat[pp + 1] = colon then
begin app (force); app(backup); app2(pp); reduce(pp, 2, intro, —3)(44);
end

else if cat[pp + 1] = math then squash(pp,2, math,—1)(45)
else if cat[pp + 1] = mod_scrap then squash(pp,2, mod_scrap,0)(46)
else if cat[pp + 1] = simp then squash(pp,2, simp, —2)(47)
else if cat[pp + 1] = terminator then squash(pp,2, stmt, —2)(48)

This code is used in section 150.

168. (Cases for stmt 168) =
if cat[pp + 1] = stmt then

begin app! (pp); app(break_space); appl (pp +1); reduce(pp,2, stmt, —2)(49);
end

This code is used in section 149.

169. (Cases for terminator 169) =
squash (pp, 1, stmt, —2)(50)

This code is used in section 149.

8170 WEAVE IMPLEMENTING THE PRODUCTIONS 81

170. (Cases for var_head 170) =
if cat[pp + 1] = beginning then squash(pp,1, stmt,—2)(51)
else if cat[pp + 1] = math then
begin if cat[pp + 2] = colon then
begin app("$"); appl(pp +1); app("$"); appl (pp +2); reduce(pp + 1,2, intro, +1)(52);
end;
end
else if cat[pp + 1] = simp then
begin if cat[pp + 2] = colon then squash(pp + 1,2, intro,+1)(53);
end
else if cat[pp + 1] = stmt then
begin appl (pp); app (break_space); appl (pp + 1); reduce(pp,2, var_head, —2)(54);
end

This code is used in section 149.

171. The ‘freeze_text’ macro is used to give official status to a token list. Before saying freeze_text, items
are appended to the current token list, and we know that the eventual number of this token list will be the
current value of text_ptr. But no list of that number really exists as yet, because no ending point for the
current list has been stored in the tok_start array. After saying freeze_text, the old current token list becomes
legitimate, and its number is the current value of text_ptr — 1 since text_ptr has been increased. The new
current token list is empty and ready to be appended to. Note that freeze_text does not check to see that
text_ptr hasn’t gotten too large, since it is assumed that this test was done beforehand.

define freeze_text = incr(text_ptr); tok_start[text_ptr| < tok_ptr

172. The ‘reduce’ macro used in our code for productions actually calls on a procedure named ‘red’, which
makes the appropriate changes to the scrap list.
procedure red(j : sizteen_bits; k : eight_bits; c : eight_bits; d : integer);

var i: 0 .. maz_scraps; {index into scrap memory }

begin cat[j] < ¢; trans[j] « text_ptr; freeze_text;

if £ > 1 then

begin for i «+ j + k to lo_ptr do
begin cat[i — k + 1] < cat[i]; trans[i — k + 1] + trans[i];

end;
lo_ptr < lo_ptr — k + 1;
end;
(Change pp to max(scrap_base,pp+d) 173);

end;

173. (Change pp to max(scrap_base,pp+d) 173) =
if pp +d > scrap_base then pp < pp +d
else pp < scrap_base

This code is used in sections 172 and 174.

82 IMPLEMENTING THE PRODUCTIONS WEAVE 8174

174. Similarly, the ‘squash’ macro invokes a procedure called ‘sq’. This procedure takes advantage of the
simplification that occurs when k = 1.
procedure sq(j : sizteen_bits; k : eight_bits; c : eight_bils; d : integer);
var i: 0 .. maz_scraps; {index into scrap memory }
begin if £ =1 then
begin cat[j] < ¢; (Change pp to max(scrap_base,pp+d) 173);
end
else begin for i < jtoj+k—1do
begin app1 (i);
end;
red(j,k,c,d);
end;
end;

175. Here now is the code that applies productions as long as possible. It requires two local labels (found
and done), as well as a local variable (7).

{Reduce the scraps using the productions until no more rules apply 175) =
loop begin (Make sure the entries cat[pp .. (pp + 3)] are defined 176);
if (tok_ptr + 8 > max_toks) V (text_ptr + 4 > maz_texts) then
begin stat if tok_ptr > max_tok_ptr then max_tok_ptr < tok_ptr;
if text_ptr > maz_taxt_ptr then maz_tat_ptr < text_ptr;
tats
overflow (“token/text ");
end;
if pp > lo_ptr then goto done;
(Match a production at pp, or increase pp if there is no match 149);
end;
done:

This code is used in section 179.

176. If we get to the end of the scrap list, category codes equal to zero are stored, since zero does not
match anything in a production.
(Make sure the entries cat[pp .. (pp + 3)] are defined 176) =
if lo_ptr < pp + 3 then
begin repeat if hi_ptr < scrap_ptr then

begin incr(lo_ptr);

cat[lo_ptr] « cat[hi_ptr]; trans[lo_ptr] < trans[hi_ptr];

incr (hi_ptr);

end;
until (hi_ptr > scrap_ptr) V (lo_ptr = pp + 3);
for i + lo_ptr +1to pp + 3 do cat[i] + 0;
end

This code is used in section 175.

177. If WEAVE is being run in debugging mode, the production numbers and current stack categories will
be printed out when tracing is set to 2; a sequence of two or more irreducible scraps will be printed out
when tracing is set to 1.
{ Globals in the outer block 9) +=

debug tracing: 0..2; {can be used to show parsing details }

gubed

8178 WEAVE IMPLEMENTING THE PRODUCTIONS 83

178. The prod procedure is called in debugging mode just after reduce or squash; its parameter is the
number of the production that has just been applied.

debug procedure prod(n : eight_bits); {shows current categories }
var k: 1..maz_scraps; {index into cat }
begin if tracing = 2 then
begin print.ni(n: 1, :7);
for k < scrap_base to lo_ptr do
begin if k = pp then print("*") else print("y~);
print_cat (cat[k]);
end;
if hi_ptr < scrap_ptr then print(~..."); {indicate that more is coming }
end;
end;
gubed

179. The translate function assumes that scraps have been stored in positions scrap_base through scrap_ptr
of cat and trans. It appends a terminator scrap and begins to apply productions as much as possible. The
result is a token list containing the translation of the given sequence of scraps.

After calling translate, we will have text_ptr + 3 < maz_texts and tok_ptr + 6 < max_toks, so it will be
possible to create up to three token lists with up to six tokens without checking for overflow. Before calling
translate, we should have text_ptr < max_terts and scrap_ptr < maz_scraps, since translate might add a
new text and a new scrap before it checks for overflow.

(Declaration of subprocedures for translate 150)
function translate: text_pointer; {converts a sequence of scraps }

label done, found;

var i: 1 .. maz_scraps; {index into cat }
j: 0.. maz_scraps; {runs through final scraps }
debug k: 0.. long_buf_size; {index into buffer }
gubed
begin pp < scrap_base; lo_ptr < pp — 1; hi_ptr < pp;
(If tracing, print an indication of where we are 182);
(Reduce the scraps using the productions until no more rules apply 175);
if (lo_ptr = scrap_base) A (cat[lo_ptr] # math) then translate < trans[lo_ptr]
else (Combine the irreducible scraps that remain 180);
end;

3

84 IMPLEMENTING THE PRODUCTIONS WEAVE §180

180. If the initial sequence of scraps does not reduce to a single scrap, we concatenate the translations
of all remaining scraps, separated by blank spaces, with dollar signs surrounding the translations of math
scraps.
(Combine the irreducible scraps that remain 180) =
begin (If semi-tracing, show the irreducible scraps 181);
for j < scrap_base to lo_ptr do
begin if j # scrap_base then
begin app(",");
end;
if cat[j] = math then
begin app("$");
end;
app1 (j);
if cat[j] = math then
begin app("$");

end;
if tok_ptr + 6 > max_toks then overflow(token”);
end;
freeze_text; translate < text_ptr — 1;

end

This code is used in section 179.

181. (If semi-tracing, show the irreducible scraps 181) =
debug if (lo_ptr > scrap_base) A (tracing = 1) then
begin print_nl(Irreducible scrap sequence_in sectiony,”, module_count : 1); print.in(":");
mark_harmless;
for j < scrap_base to lo_ptr do
begin print(y"); print_cat(cat[j]);
end;
end;
gubed

This code is used in section 180.

182. (If tracing, print an indication of where we are 182) =
debug if tracing = 2 then
begin print_nl(Tracing after, 1. ", line : 1, ":"); mark-harmless;
if loc > 50 then
begin print(”...");
for k < loc — 50 to loc do print(zchr[buffer[k — 1]]);
end
else for k < 1to loc do print(zchr[buffer[k — 1]]);
end
gubed

This code is used in section 179.

8183 WEAVE INITIALIZING THE SCRAPS 85

183. Initializing the scraps. If we are going to use the powerful production mechanism just developed,
we must get the scraps set up in the first place, given a Pascal text. A table of the initial scraps corresponding
to Pascal tokens appeared above in the section on parsing; our goal now is to implement that table. We
shall do this by implementing a subroutine called Pascal_parse that is analogous to the Pascal_zref routine
used during phase one.

Like Pascal_zref , the Pascal_parse procedure starts with the current value of next_control and it uses the
operation next_control < get_next repeatedly to read Pascal text until encountering the next ‘|’ or ‘{’, or
until next_control > format. The scraps corresponding to what it reads are appended into the cat and trans
arrays, and scrap_ptr is advanced.

Like prod, this procedure has to split into pieces so that each part is short enough to be handled by
Pascal compilers that discriminate against long subroutines. This time there are two split-off routines, called
easy_cases and sub_cases.

After studying Pascal_parse, we will look at the sub-procedures app_comment, app_octal, and app_hex
that are used in some of its branches.

(Declaration of the app_comment procedure 195)
(Declaration of the app_octal and app_hex procedures 196)
(Declaration of the easy_cases procedure 186)
(Declaration of the sub_cases procedure 192)
procedure Pascal_parse; {creates scraps from Pascal tokens }
label reswitch, exit;
var j: 0.. long_buf -size; {index into buffer }
p: name_pointer; {identifier designator }
begin while next_control < format do
begin (Append the scrap appropriate to next_control 185);
next_control < get_next;
if (next_control = "|")V (next_control = "{") then return;
end;
exit: end;

184. The macros defined here are helpful abbreviations for the operations needed when generating the
scraps. A scrap of category ¢ whose translation has three tokens t1, to, t3 is generated by se3 (¢1)(t2)(t3)(c),
etc.

define s0(#) = incr(scrap_ptr); cat[scrap_ptr] < #; trans[scrap_ptr] < text_ptr; freeze_text;

end
define sI(#) = app(#); s0
define s2(#) = app (#); sl
define s3(#) = app (#); s2
define s/ (#) = app (#); s3
define scj = begin s/
define sc3 = begin s3

define sc2 = begin s2
define sc! = begin s/
define sc0(#) =
begin incr(scrap_ptr); cat[scrap_ptr] < #; trans[scrap_ptr] < 0;
end
define comment_scrap(#) =
begin app (#); app_comment;
end

86 INITIALIZING THE SCRAPS WEAVE 8185

185. (Append the scrap appropriate to next_control 185) =

(Make sure that there is room for at least four more scraps, six more tokens, and four more texts 187);
reswitch: case next_control of

string, verbatim: { Append a string scrap 189);

identifier: (Append an identifier scrap 191);

TeX _string: (Append a TEX string scrap 190);

othercases easy_cases

endcases

This code is used in section 183.

186. The easy_cases each result in straightforward scraps.

(Declaration of the easy_cases procedure 186) =
procedure easy_cases; {a subprocedure of Pascal_parse }
begin case next_control of
set_element_sign: sc3("\")("i")("n")(math);
double_dot: sc3("\")("t")("o")(math);
g ngn ngn nenon v g2 ("\")(next_control)(math);
ignore, " | ", xref_roman, xref wildcard , zref_typewriter: do_nothing;
v [sel (next-control)(open);
myn mIn: sel (next_control)(close);
rtoscd (M\)("at)("s ")("t")(math);
n’n. ch(u u)(opt)(u)(math),
wonmQn g mgn ngn ngn ngn ngn wgn ngn ugn. gcf (next_control)(simp);
mitosel (M) (semi);
mitosel (") (colon);
(Cases involving nonstandard ASCII characters 188)
exponent: sc3("\")("E")("{")(exp);
begin_comment: sc2("\")("B")(math);
end_comment: sc2("\")("T")(math);
octal: app_octal;
hex: app_hex;
check_sum: 5c2(" ")(")")(simp);
force_line: sc2("\")("1")(simp);
thin_space: sc2("\")(",")(math);
math_break: sc2(opt)("0")(simp);
line_break: comment_scrap (force);
big_line_break: comment_scrap (big-force);
no_line_break: begin app (big_cancel); app("\"); app("L"); comment_scrap(big_cancel);
end;
pseudo-semi: scO(semi);
join: sc2("\")("J")(math);
othercases scI (next_control)(math)
endcases;
end;

This code is used in section 183.

8187 WEAVE INITIALIZING THE SCRAPS 87

187. (Make sure that there is room for at least four more scraps, six more tokens, and four more
texts 187) =
if (scrap_ptr +4 > maz_scraps) V (tok_ptr + 6 > maz_toks) V (text_ptr + 4 > maxz_texts) then
begin stat if scrap_ptr > maz_scr_ptr then maz_scr_ptr < scrap_ptr;
if tok_ptr > max_tok_ptr then max_tok_ptr < tok_ptr;
if text_ptr > maz_tat_ptr then maz_tat_ptr < text_ptr;
tats
overflow(scrap/token/text”);
end

This code is used in section 185.

188. Some nonstandard ASCII characters may have entered WEAVE by means of standard ones. They are
converted to TEX control sequences so that it is possible to keep WEAVE from stepping beyond standard
ASCILI.

(Cases involving nonstandard ASCII characters 188) =
not_equal: sc2("\")("I")(math);

less_or_equal: sc2("\")("L")(math);

greater_or_equal: sc2("\")("G")(math);
equivalence_sign: sc2("\")("S")(math);

and_sign: sc2("\")("W")(math);

or_sign: sc2("\")("V")(math);

not_sign: sc2("\")("R")(math);

left_arrow: sc2("\")("K")(math);

This code is used in section 186.

189. The following code must use app_tok instead of app in order to protect against overflow. Note that
tok_ptr + 1 < max_toks after app_tok has been used, so another app is legitimate before testing again.
Many of the special characters in a string must be prefixed by ‘\’ so that TEX will print them properly.

(Append a string scrap 189) =
begin app("\");
if next_control = verbatim then
begin app("=");
end
else begin app(".");
end;
app("{"); j < id_first;
while j < id_loc do
begin case buffer[j] of
MM\ g g g e o s g e = g n_ v begin app ("\");
end;
"@": if buffer[j + 1] = "@" then incr(j)
else err_print(”!_Double @ should be used in strings’);
othercases do_nothing
endcases;
app-tok (buffer[j]); incr(j);
end;
scl("}")(simp);
end

This code is used in section 185.

88 INITIALIZING THE SCRAPS WEAVE

190. (Append a TEX string scrap 190) =
begin app("\"); app("h"); app(""); app("o"); app("x"); app("{");
for j < id_first to id_loc — 1 do app_tok (buffer|[j]);
scl("}")(simp);
end

This code is used in section 185.

191. (Append an identifier scrap 191) =
begin p + id_lookup (normal);
case ilk[p] of
normal, array_like, const_like, div_like, do_like, for_like, goto_like , nil_like, to_like: sub_cases(p);
(Cases that generate more than one scrap 193)
othercases begin next_control « ilk[p| — char_like; goto reswitch;
end {and, in, not, or }
endcases;
end

This code is used in section 185.

192. The sub_cases also result in straightforward scraps.

(Declaration of the sub_cases procedure 192) =
procedure sub_cases(p : name_pointer); {a subprocedure of Pascal_parse }
begin case ilk[p] of
normal: scl (id_flag + p)(simp); {not a reserved word }
array_like: scl(res_flag + p)(alpha); {array, file, set }
const_like: sc3(force)(backup)(res_flag + p)(intro); {const, label, type }
div_like: sc3(math_bin)(res_flag + p)("}")(math); {div, mod }
do_like: sc1 (res_flag + p)(omega); {do, of, then }
for_like: sc2(force)(res_flag + p)(alpha); {for, while, with }
goto_like: scl (res_flag + p)(intro); {goto, packed }
nil_like: scl (res_flag + p)(simp); {mnil }
to_like: sc3(math_rel)(res_flag + p)("}")(math); {downto, to }
end;
end;

This code is used in section 183.

§190

§193 WEAVE INITIALIZING THE SCRAPS 89

193. (Cases that generate more than one scrap 193) =
begin_like: begin sc3 (force)(res_flag + p)(cancel)(beginning); scO (intro);
end; {begin}
case_like: begin sc0(casey); sc2(force)(res_flag + p)(alpha);
end; {case}
else_like: begin (Append terminator if not already present 194);
sc3 (force)(backup) (res_flag + p)(elsie);
end; {else}
end_like: begin (Append terminator if not already present 194);
sc2 (force)(res_flag + p)(close);

end; {end}
if-like: begin sc0(cond); sc2(force)(res_flag + p)(alpha);
end; {if}

loop_like: begin sc3 (force)("\")("~")(alpha); scl (res_flag + p)(omega);
end; {xclause}

proc_like: begin sc4 (force)(backup)(res_flag + p)(cancel)(proc); sc3(indent)("\")(",")(intro);
end; {function, procedure, program }

record_like: begin scl (res_flag + p)(record_head); sc0(intro);
end; {record}

repeat_like: begin sc4 (force)(indent)(res_flag + p)(cancel)(beginning); sc0 (intro);
end; {repeat}

until_like: begin (Append terminator if not already present 194);
sc3 (force)(backup)(res_flag + p)(close); scO(clause);
end; {until}

var_like: begin sc4 (force)(backup)(res_flag + p)(cancel)(var_head); sc0(intro);
end; {var}

This code is used in section 191.

194. If a comment or semicolon appears before the reserved words end, else, or until, the semi or
terminator scrap that is already present overrides the terminator scrap belonging to this reserved word.

(Append terminator if not already present 194) =
if (scrap_ptr < scrap_base) V ((cat[scrap_ptr] # terminator) A (cat[scrap_ptr] # semi)) then
sc0 (terminator)
This code is used in sections 193, 193, and 193.

195. A comment is incorporated into the previous scrap if that scrap is of type omega or semi or
terminator. (These three categories have consecutive category codes.) Otherwise the comment is entered as
a separate scrap of type terminator, and it will combine with a terminator scrap that immediately follows it.
The app_comment procedure takes care of placing a comment at the end of the current scrap list. When
app_comment is called, we assume that the current token list is the translation of the comment involved.

(Declaration of the app_comment procedure 195) =
procedure app_comment; {append a comment to the scrap list }
begin freeze_text;
if (scrap_ptr < scrap_base) V (cat[scrap_ptr] < omega) V (cat[scrap_ptr] > terminator) then
sc0 (terminator)
else begin app1 (scrap_ptr); { cat[scrap_ptr]is omega or semi or terminator }
end;
app (text_ptr — 1 + tok_flag); trans[scrap_ptr]| < text_ptr; freeze_text;
end;

This code is used in section 183.

90 INITIALIZING THE SCRAPS WEAVE §196

196. We are now finished with Pascal_parse, except for two relatively trivial subprocedures that convert
constants into tokens.

(Declaration of the app_octal and app_hex procedures 196) =
procedure app_octal;
begin app("\"); app("0"); app("{");
while (buffer[loc] > "0") A (buffer[loc] < "7") do
begin app_tok (buffer[loc]); incr(loc);
end;
scl ("}")(simp);
end;
procedure app_hezx;
begin app("\"); app("H"); app("{");
while ((buffer[loc] > "0") A (buffer[loc] < "9")) V ((buffer[loc] > "A") A (buffer[loc] < "F")) do
begin app_tok (buffer[loc]); incr(loc);
end;
sc1("}")(simp);
end;

This code is used in section 183.

197. When the ‘|’ that introduces Pascal text is sensed, a call on Pascal_translate will return a pointer
to the TEX translation of that text. If scraps exist in the cat and trans arrays, they are unaffected by this
translation process.

function Pascal_translate: text_pointer;
var p: text_pointer; {points to the translation }
save_base: 0 .. max_scraps; {holds original value of scrap_base }
begin save_base « scrap_base; scrap_base <+ scrap_ptr + 1; Pascal_parse; { get the scraps together }
if next_control # "|" then err_print(~!' Missing,"|" after Pascal text”);
app_tok (cancel); app_comment; {place a cancel token as a final “comment” }
p < translate; {make the translation }
stat if scrap_ptr > max_scr_ptr then max_scr_ptr < scrap_ptr; tats
scrap_ptr <+ scrap_base — 1; scrap_base <+ save_base; {scrap the scraps }
Pascal_translate < p;
end;

bl

§198 WEAVE INITIALIZING THE SCRAPS 91

198. The outer_parse routine is to Pascal_parse as outer_xref is to Pascal_zref: It constructs a sequence
of scraps for Pascal text until next_control > format. Thus, it takes care of embedded comments.

procedure outer_parse; {makes scraps from Pascal tokens and comments }
var bal: eight_bits; {brace level in comment }
p,q: text_pointer; {partial comments }
begin while next_control < format do
if next_control # "{" then Pascal_parse
else begin (Make sure that there is room for at least seven more tokens, three more texts, and one
more scrap 199);
app("\"); app("C"); app("{"); bal < copy_comment(1); next_control « "|";
while bal > 0 do
begin p < text_ptr; freeze_text; q < Pascal_translate;
{ at this point we have tok_ptr + 6 < maz_toks }

app (tok-flag + p); app (inner_tok_flag + q);

if next_control = "|" then bal < copy_comment (bal)

else bal < 0; {an error has been reported }

end;
app (force); app-comment; {the full comment becomes a scrap }
end;

end;

199. (Make sure that there is room for at least seven more tokens, three more texts, and one more
scrap 199) =
if (tok_ptr +7 > max_toks) V (text_ptr + 3 > max_texts) V (scrap_ptr > maz_scraps) then
begin stat if scrap_ptr > maz_scr_ptr then maz_scr_ptr < scrap_ptr;
if tok_ptr > max_tok_ptr then max_tok_ptr < tok_ptr;
if text_ptr > max_txt_ptr then maz_txt_ptr < text_ptr;
tats
overflow (" token/text/scrap”);
end

This code is used in section 198.

92 OUTPUT OF TOKENS WEAVE §200

200. Owutput of tokens. So far our programs have only built up multi-layered token lists in WEAVE’s
internal memory; we have to figure out how to get them into the desired final form. The job of converting
token lists to characters in the TEX output file is not difficult, although it is an implicitly recursive process.
Four main considerations had to be kept in mind when this part of WEAVE was designed. (a) There are two
modes of output: outer mode, which translates tokens like force into line-breaking control sequences, and
inner mode, which ignores them except that blank spaces take the place of line breaks. (b) The cancel
instruction applies to adjacent token or tokens that are output, and this cuts across levels of recursion since
‘cancel’ occurs at the beginning or end of a token list on one level. (¢) The TEX output file will be semi-
readable if line breaks are inserted after the result of tokens like break_space and force. (d) The final line
break should be suppressed, and there should be no force token output immediately after ‘\Y\P’.

201. The output process uses a stack to keep track of what is going on at different “levels” as the token
lists are being written out. Entries on this stack have three parts:

end_field is the tok_mem location where the token list of a particular level will end;
tok_field is the tok_mem location from which the next token on a particular level will be read;
mode_field is the current mode, either inner or outer.

The current values of these quantities are referred to quite frequently, so they are stored in a separate place
instead of in the stack array. We call the current values cur_end, cur_tok, and cur_mode.

The global variable stack_ptr tells how many levels of output are currently in progress. The end of output
occurs when an end_translation token is found, so the stack is never empty except when we first begin the
output process.

define inner =0 {value of mode for Pascal texts within TEX texts }
define outer =1 {value of mode for Pascal texts in modules }

(Types in the outer block 11) +=
mode = inner .. outer;
output_state = record end_field: sizteen_bits; {ending location of token list }
tok_field: sizteen_bits; { present location within token list }
mode_field: mode; {interpretation of control tokens }
end;
202. define cur_end = cur_state.end_field {current ending location in tok_mem }
define cur_tok = cur_state.tok_field {location of next output token in tok-mem }
define cur_mode = cur_state.mode_field { current mode of interpretation }
define init_stack = stack_ptr < 0; cur_mode < outer {do this to initialize the stack }

(Globals in the outer block 9) +=

cur_state: output_state; { cur_end, cur_tok, cur_mode }

stack: array [l .. stack_size] of output_state; {info for non-current levels }

stack_ptr: 0 .. stack_size; {first unused location in the output state stack }
stat maz_stack_ptr: 0 .. stack_size; {largest value assumed by stack_ptr }
tats

203. (Set initial values 10) +=
stat maz_stack_ptr < 0; tats

§204 WEAVE OUTPUT OF TOKENS 93

204. To insert token-list p into the output, the push_level subroutine is called; it saves the old level of
output and gets a new one going. The value of cur_mode is not changed.

procedure push_level(p : text_pointer); {suspends the current level }

begin if stack_ptr = stack_size then overflow(stack”)

else begin if stack_ptr > 0 then stack[stack_ptr] < cur_state; {save cur_end ... cur-mode }
incr (stack_ptr);
stat if stack_ptr > maz_stack_ptr then max_stack_ptr < stack_ptr; tats
cur_tok < tok_start[p]; cur_end < tok_start[p + 1];
end;

end;

205. Conversely, the pop_level routine restores the conditions that were in force when the current level was
begun. This subroutine will never be called when stack_ptr = 1. It is so simple, we declare it as a macro:

define pop_level =
begin decr(stack_ptr); cur_state < stack[stack_ptr];
end {do this when cur_tok reaches cur_end }

206. The get_output function returns the next byte of output that is not a reference to a token list. It
returns the values identifier or res.word or mod_name if the next token is to be an identifier (typeset in
italics), a reserved word (typeset in boldface) or a module name (typeset by a complex routine that might
generate additional levels of output). In these cases cur-name points to the identifier or module name in
question.

define res.word = 201 {returned by get_output for reserved words }
define mod_name = 200 {returned by get_output for module names }

function get_output: eight_bits; {returns the next token of output }
label restart;
var a: sizteen_bits; {current item read from tok-mem }
begin restart: while cur_tok = cur_end do pop_level;
a < tok_mem|[cur_tok]; incr(cur_tok);
if a > 7400 then
begin cur_-name < a mod id_flag;
case a div id_flag of
2: a « res_word; {a = res_flag + cur_name }
3: a < mod-name; {a = mod_flag + cur_name }
4: begin push_level (cur_name); goto restart;
end; {a= tok_flag + cur_name }
5: begin push_level (cur_name); cur-mode < inner; goto restart;
end; {a = inner_tok_flag + cur_name }
othercases a + identifier {a = id_flag + cur_name }
endcases;
end;
debug if trouble_shooting then debug_help;
gubed
get_output < a;
end;

94 OUTPUT OF TOKENS WEAVE §207

207. The real work associated with token output is done by make_output. This procedure appends an
end_translation token to the current token list, and then it repeatedly calls get_output and feeds characters
to the output buffer until reaching the end_translation sentinel. It is possible for make_output to be called
recursively, since a module name may include embedded Pascal text; however, the depth of recursion never
exceeds one level, since module names cannot be inside of module names.

A procedure called output_Pascal does the scanning, translation, and output of Pascal text within ‘| ... |’
brackets, and this procedure uses make_output to output the current token list. Thus, the recursive call of
make_output actually occurs when make_output calls output_Pascal while outputting the name of a module.

procedure make_output; forward;

procedure output_Pascal; {outputs the current token list }
var save_tok_ptr, save_text_ptr, save_next_control: sizteen_bits; {values to be restored }
p: text_pointer; {translation of the Pascal text }
begin save_tok_ptr < tok_ptr; save_text_ptr < text_ptr; save_mext_control < next_control;
next_control < "|"; p < Pascal_translate; app(p + inner_tok_flag); make_output; {output the list }
stat if text_ptr > maz_tat_ptr then max_tat_ptr < text_ptr;
if tok_ptr > maz_tok_ptr then max_tok_ptr < tok_ptr; tats
text_ptr + save_text_ptr; tok_ptr < save_tok_ptr; {forget the tokens }
next_control < save_next_control; {restore next_control to original state }
end;

k)

§208 WEAVE OUTPUT OF TOKENS 95

208. Here is WEAVE’s major output handler.

procedure make_output; {outputs the equivalents of tokens }
label reswitch, exit, found;
var a: eight_bits; { current output byte }
b: eight_bits; {next output byte }
k,k_limit: O .. maz_bytes; {indices into byte_mem }
w: 0..ww —1; {row of byte_mem }
j: 0..long_buf-size; {index into buffer }
string_delimiter: ASCIIcode; {first and last character of string being copied }
save_loc, save_limit: O .. long_buf-size; {loc and limit to be restored }
cur-mod_name: name_pointer; {name of module being output }
save_mode: mode; {value of cur_mode before a sequence of breaks }
begin app (end_translation); {append a sentinel }
freeze_text; push_level(text_ptr — 1);
loop begin a < get_output;
reswitch: case a of
end_translation: return;
identifier, res_word: (Output an identifier 209);
mod_name: {Output a module name 213);
math_bin, math_op, math_rel: {Output a \math operator 210);
cancel: begin repeat a < get_output;
until (a < backup) V (a > big_force);
goto reswitch;
end;
big_cancel: begin repeat a « get_output;
until ((a < backup) A (a # "u")) V (a > big-force);
goto reswitch;
end;
indent, outdent, opt, backup, break_space, force, big_force: (Output a control, look ahead in case of line
breaks, possibly goto reswitch 211);
othercases out(a) {otherwise a is an ASCII character }
endcases;
end;

3

exit: end;

209. An identifier of length one does not have to be enclosed in braces, and it looks slightly better if set
in a math-italic font instead of a (slightly narrower) text-italic font. Thus we output ‘\la’ but ‘\\{aa}’.

(Output an identifier 209) =
begin out("\");
if a = identifier then
if length(cur_name) =1 then out("|")
else out("\")
else out("&"); {a= res_word }
if length(cur-name) =1 then out(byte_mem[cur_name mod ww, byte_start[cur_name]))
else out_name (cur_name);
end

This code is used in section 208.

96 OUTPUT OF TOKENS WEAVE §210

210. (Output a \math operator 210) =
begin 0ut5("\")("m")("a")(’ ||)(nhl)7
if a = math_bin then out3("b")("i")("n")
else if a = math_rel then out3("r")("e")("1")
else out2("o")("p");
out ("{");
end

This code is used in section 208.

211. The current mode does not affect the behavior of WEAVE’s output routine except when we are
outputting control tokens.

{Output a control, look ahead in case of line breaks, possibly goto reswitch 211) =
if a < break_space then

begin if cur-mode = outer then
begin out2("\")(a — cancel + "0");
if a = opt then out(get_output) { opt is followed by a digit }
end

else if a = opt then b« get_output {ignore digit following opt }
end
else (Look ahead for strongest line break, goto reswitch 212)
This code is used in section 208.

212. If several of the tokens break_space, force, big_force occur in a row, possibly mixed with blank spaces
(which are ignored), the largest one is used. A line break also occurs in the output file, except at the very
end of the translation. The very first line break is suppressed (i.e., a line break that follows ‘\Y\P’).
(Look ahead for strongest line break, goto reswitch 212) =
begin b < a; save_mode < cur_mode;
loop begin a « get_output;
if (a = cancel) V (a = big_cancel) then goto reswitch; { cancel overrides everything }
if ((a % "u") A (a < break_space)) V (a > big_force) then
begin if save_mode = outer then
begin if out_ptr > 3 then
if (out_buf [out_ptr] = "P") A (out_buf [out_ptr — 1] = "\") A (out-buf [out_ptr — 2] =
"Y") A (out-buf [out_ptr — 3] = "\") then goto reswitch;
out2 ("\")(b — cancel + "0");
if a # end_translation then finish_line;
end
else if (a # end_translation) A (cur-mode = inner) then out(",");
goto reswitch;
end;
if a >bthen b+ a; {ifa=","wehavea<b}
end;
end

This code is used in section 211.

§213 WEAVE OUTPUT OF TOKENS 97

213. The remaining part of make_output is somewhat more complicated. When we output a module name,
we may need to enter the parsing and translation routines, since the name may contain Pascal code embedded
in | ... | constructions. This Pascal code is placed at the end of the active input buffer and the translation
process uses the end of the active tok_mem area.
(Output a module name 213) =
begin out2 ("\")("X"); cur_azref < zref [cur_name];
if num (cur_zref) > def_flag then
begin out_mod (num (cur_zref) — def-flag);
if phase_three then
begin cur_zref < alink (cur_zref);
while num (cur_zref) > def_flag do
begin out2(",")(","); out_mod (num (cur_zref) — def-flag); cur_zref < zlink (cur_zref);

end;
end;
end
else out("0"); {output the module number, or zero if it was undefined }
out(":"); (Output the text of the module name 214);
out2 ("\")("X");
end

This code is used in section 208.

214. (Output the text of the module name 214) =
k < byte_start[cur_name]; w < cur-name mod ww; k_limit < byte_start|cur_name + wwl;
cur_mod_name < cur_name;
while k£ < k_limit do
begin b « byte_mem[w, k|; incr(k);
if b ="@" then (Skip next character, give error if not ‘@’ 215);
if b#"|" then out(b)
else begin (Copy the Pascal text into buffer[(limit + 1) .. j] 216);
save_loc «+ loc; save_limit < limit; loc limit 4+ 2; limit < j + 1; buffer[limit] < "|";
output_Pascal; loc < save_loc; limit < save_limit;
end;
end

This code is used in section 213.

215. (Skip next character, give error if not ‘@’ 215) =
begin if byte_mem[w, k] # "@" then
begin print_nl(" ' Illegal control code_ in section mname: "); print_nl("<");
print_id (cur_mod_name); print(">,"); mark_error;
end;
incr(k);
end

This code is used in section 214.

98 OUTPUT OF TOKENS WEAVE §216

216. The Pascal text enclosed in | ... | should not contain ‘|’ characters, except within strings. We put
a ‘|’ at the front of the buffer, so that an error message that displays the whole buffer will look a little bit
sensible. The variable string_delimiter is zero outside of strings, otherwise it equals the delimiter that began
the string being copied.
(Copy the Pascal text into buffer[(limit + 1) .. j] 216) =
J « limit + 1; buffer[j] < "|"; string_delimiter <+ 0;
loop begin if k > k_limit then
begin print_nl(~ ! Pascal_ text_in section name didn”"tyend: "); printnl(<’);
print_id (cur-mod_name); print(">,"); mark_error; goto found;
end;
b + byte_mem[w, k]; incr(k);
if b="@" then (Copy a control code into the buffer 217)
else begin if (b="""")Vv (b=""") then
if string_delimiter = 0 then string_delimiter < b
else if string_delimiter = b then string_delimiter < 0;
if (b#"I")V (string-delimiter # 0) then
begin if j > long_buf_size — 3 then overflow(buffer”);
incr(4); buffer[j] < b;
end
else goto found,;
end;
end;
found:

This code is used in section 214.

217. (Copy a control code into the buffer 217) =
begin if j > long_buf_size — 4 then overflow(buffer-);
buffer(j + 1] <= "@"; buffer[j + 2] < byte_mem[w, k]; j < j + 2; incr(k);
end

This code is used in section 216.

6218 WEAVE PHASE TWO PROCESSING 99

218. Phase two processing. We have assembled enough pieces of the puzzle in order to be ready to
specify the processing in WEAVE’s main pass over the source file. Phase two is analogous to phase one, except
that more work is involved because we must actually output the TEX material instead of merely looking at
the WEB specifications.

(Phase II: Read all the text again and translate it to TEX form 218) =
reset_input; print_nl(Writing the output file..."); module_count < 0; copy_limbo; finish_line;
flush_buffer (0, false, false); {insert a blank line, it looks nice }
while —input_has_ended do (Translate the current module 220)

This code is used in section 261.

219. The output file will contain the control sequence \Y between non-null sections of a module, e.g.,
between the TEX and definition parts if both are nonempty. This puts a little white space between the parts
when they are printed. However, we don’t want \Y to occur between two definitions within a single module.
The variables out_line or out_ptr will change if a section is non-null, so the following macros ‘save_position’
and ‘emit_space_if_needed’ are able to handle the situation:

define save_position = save_line < out_line; save_place < out_ptr
define emit_space_if_needed =
if (save_line # out_line) V (save_place # out_ptr) then out2("\")("Y")

(Globals in the outer block 9) +=
save_line: integer; {former value of out_line }
save_place: sizteen_bits; {former value of out_ptr }

220. (Translate the current module 220) =
begin incr(module_count);
(Output the code for the beginning of a new module 221);
save_position;
(Translate the TEX part of the current module 222);
('Translate the definition part of the current module 225);
(Translate the Pascal part of the current module 230);
(Show cross references to this module 233);
(Output the code for the end of a module 238);
end

This code is used in section 218.

221. Modules beginning with the WEB control sequence ‘@, start in the output with the TEX control
sequence ‘\M’, followed by the module number. Similarly, ‘@’ modules lead to the control sequence ‘\N’. If
this is a changed module, we put * just before the module number.

(Output the code for the beginning of a new module 221) =
out ("\"):
if buffer[loc — 1] # "*" then out("M")
else begin out("N"); print(“* ", module_count : 1); update_terminal; { print a progress report }
end;

3

out-mod (module_count); out2(".")("L")

This code is used in section 220.

100 PHASE TWO PROCESSING WEAVE §222

222. In the TEX part of a module, we simply copy the source text, except that index entries are not copied
and Pascal text within | ... | is translated.

(Translate the TEX part of the current module 222) =
repeat next_control < copy_-TeX;
case next_control of
"[": begin init_stack; output_Pascal;
end;
"e": out("e");
octal: { Translate an octal constant appearing in TEX text 223);
hex: {Translate a hexadecimal constant appearing in TEX text 224);
TeX _string, xref - roman , zref wildcard , xref_typewriter , module_name: begin loc < loc — 2;
next_control < get_next; {skip to @}
if next_control = TeX_string then err_print(~!' TeX,string ,should be in Pascal text only”);
end;
begin_comment, end_comment, check_sum , thin_space, math_break , line_break , big_line_break,
no_line_break , join, pseudo_semi: err_print(' You,can” “t_do_that, in TeX text);
othercases do_nothing
endcases;
until next_control > format

This code is used in section 220.

223. (Translate an octal constant appearing in TEX text 223) =
begin out3 ("\")("0")("{");
while (buffer[loc] > "0") A (buffer[loc] < "7") do
begin out (buffer|loc]); incr(loc);
end; {since buffer[limit] = "", this loop will end }
out("}");
end

This code is used in section 222.

224. (Translate a hexadecimal constant appearing in TEX text 224) =
begin out3 ("\")("H")("{");
while ((buffer[loc] > "0") A (buffer[loc] < "9")) V ((buffer[loc] > "A") A (buffer[loc] < "F")) do
begin out (buffer[loc]); incr(loc);
end;
out ("),
end

This code is used in section 222.

§225 WEAVE PHASE TWO PROCESSING 101

225. When we get to the following code we have next_control > format, and the token memory is in its
initial empty state.

(Translate the definition part of the current module 225) =

if next_control < definition then { definition part non-empty }
begin emit_space_if needed; save_position;
end;

while nezt_control < definition do { format or definition }
begin init_stack;
if next_control = definition then (Start a macro definition 227)
else (Start a format definition 228);
outer_parse; finish_Pascal;
end

This code is used in section 220.

226. The finish_Pascal procedure outputs the translation of the current scraps, preceded by the control
sequence ‘\P’ and followed by the control sequence ‘\par’. It also restores the token and scrap memories to
their initial empty state.

A force token is appended to the current scraps before translation takes place, so that the translation
will normally end with \6 or \7 (the TEX macros for force and big_force). This \6 or \7 is replaced by the
concluding \par or by \Y\par.

procedure finish_Pascal; { finishes a definition or a Pascal part }

var p: text_pointer; {translation of the scraps }

begin out2 ("\")("P"); app-tok(force); app-comment; p translate; app(p + tok_flag); make_output;
{ output the list }

if out_ptr > 1 then

if out_buf [out_ptr — 1] = "\" then

if out_buf [out_ptr] = "6" then out_ptr < out_ptr — 2
else if out_buf[out_ptr] = "7" then out_buf [out_ptr] < "Y";

out4 ("\")("p")("a")("r"); finish_line;

stat if text_ptr > mazx_tzt_ptr then max_tzt_ptr < text_ptr;

if tok_ptr > maz_tok_ptr then maz_tok_ptr < tok_ptr;

if scrap_ptr > mazx_scr_ptr then maz_scr_ptr < scrap_ptr;

tats

tok_ptr < 1; text_ptr < 1; scrap_ptr < 0; {forget the tokens and the scraps }

end;

227. (Start a macro definition 227) =
begin sc2("\")("D")(intro); {this will produce ‘define ’}
next_control < get_next;
if next_control # identifier then err_print(”! Improper macro definition”)
else sci (id_flag + id_lookup (normal))(math);
next_control < get_next;
end

This code is used in section 225.

102 PHASE TWO PROCESSING WEAVE §228

228. (Start a format definition 228) =
begin sc2("\")("F")(intro); {this will produce ‘format ’}
next_control < get_next;
if next_control = identifier then
begin scl (id_flag + id_lookup (normal))(math); next_control + get_next;
if next_control = equivalence_sign then
begin sc2("\")("8")(math); {output an equivalence sign }
next_control < get_next;
if next_control = identifier then
begin sci (id_flag + id_lookup (normal))(math); sc0(semi); {insert an invisible semicolon }
next_control < get_next;
end;
end;
end;
if scrap_ptr # 5 then err_print(~ ! Improper format definition’);
end

This code is used in section 225.

229. Finally, when the TEX and definition parts have been treated, we have next_control > begin_Pascal.
We will make the global variable this_module point to the current module name, if it has a name.

(Globals in the outer block 9) +=
this-module: name_pointer; {the current module name, or zero }

230. (Translate the Pascal part of the current module 230) =
this_module < 0;
if next_control < module_name then
begin emit_space_if needed; init_stack;
if next_control = begin_Pascal then next_control < get_next
else begin this.module < cur_module; { Check that = or = follows this module name, and emit the
scraps to start the module definition 231);
end;
while nezt_control < module_name do
begin outer_parse; (Emit the scrap for a module name if present 232);
end;
finish_Pascal;
end

This code is used in section 220.

6231 WEAVE PHASE TWO PROCESSING

231. (Check that = or = follows this module name, and emit the scraps to start the module
definition 231) =
repeat next_control < get_next;
until next_control # "+"; {allow optional ‘+=’}
if (next_control # "=") A (next_control # equivalence_sign) then
err,print("' You need an = sign after the section name)
else next_control < get_next;
if out_ptr > 1 then
if (out_buf [out_ptr] = "Y") A (out_buf [out_ptr — 1] = "\") then
begin app (backup); {the module name will be flush left }
end;
scl (mod_flag + this_module)(mod_scrap); cur_zref < xref [this-module];
if num (cur_zref) # module_count + def_flag then
begin sc3(math_rel)("+")("}")(math); {module name is multiply defined }
this_module < 0; {so we won’t give cross-reference info here }
end;
5¢2("\")("S")(math); {output an equivalence sign }
scl (force)(semi); {this forces a line break unless ‘@+ follows }

This code is used in section 230.

232. (Emit the scrap for a module name if present 232) =
if next_control < module_name then
begin err_print(~!,You,can” "t do that,in Pascaltext”); next_control < get_next;
end
else if next_control = module_name then
begin sc1 (mod_flag + cur_module)(mod_scrap); next_control < get_next;
end

This code is used in section 230.

233. Cross references relating to a named module are given after the module ends.
(Show cross references to this module 233) =
if this_.module > 0 then
begin (Rearrange the list pointed to by cur_zref 235);
footnote(def_flag); footnote(0);
end

This code is used in section 220.

103

234. To rearrange the order of the linked list of cross references, we need four more variables that point

to cross reference entries. We'll end up with a list pointed to by cur_zref.

(Globals in the outer block 9) +=
next_xref , this_zref , first_aref , mid_xref : xref-number; { pointer variables for rearranging a list }

104 PHASE TWO PROCESSING WEAVE §235

235. We want to rearrange the cross reference list so that all the entries with def flag come first, in
ascending order; then come all the other entries, in ascending order. There may be no entries in either one
or both of these categories.

(Rearrange the list pointed to by cur_aref 235) =
first_zref < wxref [thisemodule]; this_zref < zlink (first_zref); {bypass current module number }
if num (this_zref) > def_flag then
begin mid_zref < this_.xref; cur_zref < 0; {this value doesn’t matter }
repeat next_aref < zlink(this_zref); azlink (this_zref) < cur_zref; cur_zref < this_zref;
this_xref < next_zref;
until num (this_aref) < def-flag;
alink (first_zref) < cur_zref;
end
else mid_xref < 0; {first list null }
cur_zref < 0;
while this_zref # 0 do
begin next_zref « xlink (this_xref); zlink (this_zref) < cur_zref; cur_zref < this_xref;
this_zref < next_zref;
end;
if mid_zref > 0 then zlink(mid_zref) < cur_zref
else alink (first_zref) < cur_zref;
cur_xref < xlink (first_aref)

This code is used in section 233.

236. The footnote procedure gives cross reference information about multiply defined module names (if
the flag parameter is def_flag), or about the uses of a module name (if the flag parameter is zero). It assumes
that cur_zref points to the first cross-reference entry of interest, and it leaves cur_zref pointing to the first
element not printed. Typical outputs: ‘\A101.’; ‘\Us370\ET1009."; ‘\As8, 27*, 51\ETs64.’.
procedure footnote(flag : sizteen_bits); {outputs module cross-references }

label done, exit;

var ¢: zref-number; { cross-reference pointer variable }

begin if num (cur_zref) < flag then return;

finish_line; out("\");

if flag =0 then out("U") else out("A");

(Output all the module numbers on the reference list cur_zref 237);

out (u X n);
erit: end;

6237 WEAVE PHASE TWO PROCESSING

105

237. The following code distinguishes three cases, according as the number of cross references is one, two,

or more than two. Variable ¢ points to the first cross reference, and the last link is a zero.

(Output all the module numbers on the reference list cur_zref 237) =
q < cur_zref;
if num/(alink(q)) > flag then out("s"); {plural}
loop begin out_mod (num (cur_xzref) — flag); cur_zref < zlink (cur_zref);
{ point to the next cross reference to output }
if num (cur_zref) < flag then goto done;
if num (xlink (cur_zref)) > flag then out2(",")(",") {not the last}
else begin out3 ("\")("E")("T"); {the last}
if cur_zref # zlink(q) then out("s"); {the last of more than two }
end;
end;
done:

This code is used in section 236.

238. (Output the code for the end of a module 238) =
out3 ("\")("£")("i"); finish_line; flush_buffer (0, false, false); {insert a blank line, it looks nice }

This code is used in section 220.

106 PHASE THREE PROCESSING WEAVE §239

239. Phase three processing. We are nearly finished! WEAVE’s only remaining task is to write out the
index, after sorting the identifiers and index entries.
(Phase III: Output the cross-reference index 239) =
phase_three + true; print_nl(“Writing the_ index...");
if change_exists then
begin finish_line; (Tell about changed modules 241);
end;
finish_line; out4 ("\")("i")("n")("x"); finish_line; (Do the first pass of sorting 243);
(Sort and output the index 250);
out4 ("\")("£")("i")("n"); finish_line; (Output all the module names 257);
outf ("\")("c")("o")("n"); finish_line; print(Done. ");

This code is used in section 261.

240. Just before the index comes a list of all the changed modules, including the index module itself.

(Globals in the outer block 9) +=
k-module: 0 .. maz_modules; {runs through the modules }

241. (Tell about changed modules 241) =
begin {remember that the index is already marked as changed }
k_module < 1; out4 ("\")("c")("h")("L");
while k_module < module_count do
begin if changed_module[k-module] then
begin out_-mod (k-module); out2(",")(",");
end;
incr (k-module);
end;
out-mod (k-module); out(".");
end

This code is used in section 239.

242. A left-to-right radix sorting method is used, since this makes it easy to adjust the collating sequence
and since the running time will be at worst proportional to the total length of all entries in the index. We
put the identifiers into 230 different lists based on their first characters. (Uppercase letters are put into
the same list as the corresponding lowercase letters, since we want to have ‘¢ < TeX < to’.) The list for
character ¢ begins at location bucket[c] and continues through the blink array.

(Globals in the outer block 9) +=

bucket: array [ASCII_code] of name_pointer;

nect_name: name_pointer; {successor of cur_name when sorting }

¢: ASCII code; {index into bucket }

h: 0 .. hash_size; {index into hash }

blink: array [0 .. maz_names] of sizteen_bits; {links in the buckets }

§243 WEAVE PHASE THREE PROCESSING 107

243. To begin the sorting, we go through all the hash lists and put each entry having a nonempty cross-
reference list into the proper bucket.

(Do the first pass of sorting 243) =
for ¢ + 0to 255 do bucket[c] + 0;
for h + 0 to hash_size — 1 do
begin next_name < hash[h];
while next_name # 0 do
begin cur_name < next_name; next_name <+ link[cur_namel;
if zref [cur_name] # 0 then
begin ¢ < byte_mem[cur_name mod ww, byte_start[cur_name]];
if (c<"Z")A(c>"A") then c+ c+ 40;
blink [cur_name] < bucket|c]; bucket|[c] «+— cur_name;
end;
end;
end

This code is used in section 239.

244. During the sorting phase we shall use the cat and trans arrays from WEAVE’s parsing algorithm and
rename them depth and head. They now represent a stack of identifier lists for all the index entries that
have not yet been output. The variable sort_ptr tells how many such lists are present; the lists are output
in reverse order (first sort_ptr, then sort_ptr — 1, etc.). The jth list starts at head[j], and if the first k
characters of all entries on this list are known to be equal we have depth[j] = k.

define depth = cat {reclaims memory that is no longer needed for parsing }
define head = trans {ditto }

define sort_ptr = scrap_ptr {ditto }

define maz_sorts = maz_scraps {ditto }

(Globals in the outer block 9) +=
cur_depth: eight_bits; {depth of current buckets }
cur_byte: 0 .. maz_bytes; {index into byte_mem }
curbank: 0 .. ww —1; {row of byte_mem }
cur_val: sizteen_bits; {current cross reference number }
stat maz_sort_ptr: 0 .. maz_sorts; tats {largest value of sort_ptr }

245. (Set initial values 10) +=
stat maz_sort_ptr < 0; tats

246. The desired alphabetic order is specified by the collate array; namely, collate[0] < collate[1] < --- <
collate[229].

(Globals in the outer block 9) +=

collate: array [0 ..229] of ASCII code; {collation order }

247. (Local variables for initialization 16) +=
¢: ASCII_code; { used to initialize collate }

108 PHASE THREE PROCESSING WEAVE §248

248. We use the order null < |, < other characters < _<A=a<---<Z=z<0<---<9.

(Set initial values 10) +=
collate[0] < 0; collate[1] < "u";
for c+ 1to "," —1do collate[c+ 1] + ¢;
for c+ """+ 1to "0" —1do collate[c] + ¢;
for ¢+ "9" +1to "A" — 1 do collate[c — 10] < ¢;
for c < "Z"+1to "_" —1do collate[c — 36] < ¢;
collate["_" — 36] «+ "_" +1;
for ¢+ "z" + 1 to 255 do collate[c — 63] + ¢;
collate[193] « "_";
for c < "a" to "z" do collate[c — "a" + 194] < ¢;
for ¢ < "0" to "9" do collate[c — "0" + 220] + ¢;

249. Procedure unbucket goes through the buckets and adds nonempty lists to the stack, using the collating
sequence specified in the collate array. The parameter to unbucket tells the current depth in the buckets.
Any two sequences that agree in their first 255 character positions are regarded as identical.
define infinity = 255 { oo (approximately) }
procedure unbucket(d : eight_bits); {empties buckets having depth d }
var ¢: ASCII code; {index into bucket }
begin for ¢ + 229 downto 0 do
if bucket|[collate[c]] > 0 then
begin if sort_ptr > max_sorts then overflow(sorting”);
incr (sort_ptr);
stat if sort_ptr > max_sort_ptr then max_sort_ptr < sort_ptr; tats
if ¢ =0 then depth[sort_ptr] « infinity
else depth[sort_ptr] < d;
head[sort_ptr] < bucket[collate[c]]; bucket[collate|c]] + O;
end;
end;

250. (Sort and output the index 250) =

sort_ptr < 0; unbucket(1);

while sort_ptr > 0 do
begin cur_depth «+ cat[sort_ptr];
if (blink[head[sort_ptr]] = 0) V (cur_depth = infinity) then

(Output index entries for the list at sort_ptr 252)

else (Split the list at sort_ptr into further lists 251);
end

This code is used in section 239.

6251 WEAVE PHASE THREE PROCESSING

251. (Split the list at sort_ptr into further lists 251) =
begin next_name < head[sort_ptr];
repeat cur_name < next_name; next_name < blink[cur_name];
cur_byte < byte_start|[cur_name] + cur_depth; cur_bank < cur_name mod ww;
if cur_byte = byte_start[cur-name + ww] then ¢ < 0 {we hit the end of the name }
else begin ¢ «+ byte_mem [cur_bank, cur_byte];
if (¢c<"Z")A(c>"A") then ¢+ c+ %40;
end;
blink [cur_name] < bucket[c]; bucket[c] < cur_name;
until next_name = 0;
decr (sort_ptr); unbucket (cur_depth + 1);
end

This code is used in section 250.

252. (Output index entries for the list at sort_ptr 252) =

begin cur_name « head[sort_ptr];

debug if trouble_shooting then debug_help; gubed

repeat out2("\")(":"); {Output the name at cur_name 253);
(Output the cross-references at cur_name 254);
cur_name < blink[cur_name];

until cur_name = 0;

decr (sort_ptr);

end

This code is used in section 250.

253. (Output the name at cur_name 253) =
case ilk[cur_name] of
normal: if length(cur-name) =1 then out2("\")("|") else out2("\")("\");
roman: do_nothing;
wildcard: out2("\")("9");
typewriter: out2 ("\")(". ")
othercases out2("\")("&")
endcases;
out_name (cur_-name)

This code is used in section 252.

254. Section numbers that are to be underlined are enclosed in ‘\[...]".

(Output the cross-references at cur_-name 254) =
(Invert the cross-reference list at cur_name, making cur_zref the head 255);
repeat out2(",")("u"); cur-val < num(cur_zref);
if cur_val < def-flag then out-mod(cur_val)
else begin out2("\")("["); out-mod (cur-val — def-flag); out("1");
end;
cur_xref < alink (cur_zref);
until cur_zref = 0;
out("."); finish_line

This code is used in section 252.

109

110 PHASE THREE PROCESSING WEAVE §255

255. List inversion is best thought of as popping elements off one stack and pushing them onto another.
In this case cur_zref will be the head of the stack that we push things onto.

(Invert the cross-reference list at cur_name, making cur_zref the head 255) =
this_zref < xref [cur_namel; cur_zref + 0;
repeat next_zref < zlink (this_zref); alink (this_axref) < cur_zref; cur_zref <« this_aref;
this_zref < next_zref;
until this_zref =0

This code is used in section 254.

256. The following recursive procedure walks through the tree of module names and prints them.

procedure mod_print (p : name_pointer); {print all module names in subtree p }
begin if p > 0 then
begin mod_print (Ilink[p]);
OU,tQ("\")(" . u);
tok_ptr < 1; text_ptr < 1; scrap_ptr « 0; init_stack; app(p + mod_flag); make_output; footnote(0);
{ cur_zref was set by make_output }
finish_line;
mod_print (rlink [p]);
end;
end;
257. (Output all the module names 257) = mod_print (root)

This code is used in section 239.

6258 WEAVE DEBUGGING 111

258. Debugging. The Pascal debugger with which WEAVE was developed allows breakpoints to be set,
and variables can be read and changed, but procedures cannot be executed. Therefore a ‘debug_help’
procedure has been inserted in the main loops of each phase of the program; when ddt and dd are set
to appropriate values, symbolic printouts of various tables will appear.

The idea is to set a breakpoint inside the debug_help routine, at the place of ‘breakpoint:’ below. Then
when debug_help is to be activated, set trouble_shooting equal to true. The debug_help routine will prompt
you for values of ddt and dd, discontinuing this when ddt < 0; thus you type 2n + 1 integers, ending with
zero or a negative number. Then control either passes to the breakpoint, allowing you to look at and/or
change variables (if you typed zero), or to exit the routine (if you typed a negative value).

Another global variable, debug_cycle, can be used to skip silently past calls on debug_help. If you set
debug_cycle > 1, the program stops only every debug-cycle times debug_help is called; however, any error
stop will set debug_cycle to zero.

(Globals in the outer block 9) +=

debug trouble_shooting: boolean; {is debug_-help wanted? }
ddt: integer; {operation code for the debug_help routine }
dd: integer; {operand in procedures performed by debug_help }
debug_cycle: integer; { threshold for debug_help stopping }
debug_skipped: integer; {we have skipped this many debug_help calls }
term_in: text_file; {the user’s terminal as an input file }

gubed

259. The debugging routine needs to read from the user’s terminal.

(Set initial values 10) +=
debug trouble_shooting < true; debug_cycle < 1; debug_skipped < 0; tracing < 0;
trouble_shooting < false; debug_cycle < 99999; { use these when it almost works }
reset (term_in, "TTY: ", "/I17); {open term_in as the terminal, don’t do a get }
gubed

112 DEBUGGING WEAVE §260

260. define breakpoint = 888 { place where a breakpoint is desirable }

debug procedure debug_help; {routine to display various things }
label breakpoint, exit;
var k: integer; {index into various arrays }
begin incr(debug_skipped);
if debug_skipped < debug_cycle then return;
debug_skipped < 0;
loop begin print_nl("#°); update_terminal; {prompt }
read (term_in, ddt); {read a debug-command code }
if ddt < 0 then return
else if ddt =0 then
begin goto breakpoint; @\ {go to every label at least once }
breakpoint: ddt < 0; @\
end
else begin read(term_in, dd);
case ddt of
: print_id(dd);
: print_text(dd);
: for k + 1to dd do print(zchr [buffer[k]]);
: for k + 1to dd do print(zchr[mod_text[k]]);
: for k + 1 to out_ptr do print(zchr|out_buf [k]]);
: for k£ < 1to dd do
begin print_cat(cat[k]); print("u7);
end;
othercases print("7")
endcases;
end;
end;
exit: end;
gubed

S U W N~

8261 WEAVE THE MAIN PROGRAM 113

261. The main program. Let’s put it all together now: WEAVE starts and ends here.
The main procedure has been split into three sub-procedures in order to keep certain Pascal compilers
from overflowing their capacity.

procedure Phase_I;
begin (Phase I: Read all the user’s text and store the cross references 109);
end;
procedure Phase_II;
begin (Phase II: Read all the text again and translate it to TEX form 218);
end;
begin initialize; { beginning of the main program }
print_In(banner); {print a “banner line” }
(Store all the reserved words 64);
Phase_I; Phase_II;
(Phase III: Output the cross-reference index 239);
(Check that all changes have been read 85);
end_of WEAVE: stat (Print statistics about memory usage 262); tats
{ here files should be closed if the operating system requires it }
(Print the job history 263);
end.

262. (Print statistics about memory usage 262) =
print_nl("Memory_usage_statistics:, ", name_ptr : 1, " names, ~, zref ptr : 1,
‘ucrossyreferences, ", byte_ptr[0] : 1);
for cur_bank < 1to ww —1 do print("+", byte_ptr|[cur_bank] : 1);
print(“ubytes;); print_nl(parsing required,,”, maz_scr_ptr : 1, "scraps,.”, maz_trt_ptr : 1,
‘utexts, ., maz_tok_ptr : 1, " tokens, ", maz_stack_ptr : 1, " levels; ");
print_nl(“sorting required,”, max_sort_ptr : 1, " levels. ")

This code is used in section 261.

263. Some implementations may wish to pass the history value to the operating system so that it can be
used to govern whether or not other programs are started. Here we simply report the history to the user.
(Print the job history 263) =

case history of

spotless: print_nl(~ (No_errors were_ found.) °);

harmless_message: print_nl(~ (Did you,see_the warning, message above?) ");

error_message: print,nl(" (Pardon, me ,ubutquthinkuIuspottedusomethinguwrong.) ');

fatal_message: print_nl(” (That_ was_ a,fatal error, my_friend.) ");

end {there are no other cases }

This code is used in section 261.

114 SYSTEM-DEPENDENT CHANGES WEAVE §264

264. System-dependent changes. This module should be replaced, if necessary, by changes to the
program that are necessary to make WEAVE work at a particular installation. It is usually best to design
your change file so that all changes to previous modules preserve the module numbering; then everybody’s
version will be consistent with the printed program. More extensive changes, which introduce new modules,
can be inserted here; then only the index itself will get a new module number.

8265 ~ WEAVE INDEX 115

265. Index. If you have read and understood the code for Phase III above, you know what is in this
index and how it got here. All modules in which an identifier is used are listed with that identifier, except that
reserved words are indexed only when they appear in format definitions, and the appearances of identifiers
in module names are not indexed. Underlined entries correspond to where the identifier was declared. Error
messages, control sequences put into the output, and a few other things like “recursion” are indexed here
too.

\): 186. \O: 196, 223.

\x: 130. \P: 212, 226.

\,: 162, 163, 186. \R: 188.

\.: 189, 253. \S: 188, 228, 231.

\:: 252, 256. \T: 186.

\=: 189. \to: 186.

\[: 254. \U: 236.

\u: 186, 189, 193. \Us: 237.

\#: 186, 189. \V: 188.

\$: 186, 1809. \W: 188.

\%: 186, 1809. \X: 213.

\&: 189, 209, 253. \Y: 212, 219, 226, 231.

\" @ 189. \1: 211, 212.

\\: 189, 209, 253. \2: 211, 212.

\": 186, 189. \3: 211, 212.

\T o 189. \4: 211, 212.

\{: 189. \5: 211, 212.

\}: 189. \6: 211, 212, 226.

\": 189, 193. \7: 211, 212, 226.

\]: 186. \9: 253.

\l: 209, 253. @1: 88, 177.

_: 131, 189. @2: 88, 177.

\A: 236. a: 130, 206, 208.

\As: 237. alpha: 140, 142, 143, 149, 192, 193.

\ast: 186. alpha_cases: 149, 150.

\B: 186. Ambiguous prefix: 609.

\C: 198. and_sign: 15, 64, 188.

\con: 239. app: 148, 151, 152, 153, 155, 156, 158, 159,
\D: 227. 160, 161, 162, 163, 164, 165, 167, 168, 170,
\E: 186. 180, 184, 186, 189, 190, 195, 196, 198, 207,
\ET: 237. 208, 226, 231, 256.

\ETs: 237. app_comment: 183, 184, 195, 197, 198, 226.
\F: 228. app-hex: 183, 186, 196.

\fi: 238. app-octal: 183, 186, 196.

\fin: 239. app-tok: 136, 137, 138, 148, 189, 190, 196,
\G: 188. 197, 226.

\H: 196, 224. append_zref: 50, 51.

\I: 188. appl: 148, 151, 152, 153, 155, 156, 159, 160, 162,
\in: 186. 163, 164, 165, 168, 170, 174, 180, 195.
\input webmac: 124. app2: 148, 153, 156, 158, 161, 163, 165, 167.
\inx: 239. app3: 148, 158, 164.

\J: 186. array_like: 42, 64, 191, 192.

\K: 188. ASCII code: 11, 86.

\L: 188. ASCII_code: 11, 13, 27, 28, 37, 65, 73, 87, 89, 91,
\M: 221. 121, 127, 132, 136, 208, 242, 246, 247, 249.

\N: 221. b: 122, 208.

116 INDEX

backup: 141, 142, 143, 147, 160, 167, 192, 193,
208, 231.
bal: 91, 92, 112, 136, 137, 138, 198

banner: 1, 261.

begin: 3.

begin_comment: 86, 87, 97, 186, 222.

begin_like: 42, 64, 193.

begin_Pascal: 86, 87, 117, 229, 230.

beginning: 140, 142, 143, 150, 152, 164, 170, 193.
big_cancel: 141, 142, 147, 186, 208, 212.
big_force: 141, 142, 147, 186, 208, 212, 226.

big_line_break: 86, 87, 186, 222.

blink: 242, 243, 250, 251, 252.

boolean: 28, 29, 45, T1, 74, 93, 122, 143, 258.

break: 22.

break_out: 125, 126, 127.

break_space: 141, 143, 147, 152, 155, 156, 160,
164, 168, 170, 200, 208, 211, 212.

breakpoint: 258, 260.

bucket: 242, 243, 249, 251.

buf size: 8, 28, 73, 74, 75, 79, 123.

buffer: 27,28, 31, 32, 55, 58, 59, 61, 62, 63, 74, 76,
78, 79, 80, 81, 82, 84, 85, 89, 90, 91, 92, 93, 95,
97, 98, 99, 100, 103, 104, 106, 107, 110, 123,
132, 133, 134, 135, 136, 137, 179, 182, 183, 189,
190, 196, 208, 214, 216, 217, 221, 223, 224, 260.

byte_mem: 36, 37, 38, 39, 40, 43, 44, 52, 58, 61,
62, 66, 67, 68, 69, 131, 208, 209, 214, 215,
216, 217, 243, 244, 251.

byte_ptr: 38, 39, 41, 62, 67, 262.

byte_start: 36, 37, 38, 39, 41, 44, 50, 55, 61, 62,
67, 68, 93, 114, 131, 209, 214, 243, 251.

c: 66, 69, 87, 89, 90, 91, 95, 132, 134, 136, 140,

cancel: 141, 142, 143, 147, 153, 155, 156, 159, 160,
162, 163, 164, 165, 193, 197, 200, 208, 211, 212.

carriage_return: 15, 17, 28.

carryover: 122.

case_head: 140, 143, 149, 153, 154, 162, 163, 165.

case_like: 42, 64, 193.

casey: 140, 142, 143, 149, 153, 165, 193.

cat: 144, 149, 150, 151, 152, 153, 154, 155, 156,
158, 159, 160, 161, 162, 163, 164, 165, 167, 168,
170, 172, 174, 176, 178, 179, 180, 181, 183,
184, 194, 195, 197, 244, 250, 260.

Change file ended...: 77,79, 84.

Change file entry did not match: 85.

change_buffer: 73, 74, 75, 78, 79, 85.

change_changing: 72, 79, 81, 84.

change_exists: 45, 109, 110, 239.

change_file: 2, 23, 24, 32, 71, 73, 76, 77, 79, 84.

change_limit: 73, 74, 75, 78, 79, 83, 85.

WEAVE §265

change_pending: 71, 79, 84.

changed_module: 45, 71, 79, 84, 109, 110, 130, 241.

changing: 32,71, 72, 73, 75, 79, 81, 82, 85, 110.

char: 12, 14.

char_like: 42, 64, 191.

check_change: 79, 83.

check_sum: 86, 87, 186, 222.

chr: 12, 13, 17, 18.

clause: 140, 142, 143, 149, 151, 153, 154, 156, 193.

close: 140, 142, 143, 152, 153, 160, 162, 163,
164, 167, 186, 193.

collate: 246, 247, 248, 249.

colon: 140, 142, 143, 148, 151, 160, 163, 167,
170, 186.

comment: 142.

comment_scrap:

compress: 97.

cond: 140, 142, 143, 149, 193.

confusion: 34.

184, 186.

const_like: 42, 64, 191, 192.
continue: 5, 75, T6.
Control codes are forbidden...: 106.

Control text didn’t end: 106.
control_code: 87, 88, 90, 93, 100, 135.
copy-comment: 132, 136, 198.
copy_limbo: 132, 218.

copy-TeX: 132, 134, 222.

count: 69.

cur_bank:
cur_byte:

244, 251, 262.

244, 251.

cur_depth: 244, 250, 251.

cur_end: 201, 202, 204, 205, 206.

cur_mod_name: 208, 214, 215, 216.

cur-mode: 201, 202, 204, 206, 208, 211, 212.

cur_module: 93, 101, 117, 230, 232.

cur_name: 63, 206, 209, 213, 214, 242, 243,
251, 252, 253, 255.

cur_state: 202, 204, 205.

cur_tok: 201, 202, 204, 205, 206.

cur_val: 244, 254.

cur_zref: 118, 119, 213, 231, 234, 235, 236, 237,
254, 255, 256.

d: 95, 127, 172, 174, 249.

dd: 258, 260.

ddt: 258, 260.

debug:

debug_cycle: 31, 258, 259, 260.

debug_help: 30, 31, 95, 206, 252, 258, 260.

debug_skipped: 31, 258, 259, 260.

decr: 6, 28, 92, 98, 103, 122, 127, 130, 135, 137,
138, 205, 251, 252.

8265 ~ WEAVE

def_flag: 46, 48, 50, 51, 93, 100, 111, 113, 115,
117, 119, 130, 213, 231, 233, 235, 236, 254

definition: 86, 87, 115, 225.

depth: 244, 249.

dig: 129, 130.

div_like: 42, 64, 191, 192.

do_like: 42, 64, 191, 192.

do_nothing: 6, 95, 113, 149, 150, 186, 189,
222, 253.

done: 5,75, 76,90, 91, 92, 95, 103, 104, 122, 134,
135, 136, 137, 138, 175, 179, 236, 237.

Double @ required...: 133.

Double @ should be used...: 189.

double_dot: 86, 97, 186.

easy-cases: 183, 185, 186.

eight_bits: 36, 58, 87, 90, 91, 95, 108, 112, 122,
134, 136, 140, 144, 172, 174, 178, 198, 206,
208, 244, 249.

else: 7.

else_like: 42, 64, 193.

elsie: 140, 142, 143, 149, 156, 193.

emit_space_if needed: 219, 225, 230.

end: 3, 7.

end_comment: 86, 87, 97, 186, 222.

end_field: 201, 202.

end_like: 42, 64, 193.

end_of WEAVE: 2, 33, 261.

end_translation: 141, 147, 201, 207, 208, 212.

endcases: 7.

eof : 28.

eoln: 28.

equal: 66, 67, 68.

equivalence_sign: 15, 97, 116, 188, 228, 231.

err_print: 31, 66, 69, 72, 76, 77, 79, 80, 84, 85,
87, 95, 99, 103, 104, 106, 107, 133, 136, 137,
189, 197, 222, 227, 228, 231, 232.

28, 31, 33.

error-message: 9, 263.

erit: 5,6, 50, 74, 75, 79, 89, 111, 123, 127, 132,
183, 208, 236, 260.

exrp: 140, 142, 143, 149, 186.

exponent: 93, 98, 186.

extension: 66, 68, 69.

Extra }: 95.

Extra @>: &7.

f: 28

false: 28,29, 72, 73, 74, 79, 81, 84, 94, 96, 109,
122, 123, 127, 218, 238, 259.

fatal_error: 33, 34, 35.

fatal_message: 9, 263.

final_limat: 28.

error:

INDEX 117

finish_line: 123, 124, 132, 134, 135, 212, 218, 226,
236, 238, 239, 254, 256.

finish_Pascal: 225, 226, 230.

first_text_char: 12, 18.

first_xref: 234, 235.

five_cases: 149, 150.

flag: 236, 237.

flush_buffer: 122, 123, 127, 128, 218, 238.

footnote: 233, 236, 256.

for_like: 42, 64, 191, 192.

force: 141, 142, 143, 146, 147, 153, 155, 156,
160, 161, 167, 186, 192, 193, 198, 200, 208,
212, 226, 231.

force_line: 86, 87, 186.

form_feed: 15, 28.

format: 86, 87, 111, 112, 113, 115, 183, 198,
222, 225.

forward: 30, 207.

found: 5, 58, 60, 61, 66, 95, 96, 122, 148, 149,
150, 151, 175, 179, 208, 216.

freeze_text: 171, 172, 180, 184, 195, 198, 208.

get: 28, 259.

get_line: 71, 82, 89, 90, 91, 95, 103, 123, 132,
134, 136.

get_next: 93,95, 108, 111, 113, 115, 116, 117, 183,

222, 227, 228, 230, 231, 232

get_output: 206, 207, 208, 211, 212.
goto_like: 42, 64, 191, 192.
greater: 66, 68, 69.
greater_or_equal: 15, 97, 188.
gubed: 3.

h: 56, 58, 242.

harmless_message: 9, 263.

hash: 38, 55, 57, 60, 242, 243.
hash_size: 8, 55, 56, 57, 58, 59, 242, 243.
head: 244, 249, 250, 251, 252.

hex: 86, 87, 100, 186, 222.

hi_ptr: 144, 176, 178, 179.
history: 9, 10, 263.
Hmm... n of the preceding...: 80.

w16, 58, 172, 174, 179.

id_first: 55, 58, 59, 61, 62, 63, 93, 98, 99, 106,
107, 189, 190.

id_flag: 146, 192, 206, 227, 228

id_loc: 55, 58, 59, 61, 62, 64, 93, 98, 99, 106,
107, 189, 190.

id_lookup: 55, 58, 63, 93, 111, 113, 116, 191,
227, 228.

identifier: 93, 98, 111, 113, 116, 185, 206, 208,
209, 227, 228.

id2: 63, 64.

id3: 63, 64.

118 INDEX

idj: 63, 64.
id5: 63, 64.
id6: 63, 64.
id7: 63, 64.
id8: 63, 64.
id9: 63, 64.

iflike: 42, 64, 193.

if-module_start_then_make_change_pending: 79, 84.

ignore: 86, 87, 88, 186.

2. 71, 85.

ik: 36, 37, 42, 43, 55, 58, 60, 62, 111, 116,
191, 192, 253.

Illegal control code...: 215.

Illegal use of @...: 137.

Improper format definition: 228.

Improper macro definition: 227.

Incompatible section names: 66.

mer: 6, 28, 50, 59, 61, 62, 67, 68, 69, 76, 77,
79, 83, 84, 89, 90, 91, 92, 95, 97, 98, 99, 100,
103, 104, 106, 107, 110, 122, 125, 130, 133,
135, 136, 137, 148, 149, 150, 171, 176, 184,
189, 196, 204, 206, 214, 215, 216, 217, 220,
223, 224, 241, 249, 260.

indent: 141, 142, 143, 147, 151, 160, 165, 193, 208

infinity: 249, 250.

inat_stack: 202, 222, 225, 230, 256.

initialize: 2, 261.

inner: 200, 201, 206, 212.

inner_tok_flag: 146, 198, 206, 207.

Input ended in mid-comment: 136.

Input ended in section name: 103.

Input line too long: 28.

input_has_ended: 71, 79, 81, 83, 89, 90, 91, 95,
103, 109, 132, 134, 136, 218.

input_ln: 28, 76, 77, 79, 83, 84.

integer: 14, 71, 79, 121, 130, 172, 174, 219,
258, 260.

intercal_like: 42.

intro: 140, 142, 143, 148, 150, 157, 160, 162, 163,
165, 167, 170, 192, 193, 227, 228.

J: 66, 69, 95, 122, 146, 172, 174, 179, 183, 208.

join: 86, 87, 186, 222.

Jump_out: 2, 33.

k: 31, 44, 58, 66, 69, 74, 75, 79, 95, 122, 123, 127,

k_limit: 208, 214, 216.
k_module: 240, 241.

l: 31, 58, 66, 69.
last_text_char: 12, 18.
lbrace: 146, 147.
left_arrow: 15, 97, 188.
length: 38, 60, 209, 253.

WEAVE §265

less: 66, 67, 68, 69.

less_or_equal: 15, 97, 188.

lhs: 114, 116.

limat: 28, 32, 71, 74, 76, 77, 78, 79, 80, 81, 82, 84,
85, 89, 90, 91, 95, 97, 99, 103, 106, 107, 123,
132, 133, 134, 135, 136, 208, 214, 216, 223.

line: 32,71, 72,76, 77, 79, 81, 83, 84, 85, 182.

Line had to be broken: 128.

line_break: 86, 87, 186, 222.

line_feed: 15, 28.

line_length: 8, 121, 122, 125, 127.

lines_dont_match: 74, 79.

link: 36, 37, 38, 43, 60, 243.

llink: 43, 66, 67, 69, 119, 256.

lo_ptr: 144, 172, 175, 176, 178, 179, 180, 181.

loc: 28,32, 71, 76, 79, 80, 81, 82, 84, 85, 89, 90,
91, 92, 95, 97, 98, 99, 100, 103, 104, 106, 107,
110, 113, 132, 133, 134, 135, 136, 137, 182,
196, 208, 214, 221, 222, 223, 224.

long_buf_size: 8, 27, 28, 31, 55, 58, 71, 179,
183, 208, 216, 217.

longest_name: 8, 65, 66, 69, 95, 103, 105.

loop: 6.
loop_like: 42, 64, 193.
m: 50, 130.

make_output: 207, 208, 213, 226, 256.

mark_error: 9, 31, 215, 216.

mark_fatal: 9, 33.

mark_harmless: 9, 105, 119, 128, 181, 182.

math: 139, 140, 142, 143, 148, 150, 151, 158,
160, 162, 163, 167, 170, 179, 180, 186, 188,
192, 227, 228, 231.

math_bin: 141, 142, 147, 192, 208, 210

math_break: 86, 87, 186, 222.

math_op: 141, 143, 147, 162, 163, 208.

math_rel: 141, 142, 146, 147, 192, 208, 210, 231.

maz_bytes: 8, 37, 39, 44, 58, 62, 66, 67, 69,
131, 208, 244.

max-modules: 8, 45, 46, 110, 240.

mazr_names: 8, 37, 38, 62, 67, 69, 242.

mazx_refs: 8, 47, 50.

maz_scr_ptr: 144, 145, 187, 197, 199, 226, 262.

maz_scraps: 8, 144, 172, 174, 178, 179, 187,
197, 199, 244.

maz_sort_ptr: 244, 245, 249, 262.

maz_sorts: 244, 249.

mazx_stack_ptr: 202, 203, 204, 262.

max_texts: 8, 52, 175, 179, 187, 199.

maz_tok_ptr: 53, 54, 175, 187, 199, 207, 226, 262.

mazx_toks: 8, 53, 136, 146, 175, 179, 180, 187,
189, 198, 199.

mazx_trt_ptr: 53, 54, 175, 187, 199, 207, 226, 262.

8265 ~ WEAVE

mid_xref: 234, 235.

Missing "|"...: 197.

mod_check: 119, 120.

mod_flag: 146, 206, 231, 232, 256.

mod_lookup: 65, 66, 101, 102.

mod_name: 206, 208.

mod_print: 256, 257.

mod_scrap: 140, 142, 143, 149, 167, 231, 232.

mod_text: 65, 66, 67, 68, 69, 95, 101, 102, 103,
104, 105, 260.

mod_xref_switch: 46, 48, 49, 51, 117.

mode: 201, 208.

mode_field: 201, 202.

module_count: 45, 50, 51, 71, 79, 84, 109, 110,
181, 218, 220, 221, 231, 241.

module_name: 86, 87, 93, 100, 113, 117, 222,
230, 232.

n: 50, 79, 178.

Name does not match: 69.

name_pointer: 38, 39, 44, 50, 51, 58, 63, 66,
69, 93, 111, 114, 119, 131, 144, 183, 192,
208, 229, 242, 256.

name_ptr: 38, 39, 41, 44, 58, 60, 62, 67, 262.

Never defined: <section name>: 119.

Never used: <section name>: 119.

new_line: 20, 31, 32, 33, 128.

new_mod_zref: 51, 117.

new_module: 86, 87, 90, 95, 134.

new_zref: 50, 111, 113, 116.

next_control: 108, 111, 112, 113, 115, 116, 117,
183, 185, 186, 189, 191, 197, 198, 207, 222,
225, 227, 228, 229, 230, 231, 232.

next_-name: 242, 243, 251.

next_xref: 234, 235, 255.

nil: 6.

nil_like: 42, 64, 191, 192.

no_line_break: 86, 87, 186, 222.

no_underline: 86, 87, 100, 113.

normal: 42, 58, 60, 111, 116, 191, 192, 227,
228, 253.

not_equal: 15, 97, 188.

not_found: 5.

not_sign: 15, 64, 188.

num: 46, 49, 50, 51, 119, 213, 231, 235, 236,
237, 254.

num_field: 46, 48.

octal: 86, 87, 186, 222.

omega: 140, 142, 143, 151, 192, 193, 195.

oot: 125.

ootl: 125.
oot2: 125.
oot3: 125.

INDEX 119

oot : 125.

ooth: 125.

open: 139, 140, 142, 143, 150, 186.

open_input: 24, 81.

opt: 139, 141, 142, 143, 147, 159, 163, 186,
208, 211.

or_sign: 15, 64, 188.

ord: 13.

other_line: 71, 72, 81, 85.

othercases: 7.

others: 7.

out: 125, 130, 131, 133, 135, 208, 209, 210,
211, 212, 213, 214, 221, 222, 223, 224, 236,
237, 241, 254.

out_buf: 121, 122, 124, 125, 126, 127, 128, 212,
226, 231, 260.

out_line: 121, 122, 124, 128, 219.

out_mod: 130, 213, 221, 237, 241, 254.

out_name: 131, 209, 253.

out_ptr: 121, 122, 123, 124, 125, 127, 128, 135,
212, 219, 226, 231, 260.

outdent: 141, 143, 147, 153, 155, 156, 160, 162,
163, 164, 208.

outer: 200, 201, 202, 211, 212.

outer_parse: 198, 225, 230.

outer_zref: 112, 115, 117, 198.

output_Pascal: 207, 214, 222.

output_state: 201, 202.

out2: 125,130, 210, 211, 212, 213, 219, 221, 226,
237, 241, 252, 253, 254, 256.

out3: 125, 210, 223, 224, 237, 238.

outq: 125, 226, 239, 241.

outd: 125, 210.

overflow: 35, 50, 62, 67, 110, 136, 175, 180, 187,
199, 204, 216, 217, 249.

param: 86.

Pascal text...didn’t end: 216.

Pascal_parse: 183, 186, 192, 196, 197, 198.

Pascal_translate: 197, 198, 207.

Pascal_xref: 111, 112, 113, 183, 198.

per_cent: 122.

Phase_I: 261.

Phase_IT: 261.

phase_one: 29, 31, 109.

phase_three: 29, 109, 213, 239.

pop_level: 205, 206.

pp: 144, 148, 149, 150, 151, 152, 153, 154, 155,
156, 157, 158, 159, 160, 161, 162, 163, 164, 165,
166, 167, 168, 169, 170, 173, 175, 176, 178, 179.

prefix: 66, 68.

120 INDEX

prefix_lookup: 69, 101.

prime_the_change_buffer: 75, 81, 84.

print: 20, 31, 32, 33, 44, 105, 110, 119, 128,
140, 146, 147, 178, 181, 182, 215, 216, 221,
239, 260, 262.

print_cat: 140, 178, 181, 260.

print_id: 44, 119, 146, 215, 216, 260.

print_ln: 20, 32, 128, 181, 261.

print_nl: 20, 28, 105, 119, 128, 178, 181, 182, 215,

216, 218, 239, 260, 262, 263.
print_text: 146, 260.
proc: 140, 142, 143, 149, 162, 163, 164, 193.
proc_like: 42, 64, 111, 193.
prod: 148, 178, 183.
production: 148.
production_end: 148.
productions, table of: 143.
pseudo_semi: 86, 87, 186, 222.

push_level: 204, 206, 208.

g: 90, 51, 66, 69, 198, 236.

r: 51, 69, 146.

rbrace: 146.

read: 260.

read_ln: 28.

record_head: 140, 142, 143, 149, 193.
record_like: 42, 64, 193.

recursion: 119, 207, 256.

red: 148, 172, 174.

reduce: 148, 151, 152, 153, 155, 156, 158, 159, 160,
161, 162, 163, 164, 165, 167, 168, 170, 172, 178.

repeat_like: 42, 64, 193.

res_flag: 146, 192, 193, 206.

res_word: 206, 208, 209.

reserved: 42, 50, 60.

reset: 24, 259.

reset_input: 81, 109, 218.

restart: 5, 82, 95, 100, 206.

reswitch: 5, 183, 185, 191, 208, 212.

return: 5, 6.

rewrite: 21, 26.

rhs: 114, 116.

43, 66, 67, 69, 119, 256.

roman: 42, 111, 253.

root: 43, 66, 69, 120, 257.

save_base: 197.

save_limait: 208, 214.

save_line: 219.

save_loc: 208, 214.

save_mode: 208, 212.

save_next_control: 207.

save_place: 219.

save_position: 219, 220, 225.

rliink:

WEAVE §265

save_text_ptr: 207.
save_tok_ptr: 207.
scanning-hex: 93, 94, 95, 96, 100.

scrap_base: 144, 145, 173, 178, 179, 180, 181,
194, 195, 197.
scrap_ptr: 144, 145, 176, 178, 179, 183, 184, 187,

194, 195, 197, 199, 226, 228, 244, 256.

sc0: 184, 186, 193, 194, 195, 228.

scl: 184, 186, 189, 190, 192, 193, 196, 227,
228, 231, 232.

sc2: 184, 186, 188, 192, 193, 227, 228, 231.

sc3: 184, 186, 192, 193, 231.

sc4: 184, 186, 193.

Section name didn’t end: 104.

Section name too long: 105.

semi: 139, 140, 142, 143, 149, 161, 163, 186,
194, 195, 228, 231.

set_element_sign: 15, 64, 186.
sidl: 63.
sid2: 63.
sid3: 63.
sid4: 63.
sid5: 63
sid6: 63.
sid7: 63.
sid8: 63.
sid9: 63

simp: 140, 142, 143, 148, 150, 151, 158, 160, 161,
162, 167, 170, 186, 189, 190, 192, 196.
sizteen_bits: 36, 37, 48, 50, 53, 55, 66, 69, 172,
174, 201, 206, 207, 219, 236, 242, 244.

skip_comment: 91, 112, 132, 136.

skip_limbo: 89, 109, 132.

skip_-TeX: 90, 113, 132.

Sorry, x capacity exceeded: 35.

sort_ptr: 244, 249, 250, 251, 252.

special string characters: 189.

split procedures: 149, 183, 261.

spotless: 9, 10, 263.

sq: 148, 174.

squash: 148, 151, 152, 154, 157, 160, 161, 162,
163, 166, 167, 169, 170, 174, 178.

stack: 201, 202, 204, 205.

stack_ptr: 201, 202, 204, 205.

stack_size: 8, 202, 204.

stat: 3.

stmt: 140, 143, 149, 152, 153, 155, 156, 159, 160,
161, 162, 164, 167, 168, 169, 170.

string: 93, 99, 185.

String constant didn’t end: 99.

string_delimiter: 208, 216.

sub_cases: 183, 191, 192.

8265 ~ WEAVE

system dependencies: 1, 2,4, 7, 12, 17, 20, 21, 22,
24, 26, 28, 32, 33, 259, 260, 261, 263, 264.

s0: 184.

s1: 184.

s2: 184.

s3: 184.

s4: 184.

t: 5H8.

tab-mark: 15, 32, 79, 87, 89, 92, 95, 103, 104,
123, 133, 135.

tats: 3.

temp_line: 71, 72.

term_in: 258, 259, 260.

term_out: 20, 21, 22.

terminator: 139, 140, 142, 143, 149, 152, 153, 160,

161, 164, 166, 167, 179, 194, 195.

TeX string should be...: 222.

tex_file: 2, 25, 26, 122, 124.

TeX string: 86, 87, 93, 100, 185, 222.

text_char: 12, 13, 20.

text_file: 12, 20, 23, 25, 28, 258.

text_pointer: 52, 53, 144, 146, 179, 197, 198,
204, 207, 226.

text_ptr: 53, b4, 146, 171, 172, 175, 179, 180, 184,
187, 195, 198, 199, 207, 208, 226, 256.

thin_space: 86, 87, 186, 222.

This can’t happen: 34.

this_module: 229, 230, 231, 233, 235.

this_xref: 234, 235, 255.

to_like: 42, 64, 191, 192.

tok_field: 201, 202.

tok_flag: 146, 148, 195, 198, 206, 226.

tok_.mem: 53, 136, 146, 148, 201, 202, 206, 213.
tok_ptr: 53, 54, 136, 137, 148, 171, 175, 179, 180,

187, 189, 198, 199, 207, 226, 256.

tok_start: 52, 53, b4, 144, 146, 171, 204.

tracing: 88, 177, 178, 181, 182, 259.

trans: 144, 148, 172, 176, 179, 183, 184, 195,
197, 244.

translate: 149, 179, 180, 197, 226.

trouble_shooting: 95, 206, 252, 258, 259.

true: 6, 28,29, 71, 72, 74, 79, 81, 83, 84, 85, 93,
100, 109, 110, 122, 127, 128, 239, 258, 259.

typewriter: 42, 111, 253.

unbucket: 249, 250, 251.

underline: 86, 87, 100, 113.

Unknown control code: &87.

until_like: 42, 64, 193.

up_to: 95.

update_terminal: 22, 31, 110, 221, 260.
var_head: 140, 142, 143, 148, 149, 162, 163,

170, 193.

INDEX 121

var_like: 42, 64, 111, 193.

verbatim: 86, 87, 100, 107, 185, 189.
Verbatim string didn’t end: 107.
w: 44, 58, 66, 69, 131, 208.

WEAVE: 2.

WEB file ended...: T79.

web_file: 2, 23, 24, 32, 71, 73, 79, 83, 85.
webmac: 124.

Where is the match...: 76, 80, 84.
wi: 40, 41.

wildecard: 42, 111, 253.

write: 20, 122, 124.

write_In: 20, 122.

ww: 8, 37, 38, 39, 40, 41, 44, 50, 58, 61, 62, 66, 67,
68, 69, 131, 208, 209, 214, 243, 244, 251, 262.

xchr: 13, 14, 16, 17, 18, 32, 44, 105, 122, 128,
146, 147, 182, 260.

xclause: 6.

xlink: 46, 50, 51, 119, 213, 235, 237, 254, 255.

xlink_field: 46, 48.

xmem: 46, 48.

xord: 13, 16, 18, 28.

aref: 36, 37, 46, 49, 50, 51, 62, 67, 119, 213,
231, 235, 243, 255.

xref number: 47, 48, 50, 51, 118, 234, 236.

xref_ptr: 46, 48, 49, 50, 51, 262.

aref-roman: 86, 87, 93, 100, 111, 113, 186, 222.

xref_switch: 46, 48, 49, 50, 93, 100, 101, 111,
113, 115.

xref_typewriter: 86, 87, 93, 111, 113, 186, 222.

xref wildcard: 86, 87, 93, 111, 113, 186, 222.

You can’t do that...: 222, 232.

You need an = sign...: 231.

122 NAMES OF THE SECTIONS WEAVE

(Append a string scrap 189) Used in section 185.

(Append a TEX string scrap 190) Used in section 185.

(Append an identifier scrap 191) Used in section 185.

(Append the scrap appropriate to next_control 185) Used in section 183.

(Append terminator if not already present 194) Used in sections 193, 193, and 193.

(Cases for alpha 151) Used in section 150.

(Cases for beginning 152) Used in section 150.

<Cases for case_head 153> Used in section 149.

(Cases for casey 154) Used in section 149.

(Cases for clause 155) Used in section 149.

(Cases for cond 156) Used in section 149.

(Cases for elsie 157) Used in section 149.

<Cases for exp 158> Used in section 149.

(Cases for intro 159) Used in section 150.

(Cases for math 160) Used in section 150.

<Cases for mod_scrap 161 > Used in section 149.

(Cases for open math 163) Used in section 162.

(Cases for open 162) Used in section 150.

(Cases for proc 164) Used in section 149.

(Cases for record_head 165) Used in section 149.

(Cases for semi 166) Used in section 149.

(Cases for simp 167) Used in section 150.

(Cases for stmt 168) Used in section 149.

(Cases for terminator 169) Used in section 149.

(Cases for var_head 170) Used in section 149.

(Cases involving nonstandard ASCII characters 188) Used in section 186.

(Cases that generate more than one scrap 193) Used in section 191.

(Change pp to max(scrap_base,pp+d) 173) Used in sections 172 and 174.

(Check for overlong name 105) Used in section 103.

(Check that all changes have been read 85) Used in section 261.

(Check that = or = follows this module name, and emit the scraps to start the module definition 231)
Used in section 230.

(Clear bal and goto done 138) Used in sections 136 and 137.

(Combine the irreducible scraps that remain 180) Used in section 179.

(Compare name p with current identifier, goto found if equal 61) Used in section 60.

(Compiler directives 4) Used in section 2.

(Compress two-symbol combinations like ‘:=" 97) Used in section 95.

(Compute the hash code h 59) Used in section 58.

{ Compute the name location p 60) Used in section 58.

(Constants in the outer block 8) Used in section 2.

(Copy a control code into the buffer 217) Used in section 216.

(Copy special things when ¢ = "@","\","{","}"; goto done at end 137) Used in section 136.

(Copy the Pascal text into buffer[(limit + 1) .. j] 216) Used in section 214.

(Copy up to ‘|’ or control code, goto done if finished 135) Used in section 134.

(Copy up to control code, return if finished 133) Used in section 132.

(Declaration of subprocedures for translate 150) Used in section 179.

(Declaration of the app_comment procedure 195) Used in section 183.

{ Declaration of the app_octal and app_hex procedures 196) Used in section 183.

(Declaration of the easy_cases procedure 186) Used in section 183.

(Declaration of the sub_cases procedure 192) Used in section 183.

(Do special things when ¢ = "@","\","{","}"; goto done at end 92) Used in section 91.

(Do the first pass of sorting 243) Used in section 239.

WEAVE NAMES OF THE SECTIONS 123

Emit the scrap for a module name if present 232) Used in section 230.

Enter a new module name into the tree 67) Used in section 66.

Enter a new name into the table at position p 62) Used in section 58.

Error handling procedures 30, 31, 33) Used in section 2.

Get a string 99) Used in section 95.

Get an identifier 98> Used in section 95.

Get control code and possible module name 100) Used in section 95.

Globals in the outer block 9, 13, 20, 23, 25, 27, 29, 37, 39, 45, 48, 53, 55, 63, 65, 71, 73, 93, 108, 114, 118, 121, 129, 144,
177, 202, 219, 229, 234, 240, 242, 244, 246, 258) Used in section 2.

(Go to found if c is a hexadecimal digit, otherwise set scanning_hexr < false 96) Used in section 95.

(If end of name, goto done 104) Used in section 103.

(If semi-tracing, show the irreducible scraps 181) Used in section 180.

(If the current line starts with @y, report any discrepancies and return 80) Used in section 79.

(If tracing, print an indication of where we are 182) Used in section 179.

(

(

(

(

o~~~ o~~~ o~~~

Invert the cross-reference list at cur_name, making cur_zref the head 255) Used in section 254.
Local variables for initialization 16, 40, 56, 247) Used in section 2.
Look ahead for strongest line break, goto reswitch 212) Used in section 211.
Make sure that there is room for at least four more scraps, six more tokens, and four more texts 187)
Used in section 185.
(Make sure that there is room for at least seven more tokens, three more texts, and one more scrap 199)
Used in section 198.
(Make sure the entries cat[pp .. (pp + 3)] are defined 176) Used in section 175.
(Match a production at pp, or increase pp if there is no match 149) Used in section 175.
(Move buffer and limit to change_buffer and change_limit 78) Used in sections 75 and 79.
(Output a control, look ahead in case of line breaks, possibly goto reswitch 211) Used in section 208.
(Output a \math operator 210) Used in section 208.
(Output a module name 213) Used in section 208.
(Output all the module names 257) Used in section 239.
(Output all the module numbers on the reference list cur_zref 237) Used in section 236.
(Output an identifier 209) Used in section 208.
(Output index entries for the list at sort_ptr 252) Used in section 250.
{ Output the code for the beginning of a new module 221) Used in section 220.
{ Output the code for the end of a module 238) Used in section 220.
(Output the cross-references at cur_name 254) Used in section 252.
(Output the name at cur_name 253) Used in section 252.
(Output the text of the module name 214) Used in section 213.
(Phase I: Read all the user’s text and store the cross references 109) Used in section 261.
(Phase II: Read all the text again and translate it to TEX form 218) Used in section 261.
(Phase III: Output the cross-reference index 239) Used in section 261.
(Print error location based on input buffer 32) Used in section 31.
(Print error messages about unused or undefined module names 120) Used in section 109.
(Print statistics about memory usage 262) Used in section 261.
(Print the job history 263) Used in section 261.
(Print token r in symbolic form 147) Used in section 146.
(Print warning message, break the line, return 128) Used in section 127.
(Process a format definition 116) Used in section 115.
<Put module name into mod,te:z:t[l .. k] 103> Used in section 101.
(Read from change_file and maybe turn off changing 84) Used in section 82.
(Read from web_file and maybe turn on changing 83) Used in section 82.
(Rearrange the list pointed to by cur_azref 235) Used in section 233.
(Reduce the scraps using the productions until no more rules apply 175) Used in section 179.
(Scan a verbatim string 107) Used in section 100.

124 NAMES OF THE SECTIONS WEAVE

Scan the module name and make cur_module point to it 101) Used in section 100.
Scan to the next @> 106) Used in section 100.
Set initial values 10, 14, 17, 18, 21, 26, 41, 43, 49, 54, 57, 94, 102, 124, 126, 145, 203, 245, 248, 259> Used in section 2.
Set variable ¢ to the result of comparing the given name to name p 68) Used in sections 66 and 69.
Show cross references to this module 233) Used in section 220.
Skip next character, give error if not ‘@’ 215) Used in section 214.
Skip over comment lines in the change file; return if end of file 76) Used in section 75.
Skip to the next nonblank line; return if end of file 77) Used in section 75.
Sort and output the index 250> Used in section 239.
Special control codes allowed only when debugging 88) Used in section 87.
Split the list at sort_ptr into further lists 251) Used in section 250.
Start a format definition 228) Used in section 225.
Start a macro definition 227) Used in section 225.
Store all the reserved words 64) Used in section 261.
Store cross reference data for the current module 110) Used in section 109.
Store cross references in the definition part of a module 115) Used in section 110.
Store cross references in the Pascal part of a module 117) Used in section 110.
Store cross references in the TEX part of a module 113) Used in section 110.
Tell about changed modules 241) Used in section 239.
Translate a hexadecimal constant appearing in TEX text 224) Used in section 222.
Translate an octal constant appearing in TEX text 223) Used in section 222.
Translate the current module 220) Used in section 218.
Translate the definition part of the current module 225) Used in section 220.
Translate the Pascal part of the current module 230) Used in section 220.
Translate the TEX part of the current module 222) Used in section 220.
Types in the outer block 11, 12, 36, 38, 47, 52, 201) Used in section 2.

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

	 Introduction
	 The character set
	 Input and output
	 Reporting errors to the user
	 Data structures
	 Searching for identifiers
	 Initializing the table of reserved words
	 Searching for module names
	 Lexical scanning
	 Inputting the next token
	 Phase one processing
	 Low-level output routines
	 Routines that copy TeX material
	 Parsing
	 Implementing the productions
	 Initializing the scraps
	 Output of tokens
	 Phase two processing
	 Phase three processing
	 Debugging
	 The main program
	 System-dependent changes
	 Index
	Names of the sections
	Append a string scrap
	Append a TeX string scrap
	Append an identifier scrap
	Append the scrap appropriate to next_control
	Append terminator if not already present
	Cases for alpha
	Cases for beginning
	Cases for case_head
	Cases for casey
	Cases for clause
	Cases for cond
	Cases for elsie
	Cases for exp
	Cases for intro
	Cases for math
	Cases for mod_scrap
	Cases for openmath
	Cases for open
	Cases for proc
	Cases for record_head
	Cases for semi
	Cases for simp
	Cases for stmt
	Cases for terminator
	Cases for var_head
	Cases involving nonstandard ASCII characters
	Cases that generate more than one scrap
	Change pp to max(scrap_base,pp+d)
	Check for overlong name
	Check that all changes have been read
	Check that = or == follows this module name, and emit the scraps to start the module definition
	Clear bal and goto done
	Combine the irreducible scraps that remain
	Compare name p with current identifier, goto found if equal
	Compiler directives
	Compress two-symbol combinations like `:='
	Compute the hash code h
	Compute the name location p
	Constants in the outer block
	Copy a control code into the buffer
	Copy special things when c="@","\","{","}"; goto done at end
	Copy the Pascal text into buffer[(limit+1)..j]
	Copy up to `|' or control code, goto done if finished
	Copy up to control code, return if finished
	Declaration of subprocedures for translate
	Declaration of the app_comment procedure
	Declaration of the app_octal and app_hex procedures
	Declaration of the easy_cases procedure
	Declaration of the sub_cases procedure
	Do special things when c="@","\","{","}"; goto done at end
	Do the first pass of sorting
	Emit the scrap for a module name if present
	Enter a new module name into the tree
	Enter a new name into the table at position p
	Error handling procedures
	Get a string
	Get an identifier
	Get control code and possible module name
	Globals in the outer block
	Go to found if c is a hexadecimal digit, otherwise set scanning_hex:=false
	If end of name, goto done
	If semi-tracing, show the irreducible scraps
	If the current line starts with @y, report any discrepancies and return
	If tracing, print an indication of where we are
	Invert the cross-reference list at cur_name, making cur_xref the head
	Local variables for initialization
	Look ahead for strongest line break, goto reswitch
	Make sure that there is room for at least four more scraps, six more tokens, and four more texts
	Make sure that there is room for at least seven more tokens, three more texts, and one more scrap
	Make sure the entries cat[pp..(pp+3)] are defined
	Match a production at pp, or increase pp if there is no match
	Move buffer and limit to change_buffer and change_limit
	Output a control, look ahead in case of line breaks, possibly goto reswitch
	Output a \math operator
	Output a module name
	Output all the module names
	Output all the module numbers on the reference list cur_xref
	Output an identifier
	Output index entries for the list at sort_ptr
	Output the code for the beginning of a new module
	Output the code for the end of a module
	Output the cross-references at cur_name
	Output the name at cur_name
	Output the text of the module name
	Phase I: Read all the user's text and store the cross references
	Phase II: Read all the text again and translate it to TeX form
	Phase III: Output the cross-reference index
	Print error location based on input buffer
	Print error messages about unused or undefined module names
	Print statistics about memory usage
	Print the job history
	Print token r in symbolic form
	Print warning message, break the line, return
	Process a format definition
	Put module name into mod_text[1..k]
	Read from change_file and maybe turn off changing
	Read from web_file and maybe turn on changing
	Rearrange the list pointed to by cur_xref
	Reduce the scraps using the productions until no more rules apply
	Scan a verbatim string
	Scan the module name and make cur_module point to it
	Scan to the next @>
	Set initial values
	Set variable c to the result of comparing the given name to name p
	Show cross references to this module
	Skip next character, give error if not `@'
	Skip over comment lines in the change file; return if end of file
	Skip to the next nonblank line; return if end of file
	Sort and output the index
	Special control codes allowed only when debugging
	Split the list at sort_ptr into further lists
	Start a format definition
	Start a macro definition
	Store all the reserved words
	Store cross reference data for the current module
	Store cross references in the definition part of a module
	Store cross references in the Pascal part of a module
	Store cross references in the TeX part of a module
	Tell about changed modules
	Translate a hexadecimal constant appearing in TeX text
	Translate an octal constant appearing in TeX text
	Translate the current module
	Translate the definition part of the current module
	Translate the Pascal part of the current module
	Translate the TeX part of the current module
	Types in the outer block

