
The bnumexpr package
Jean-François Burnol
jfbu (at) free (dot) fr

Package version: 1.6 (2025/09/05)

From source file bnumexpr.dtx of 05-09-2025 at 12:10:31 CEST

1 \bnumeval 1

2 Dependencies 2

3 Examples 2

4 Customizing how output is “printed out” 4
4.1 Printing big numbers . 4
4.2 \bnumprintone, \bnumprintonesep 5
4.3 \bnumprintonehex, \bnumprintoneoct, \bnumprintonebin 6

5 Babel-active characters are not a problem! 7

6 Fine print (not needed to read this for regular use) 7
6.1 The \bnumsetup command . 7
6.2 Example of customization: let's handle fractions! 8
6.3 Significant differences between \bnumexpr and \numexpr 9
6.4 For the expert user: expression syntax and its customizability 10

7 Changes 14

8 License 17

9 Commented source code 18

1 \bnumeval

This LATEX package bnumexpr provides \bnumeval, which is an expandable parser

of numerical expressions with big integers.

Recent LATEX has \inteval, which is a slim wrapper for ε-TEX's \numexpr (em-
bedded for twenty years in most TEX-engines except original Knuth's tex).

TEX-nical note: More precisely \inteval{⟨expression⟩} is equivalent (up to how TEX handles
spaces located after in the source during tokenization, as tokenization of control sequences

such as \relax causes TEX to ignore space characters or end-of-line space after it) to:

\the\numexpr⟨expression⟩\relax
In an analogous way \bnumeval{⟨expression⟩} has equivalent forms:

\bnethe\bnumexpr⟨expression⟩\relax
\thebnumexpr⟨expression⟩\relax

For contexts where the alternative forms may be useful, refer to the section 6. Everyday use

needs only \bnumeval.

Here are the extra features from \bnumeval compared to \inteval:

• It allows arbitrarily big integers, whereas \inteval is limited to a
maximal input equal to 2147483647 (231 - 1, or hexadecimal 7FFFFFFF).

http://www.ctan.org/pkg/bnumexpr
http://www.ctan.org/pkg/bnumexpr

2 Dependencies

• It recognizes ** and ^ as infix operator for powers,
• It recognizes ! as postfix operator for the factorials,
• The new operator // computes floored division with /: being the opera-
tor for the associated remainder (the operator / computes rounded divi-

sion),

• In addition to the TEX prefixes ' and " for octal and hexadecimal, it
recognizes 0b, 0o and 0x for binary, octal, and hexadecimal,

• The space character is ignored1 and can thus be used to separate in the
source blocks of digits for better readability of long numbers,

• Also the underscore _ may be used as visual digit separator,
• Braced material {...} encountered in the expression is automatically
unbraced,

• Comma separated expressions are allowed,
• Some idiosyncrasies of \numexpr such as \inteval{-(1)} causing an error
are avoided,

• Syntax is fully customizable and extensible.

Furthermore, \bnumeval recognizes an optional argument [b], [o] or [h]

which says to have the calculation result (or comma separated results) be

converted to respectively binary, octal or hexadecimal digits.

2 Dependencies

bnumexpr is a LATEX package but it can also be used with Plain TEX, thanks to

miniltx. Use for this \input miniltx.tex and then \input bnumexpr.sty. Do

not use \input but only \usepackage to load the package with LATEX.

Addition, subtraction, multiplication, division(s), modulo operator, pow-

ers, and factorials are all by default executed by macros provided by the

xintcore package.

Conversions between decimal, binary, octal and hexadecimal bases are done

using the macros from the xintbinhex package.

\bnumeval is a scaled-down variant of \xintiieval from package xintexpr,

lacking support for nested structures, functions, variables, booleans, se-

quence generators, etc... . The xintexpr package is NOT loaded, only as said

previously xintcore and xintbinhex.

TEX-nical note: Power users can use \bnumsetup to configure usage of alternative support

macros of their own choosing. Options can disable the loading of xintcore and/or xintbinhex.

But xintkernel is always loaded. See section 6. Expert users can even add new operators to

the syntax or change the built-in precedences. See subsection 6.4.

3 Examples

Some of these examples use the ancient syntax \bnethe\bnumexpr...\relax from

the initial release (in 2014). The \bnethe prefix converts from some private

1It is not completely ignored, \count 37<space> will automatically be prefixed by \number and the
space token delimits the integer indexing the count register. Also, devious inputs using nested braces
around spaces may create unexpected internal situations and even break the parser.

2

http://www.ctan.org/pkg/bnumexpr
https://ctan.org/pkg/miniltx
https://ctan.org/pkg/miniltx
http://www.ctan.org/pkg/bnumexpr
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint

3 Examples

format (using braces and other things). Some examples do not even have the

\bnethe prefix to \bnumexpr because it is allowed in typesetting context to

omit it (but in an \edef without it expansion gives the private format). For

details refer to section 6 on advanced topics.

Some further examples found in this documentation use the other ancient

syntax \thebnumexpr...\relax where \thebnumexpr is equivalent to \bnethe\b⤸
numexpr.

The recommended way is to use \bnumeval, as it has optional arguments to

cause conversion to hexadecimal, octal or binary. They have no equivalent

with \bnethe\bnumexpr or with \thebnumexpr.

Some inputs are weird (such as the first one with three minus signs) because

they served originally to check the syntax.

\bnumexpr ---1 208 637 867 * (2 187 917 891 - 3 109 197 072)\relax

1113492904235346927

\bnumexpr (13_8089_1090-300_1890_2902)*(1083_1908_3901-109_8290_3890)\rel⤸
ax

-2787514672889976289932

\bnethe \bnumexpr (92_874_927_979**5-31_9792_7979**6)/30!\relax

-4006240736596543944035189

\bnumeval{30!}

265252859812191058636308480000000

\bnumeval{30!/20!/21/22/23/24/25/(26*27*28*29)}

30

\bnumeval{13^50//12^50, 13^50/:12^50}

54, 650556287901099025745221048683760161794567947140168553

\bnumeval{13^50/12^50, 12^50}

55, 910043815000214977332758527534256632492715260325658624

\bnumeval{(1^10+2^10+3^10+4^10+5^10+6^10+7^10+8^10+9^10)^3}

118685075462698981700620828125

\bnumeval{100!/36^100}

219

Let's check hexadecimal input:

\bnumeval{"0010 * "0100 * 0x1000 * 0xA0000, 16^(1+2+3+4)*10}

10995116277760, 10995116277760

And also hexadecimal output:

\bnumeval[h]{"7F_FFF_FFF+1, 0x0400^3, "ABCDEF*"0000FEDCBA, 1234}

80000000, 40000000, AB0A74EF03A6, 4D2

Let's make a few checks of octal and binary:

\bnumeval[o]{'75316420 * 0o44445555}

4305576055707720

3

4 Customizing how output is “printed out”

\bnumeval[b]{'75316420 * 0o44445555}

100011000101101111110000101101111000111111010000

\bnumeval[b]{0xFFFF, 0o77, 0b1000001^3}

1111111111111111, 111111, 1000011000011000001

We end with some strange non-recommended things to check details of how the

parser expands the input:

\bnumeval{"0000\bnumeval [h]{00000012345678}FFFF, 000012345679*16**4-1}

809086418943, 809086418943

\bnumeval[o]{0b000\bnumeval [b]{'123456}, 0x\bnumeval [h]{0o00000123456}}

123456, 123456

4 Customizing how output is “printed out”

4.1 Printing big numbers

TEX and LATEX will not split long numbers at the end of lines. I personally

often use helper macros (not in the package) of the following type:

\def\allowsplits #1{\ifx #1\relax \else #1\hskip 0pt plus 1pt\relax
\expandafter\allowsplits\fi}%

\def\printnumber #1{\expandafter\allowsplits \romannumeral-`0#1\relax }%

Here is an example of use and its output:

\noindent|\bnumeval{1000!} =|
\textcolor{digitscolor}{\printnumber{\bnumeval{1000!}}}

\bnumeval{1000!} = 40238726007709377354370243392300398571937486421071463

254379991042993851239862902059204420848696940480047998861019719605863166

687299480855890132382966994459099742450408707375991882362772718873251977

950595099527612087497546249704360141827809464649629105639388743788648733

711918104582578364784997701247663288983595573543251318532395846307555740

911426241747434934755342864657661166779739666882029120737914385371958824

980812686783837455973174613608537953452422158659320192809087829730843139

284440328123155861103697680135730421616874760967587134831202547858932076

716913244842623613141250878020800026168315102734182797770478463586817016

436502415369139828126481021309276124489635992870511496497541990934222156

683257208082133318611681155361583654698404670897560290095053761647584772

842188967964624494516076535340819890138544248798495995331910172335555660

213945039973628075013783761530712776192684903435262520001588853514733161

170210396817592151090778801939317811419454525722386554146106289218796022

383897147608850627686296714667469756291123408243920816015378088989396451

826324367161676217916890977991190375403127462228998800519544441428201218

736174599264295658174662830295557029902432415318161721046583203678690611

726015878352075151628422554026517048330422614397428693306169089796848259

4

4 Customizing how output is “printed out”

012545832716822645806652676995865268227280707578139185817888965220816434

834482599326604336766017699961283186078838615027946595513115655203609398

818061213855860030143569452722420634463179746059468257310379008402443243

846565724501440282188525247093519062092902313649327349756551395872055965

422874977401141334696271542284586237738753823048386568897646192738381490

014076731044664025989949022222176590433990188601856652648506179970235619

389701786004081188972991831102117122984590164192106888438712185564612496

079872290851929681937238864261483965738229112312502418664935314397013742

853192664987533721894069428143411852015801412334482801505139969429015348

307764456909907315243327828826986460278986432113908350621709500259738986

355427719674282224875758676575234422020757363056949882508796892816275384

886339690995982628095612145099487170124451646126037902930912088908694202

851064018215439945715680594187274899809425474217358240106367740459574178

516082923013535808184009699637252423056085590370062427124341690900415369

010593398383577793941097002775347200000000000000000000000000000000000000

00

00

000

TEX-nical note: \bnumeval is f-expandable, so the \romannumeral-`0 as used here in \prin⤸
tnumber causes its full expansion (even if for example the output contains multiple values,

separated by commas). So then \printnumber's auxiliary can simply loop over the tokens.

TEX-nical note: Note that inside math mode, the inserted \hskip's have no effect. There

should be some \allowbreak's. By the way, we allow some stretch so that line endings match

the actual linewidth.

4.2 \bnumprintone, \bnumprintonesep

The output values are each fetched to \bnumprintone and separated by \bnumpr⤸
intonesep.

Here are the default definitions (or rather some quasi equivalents in LATEX's

lingua):

\newcommand{\bnumprintone}[1]{#1}
\newcommand{\bnumprintonesep}{, }

In other terms \bnumprintone produces its argument ``as is'', and multiple

values get separated by a comma and a space.

Let's say you want the output to be boxed. Doing \fbox{\bnumeval{...}}

will make one single frame even in case of multiple values. Redefining \bnu⤸
mprintone is the way to go:

\RenewDocumentCommand{\bnumprintone}{m}{\fbox{#1}}
\bnumeval{2^10, 3^10, 5^10, 7^10}

1024 , 59049 , 9765625 , 282475249

It is important to have used \RenewDocumentCommand and not \renewcommand

here, because \bnumprintone and \bnumprintonesep have to be compatible with

expansion only context.

5

4 Customizing how output is “printed out”

TEX-nical note: That means that \bnumprintone in an \edef should not give rise to any

\newcommand, lower level \def, count or dimen assignments, etc....

This constraint is due to the fact that \bnumeval wraps the final print-out inside of

\expanded, for TEXnical reasons.

The simplest way for \bnumprintone (considering that its argument will already have been

fully expanded to digit tokens) and \bnumprintonesep to be ``safe'' is that they do not expand

at all in \edef. This is the case if they are defined using \RenewDocumentCommand. With an

older LATEX, or Plain ε-TEX (but having some \fbox at our disposal), we would have used here
\protected\def\bnumprintone#1{\fbox{#1}}.

A more common use case will be to have the outputs be typeset according to

the conventions of the document language. This is easily done redefining

\bnumprintone in terms of (for example) the \np macro of package numprint.

\RenewDocumentCommand{\bnumprintone}{m}{\np{#1}}
\renewcommand{\bnumprintonesep}{ --- }
\bnumeval{2^10, 3^10, 5^10, 7^10}

1,024 --- 59,049 --- 9,765,625 --- 282,475,249

TEX-nical note: Usage of \RenewDocumentCommand for \bnumprintonesep was not needed here,

obviously its expansion could cause no trouble.

Let's give another use case. Assume you are computing in one go multiple

large values, too large to fit on a line. The simple-minded \printnumber of

the previous section will (due to some TEXnicality) swallow the spaces in-

jected by \bnumprintonesep. To fix this, the simplest is to redefine \bnump⤸
rintone to execute \printnumber:

\renewcommand{\bnumprintone}[1]{\printnumber{#1}}
\bnumeval{2^100, 3^100, 5^100, 7^100}

1267650600228229401496703205376, 515377520732011331036461129765621272702

107522001, 7888609052210118054117285652827862296732064351090230047702789

306640625

TEX-nical note: Our \printnumber belongs to this family of macros causing no damage if ex-

panding in an \edef. So, it was not needed to use \RenewDocumentComand.

4.3 \bnumprintonehex, \bnumprintoneoct, \bnumprintonebin

When \bnumeval is exerted with [h], [o] or [b] it does not use \bnumprintone

but one of \bnumprintonehex, \bnumprintoneoct or \bnumprintonebin. The same

\bnumprintonesep is used as with decimal numbers.

The default definitions are as for \bnumprintone to ``print as is''.

To give an example of a custom definition, one may want hexadecimal output

to use the 0x prefix. This is very easy:

\renewcommand{\bnumprintonehex}[1]{0x#1}

\bnumeval[h]{7^30, 13^20, 20!}

0x12A4E415E1E1B36FF883D1, 0x40642DAC4A3F8EEB7D1, 0x21C3677C82B40000

TEX-nical note: It was unneeded to use \RenewDocumentCommand here because prefixing with 0x

is obviously compatible with expansion-only context.

6

https://ctan.org/pkg/numprint

5 Babel-active characters are not a problem!

5 Babel-active characters are not a problem!

Some languages use active characters with PDFLATEX. For example the babel-fre⤸
nch module turns the colon : and the exclamation mark ! into active characters

(whose expansions would cause \bnumeval to crash). It used to be necessary to

take preventive measures such as either turning the activation off altogether

or use in the input /\string: and \string! as clumsy replacements of /: and

!.

Those troubled times are gone! With release 1.6 they will work fine as is in

\bnumeval. The same applies to all other characters if babel-active. There

are miracles sometimes!

Warning: characters made active otherwise still need the \string or other

workaround to be usable as operators in the syntax.

6 Fine print (not needed to read this for regular use)

6.1 The \bnumsetup command
Package bnumexpr needs that some big integer engine provides the macros doing the actual com-

putations.

By default, it loads package xintcore (a subset of xintexpr) and package xintbinhex.

\usepackage{xintcore}

\usepackage{xintbinhex}

It then uses \bnumsetup in the following way (the final comma is optional, and spaces around

equal signs also; there can also be spaces before the commas but the author dislikes such style

a lot so they are not used here):

\bnumsetup{%

add = \xintiiAdd, sub = \xintiiSub, opp = \xintiiOpp,

mul = \xintiiMul, pow = \xintiiPow, fac = \xintiiFac,

div=\xintiiDivFloor, mod=\xintiiMod, divround=\xintiiDivRound,

hextodec=\xintHexToDec, octtodec=\xintOctToDec, bintodec=\xintBinToDec,

dectohex=\xintDecToHex, dectooct=\xintDecToOct, dectobin=\xintDecToBin,

}%

One can use \bnumsetup to map one, some, or all keys to macros of one's own choosing. Of

course it is then up to user to load the suitable packages.

If one has alternatives for all of the above xintcore macros, so that this package is not

needed at all, one can pass option customcore to bnumexpr at loading time:

\usepackage[customcore]{bnumexpr }

This tells to not load xintcore.

Similarly there is an option custombinhex to not load xintbinhex. Make sure then to provide

suitable replacements to all base conversion macros!

Option custom means doing both of customcore and custombinhex. Even under this option

package xintkernel will always be loaded.

Here are the conditions that the custom macros must obey:

1. They all must be f-expandable. More precisely:

a) The macro for computing factorials only has to be x-expandable.

b) Note that any x-expandable macro can be wrapped into an f-expandable one, using

\expanded.

7

http://www.ctan.org/pkg/bnumexpr
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/bnumexpr
http://www.ctan.org/pkg/bnumexpr
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint

6 Fine print (not needed to read this for regular use)

c) If \bnumprintonehex is redefined and becomes \protected then the macro for con-

verting to hexadecimal (value of key dectohex) only has to be x-expandable, and

similarly for conversion to octal and binary.

2. It is sufficient for them to be able to handle arguments in raw normalized form, i.e.,

sequences of explicit decimal (or hexadecimal for the macro associated with key hextod⤸
ec) digits, no leading zeros, with at most one minus sign and no plus sign.

3. Their output format is limited only by the fact that it should be acceptable input to

all the other operators, as well as to the user optional re-definition of \bnumprinto⤸
ne. If one cares about hexadecimal (et al.) output one must ensure the macros output

format is suitable input for those macros actually doing the conversion from decimal to

other bases.

4. Important: hence if only some macros among those associated to operators (i.e. those

by default originating in xintcore), or to conversions into decimal, are custom, their

output must be produced in raw normalized form, as this is the format required by the
xintcore macros and by the xintbinhex macros converting from decimal to other bases.

However if one does not care about producing output in binary, octal or hexadecimal (as

is the case in the next section), and if one has replaced all xintcore macros, the output

format can be as one likes.

6.2 Example of customization: let’s handle fractions!
I will show how to transform \bnumeval into a calculator with fractions! We will use the

xintfrac macros, but coerce them into always producing fractions in lowest terms (except for

powers). For optimization we use the [0] post-fix which speeds-up the input parsing by the

xintfrac macros. We remove it on output via a custom \bnumprintone.

Note that the / operator is associated to divround key but of course here the used macro

will simply do an exact division of fractions, not a rounded-to-an integer division. This is

the whole point of using a macro of our own choosing!

\usepackage{xintfrac}

\newcommand\myIrrAdd[2]{\xintIrr{\xintAdd{#1}{#2}}[0]}

\newcommand\myIrrSub[2]{\xintIrr{\xintSub{#1}{#2}}[0]}

\newcommand\myIrrMul[2]{\xintIrr{\xintMul{#1}{#2}}[0]}

\newcommand\myDiv[2]{\xintIrr{\xintDiv{#1}{#2}}[0]}

\newcommand\myDivFloor[2]{\xintDivFloor{#1}{#2}[0]}

\newcommand\myMod[2]{\xintIrr{\xintMod{#1}{#2}}[0]}

\newcommand\myPow[2]{\xintPow{#1}{#2}}% will have already postfix [0]

\newcommand\myFac[1]{\xintFac{#1}}% will have already postfix [0]

\makeatletter

\def\myRemovePostFix#1{\@myRemovePostFix#1[0]\relax}%

\def\@myRemovePostFix#1[0]#2\relax{#1}

\makeatother

\let\bnumprintone\myRemovePostFix

\bnumsetup{add=\myIrrAdd, sub=\myIrrSub, mul=\myIrrMul,

divround=\myDiv, div=\myDivFloor,

mod=\myMod, pow=\myPow, fac=\myFac}%

\bnumeval{1000000*(1/100+1/2^7-20/5^4)/(1/3-5/7+9/11)^2}

-1514118375/20402

\bnumeval{(1-1/2)(1-1/3)(1-1/4)(1-1/5)(1-1/6)(1-1/7)}

1/7

\bnumeval{(1-1/3+1/9-1/27-1/81+1/243-1/729+1/2187)^5}

10485760000000000/50031545098999707

8

http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint

6 Fine print (not needed to read this for regular use)

\bnumeval{(1+1/10)^10 /: (1-1/10)^10}

764966897/5000000000

\bnumeval{2^-3^4}

1/2417851639229258349412352

Computations with fractions quickly give birth to big results, see subsection 4.1 on how to

modify \bnumprintone to coerce TEX into wrapping numbers too long for the available width.

6.3 Significant differences between \bnumexpr and \numexpr
Apart from the extension to big integers and the added operators, there are a number of impor-

tant differences between \bnumexpr and \numexpr:

1. Contrarily to \numexpr, the \bnumexpr parser stops only after having found (and swal-

lowed) a mandatory ending \relax token (it can arise from expansion),

2. In particular note that spaces between digits do not stop \bnumexpr, in contrast with

\numexpr:

\the\numexpr 3 5+79\relax expands (in one step) to 35+79\relax

\thebnumexpr 3 5+79\relax expands (in two steps) to 114

3. With \edef\myvariable{\bnumexpr 1+2\relax}, the computation is done at time of the

\edef. It prepares \myvariable as a self-contained pre-computed unit which is rec-

ognized as such when inserted in a bnumexpr expressions. It triggers tacit multipli-

cation: 7\myvariable is like 7*\myvariable. This is different from what would happen

if we had used \edef\myvariable{\bnethe\bnumexpr...} which would simply have \myvari⤸
able expand to digit tokens so 7\myvariable then constructs a number with 7 as first

digit.

Let's give an example. Note that \edef has the effect of pre-evaluating.

With \def the outputs would be the same, but the computations would be de-

layed to \bnumeval execution.

\edef\x{\bnumexpr 3^10\relax}% precomputes but keeps private format

\bnumeval{10000\x }

590490000

\edef\y{\bnethe\bnumexpr 3^10\relax}% evaluates to explicit digits

\bnumeval{10000\y }

1000059049

In the example with \x, tacit multiplication applied, whereas in the example

with \y it is as if the digits had been input by hand in place of \y. Note

that the tacit multiplication behaves as expected relative to powers:

\bnumeval{10^10\x }

590490000000000

And we certainly do no want to try 10^10\y which is like 10^1059049.

There is no analog with \numexpr:

a) \edef\foo{\numexpr1+2\relax} will define \foo as \numexpr1+2\relax where the

calculation is not yet done.

b) Inserting the \foo as is in the document text causes an error.

c) Trying \the\numexpr 7\foo\relax with such a \foo causes an error. One must use

the multiplication sign * explicitly.

4. Expressions may be comma separated. On input, spaces are ignored, and on output the

values are comma separated with a space after each comma,

5. \thebnumexpr -(1+1)\relax is legal contrarily to \the\numexpr -(1+1)\relax which raises

an error,

9

http://www.ctan.org/pkg/bnumexpr

6 Fine print (not needed to read this for regular use)

6. \thebnumexpr 2+-(1+1)\relax is legal contrarily to \the\numexpr 2+-(1+1)\relax which

raises an error,

7. \the\numexpr 2\cnta\relax is illegal (with \cnta a \count-variable.) But \thebnumexp⤸
r 2\cnta\relax is perfectly legal and will do the tacit multiplication,

8. More generally, tacit multiplication applies in front of parenthesized sub-expressions,

or sub \bnumexpr...\relax (or \numexpr...\relax), or also after parentheses in front

of numbers,

9. The underscore _ is accepted within the digits composing a number and is silently ig-

nored by \bnumexpr.

Regarding constructs such as \edef\myvariable{\bnumexpr 1+2\relax}, it was explained \my⤸
variable behaves then in a special way in another \bnumexpr expression (or \bnumeval). It is

also worth mentioning that it can be used directly in the typesetting stream. But if written

to an external file it will expand to some internal format which is not documented as it may

vary in future.

One can NOT use a \myvariable as above in an \ifnum test, even if representing a single small

integer. It will work with syntax such as \ifnum\bnethe\myvariable=7

A point of note is that \bnethe\myvariable or \bnethe\bnumexpr...\relax expand to explicit

digits so (assuming here there no other comma separated value computed),

\ifnum 3>\bnethe\bnumexpr...\relax

...

\fi

is dangerous, because the integer is not properly terminated. Here one could reverse the

order, but the simplest way is simply to use \bnumeval:

\ifnum 3>\bnumeval{...}

...

\fi

Now, the end of line space injected by TEX will terminate the integer and make the \ifnum test

safe.

6.4 For the expert user: expression syntax and its customizability

6.4.1 Expression syntax
The implemented syntax is the expected one with infix operators and parentheses, the recog-

nized operators being +, -, *, / (rounded division), ^ (power), ** (power), // (by default

floored division), /: (the associated modulo) and ! (factorial). One can input hexadeci-

mal numbers as in TEX syntax for number assignments, i.e. using a " prefix and only uppercase

letters ABCDEF. Release 1.6 added support for the 0b, 0o, 0x and ' prefixes.

Commas separating multiple expressions are allowed. The whole expression is handled token

by token, any component (digit, operator, parentheses... even the ending \relax) may arise

on the spot from macro expansions. The underscore _ can be used to separate digits in long

numbers, for readability of the input.

The precedence rules are as expected and detailed in the next section. Operators on the

same level of precedence (like *, /, //, /:) behave in a left-associative way, and these ex-

amples behave as e.g. with Python analogous operators:

\bnumeval{100//3*4, 100*4//3, 100/:3*4, 100*4/:3, 100//3/:5}

132, 133, 4, 1, 3

At 1.5 a change was made to the power operators which became right-associative. Again,

this matches the behaviour e.g. of Python:

\bnumeval{2^3^4, 2^(3^4)}

2417851639229258349412352, 2417851639229258349412352

10

6 Fine print (not needed to read this for regular use)

It is possible to customize completely the behaviour of the parser, in two ways:

• via \bnumsetup which has a simple interface to replace the macros associated with +, -,
*, /, //, /:, **, ^ and ! by custom macros,

• or even more completely via \bnumdefinfix and \bnumdefpostfix which allow to add new
operators to the syntax! (or overwrite existing ones...)

6.4.2 Precedences
The parser implements precedence rules based on concepts which are summarized below. I am

providing them for users who will use the customizing macros.

• an infix operator has two associated precedence levels, say L and R,

• the parser proceeds from left to right, pausing each time it has found a new number and
an operator following it,

• the parser compares the left-precedence L of the new found operator to the right-
precedence R_last of the last delayed operation (which already has one argument and

would like to know if it can use the new found one): if L is at most equal to it, the

delayed operation is now executed, else the new-found operation is kept around to be

executed first, once it will have gathered its arguments, of which only one is known at

this stage.

Although there is thus internally all the needed room for sophistication, the implemented

table of precedences simply puts all of multiplication and division related operations at the

same level, which means that left associativity will apply with these operators. I could see

that Python behaves the same way for its analogous operators.

Here is the default table of precedences as implemented by the package:

Table of precedences

operator left right

+,- 12 12

*,/,//,/: 14 14

tacit * 16 14

**, ^ 18 17

! 20 n/a

Tacit multiplication applies in front of parentheses, and after them, also in front of count

variables or registers. As shown in the table it has an elevated precedence compared to mul-

tiplication explicitly induced by *, so 100/4(9) is computed as 100/36 and not as 25*9:

\bnumeval{100/4(9), (100/4)9, 1000 // (100/4) 9 (1+1) * 13}

3, 225, 26

More generally A/B(C)(D)(E)*F will compute (A/(B*C*D*E))*F.
2

The unary -, as prefix, has a special behaviour: after an infix operator it will acquire a

right-precedence which is the minimum of 12 (i.e. the precedence of addition and subtraction)

and of the right-precedence of the infix operator. For example 2^-3^4 will be parsed as 2^(⤸
-(3^4)), raising an error because the parser is by default integer only, but see the section

about \bnumsetup which explains how to let \bnumeval compute fractions!

6.4.3 \bnumdefinfix
It is possible to define infix binary operators of one's own choosing.3 The syntax is

\bnumdefinfix{⟨operator⟩}{⟨\macro⟩}{⟨L-prec⟩}{⟨R-prec⟩}

2The B(C)(D)(E) product will be computed as B*(C*(D*E)) because the right-precedence of tacit
multiplication is 14 but its left-precedence is 16, creating right associativity. As the underlying
mathematical operation is associative this is irrelevant to final result.

3The effect of \bnumdefinfix is global if under \xintglobaldefstrue setting.

11

6 Fine print (not needed to read this for regular use)

{⟨operator⟩} The characters for the operator, they may be letters or non-letters. Digits are
not allowed to be first or last in ⟨operator⟩. The following characters are not allowed
at all: \, {, }, # and %. Spaces will be removed.4,5,6

{⟨\macro⟩} The expandable macro (expecting two mandatory arguments) which is to assign to
the infix operator. This macro must be f-expandable. Also it must (if the default

package configuration is not modified for the core operators) produce integers in the

``strict'' format which is expected by the xintcore macros for arithmetic: no leading

zeros, at most one minus sign, no plus sign, no spaces.

{⟨L-prec⟩} An integer, minimal 4, maximal 22, which governs the left-precedence of the infix
operator.

{⟨R-prec⟩} An integer, minimal 4, maximal 22, which governs the right-precedence of the infix
operator.

Generally, the two precedences are set to the same value.

Once a multi-character operator is defined, the first characters of its name can be used

if no ambiguity. In case of ambiguity, it is the earliest defined shortcut which prevails,

except for the full name. So for example if $abc operator is defined, and $ab is defined next,

then $ and $a will still serve as shortcuts to the original $abc, but $ab will refer to the

newly defined operator.

Fully qualified names are never ambiguous, and a shortcut once defined will change meaning

only under two circumstances:

• it is re-defined as the full name of a new operator,
• the original operator to which the shortcut refers is defined again; then the shortcut
is automatically updated to point to the new meaning.

\def\equals#1#2{\ifnum\pdfstrcmp{#1}{#2}=0 \expandafter1\else

\expandafter0\fi}

% or:

\def\equals#1#2{\expanded{\ifnum\pdfstrcmp{#1}{#2}=0 1\else0\fi}}

\def\differ#1#2{\expanded{\ifnum\pdfstrcmp{#1}{#2}=0 0\else1\fi}}

\bnumdefinfix{==}{\equals}{10}{10}

\bnumdefinfix{!=}{\differ}{10}{10}

\bnumdefinfix{times}{\xintiiMul}{14}{14}

\bnumdefinfix{++}{\xintiiAdd}{19}{19}

\bnumeval{2 + 3! = 5, 2 + (3!) == 8}

0, 1

Notice in the 2+3! = 5 example that the existence of != prevails on applying the factorial,

so this is test whether 2+3 and 5 differ; it is not a matter of precedence here, but of input

parsing ignoring spaces. And 2+3! == 8 would create an error as after having found the !⤸
= operator and now expecting a digit (as there is no !== operator) the parser would find an

unexpected = and report an error. Hence the usage of parentheses in the input.7

\bnumeval{2^5 == 4 times 8, 11 t 14}

1, 154

4The _ can be used, but not as first character of the operator, as it would be mis-construed on usage
as part of the previous number, and ignored as such.

5It is actually possible to use # as an operator name or a character in such a name but the definition
with \bnumdefinfix must then be done either with \string# or ####...

6Active characters (except if they expand to innocent ones) must be prefixed by \string at the time
of the definition of the operator whose names will use them. Same at time of use, except if they
are Babel active then (new with 1.6) they need no precaution at time of use.

7With xintexpr, whose \xinteval has a != operator, 2+3!==8 is interpreted automatically as 2+(3!)=⤸
=8, thanks to internal work-around added at 1.4g. This has not been backported to bnumexpr as
it does not per default support operators such as != or == and only has generic support for adding
multi-character operators.

Regarding 2 + 3! = 5, trying to let this be interpreted as 2+(3!)=5 makes sense only if a =

12

http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/bnumexpr

6 Fine print (not needed to read this for regular use)

\bnumeval{100 ++ -10 ^ 3, (100 - 10)^3, 2 ^ 5 ++ 3, 2^(5+3)}

729000, 729000, 256, 256

6.4.4 \bnumdefpostfix
It is possible to define postfix unary operators of one's own choosing.8 The syntax is

\bnumdefpostfix{⟨operator⟩}{⟨\macro⟩}{⟨L-prec⟩}
{⟨operator⟩} The characters for the operator name: same conditions as for \bnumdefinfix.

Postfix and infix operators share the same name-space, regarding abbreviated names.

{⟨\macro⟩} The one argument expandable macro to assign to the postfix operator. This macro
only needs to be x-expandable.

{⟨L-prec⟩} An integer, minimal 4, maximal 22, which governs the left-precedence of the infix
operator.

Examples below which use the maximal precedence are typical of what is expected of a ``func-

tion'' (and I even used .len() notation with parentheses in one example, the parentheses are

part of the postfix operator name). And indeed such postfix operators are thus a way to im-

plement functions in disguise, circumventing the fact that the bnumexpr parser will never be

extended to work with functional syntax (for this, see xintexpr). With the convention (fol-

lowed in some examples) that such postfix operators start with a full stop, but never contain

another one, we can chain simply by using concatenation (no need for parentheses), as there

will be no ambiguity.

\usepackage{xint}% for \xintiiSum, \xintiiSqrt

\def\myRev#1{\xintNum{\xintReverseOrder{#1}}}% reverse and trim leading zeros

\bnumdefpostfix{$}{\myRev}{22}% the $ will have top precedence

\bnumdefpostfix{:}{\myRev}{4}% the : will have lowest precedence

\bnumdefpostfix{::}{\xintiiSqr}{4}% the :: is a completely different operator

\bnumdefpostfix{.len()}{\xintLength}{22}% () for fun but a single . will be enough!

\bnumdefpostfix{.sumdigits}{\xintiiSum}{22}% .s will abbreviate

\bnumdefpostfix{.sqrt}{\xintiiSqrt}{22}% .sq will be unambiguous (but confusing)

\bnumdefpostfix{.rep}{\xintReplicate3}{22}% .r will be unambiguous

\bnumeval{(2^31).len(), (2^31)., 2^31$, 2^31:, (2^31)$}

10, 10, 8192, 8463847412, 8463847412

\bnumeval{(2^31).sqrt, 100000000.sq.sq}

46340, 100

\bnumeval{(2^31).sumdigits, 123456789.s, 123456789.s.s, 123456789.s.s.s}

47, 45, 9, 9

\bnumeval{10^10+10000+2000+300+40+5:}

54321000001

operator has been defined. If no != operator exists, the magic will be automatic. If however both
= and != exist, then it would need special overhead to the parser dealings when finding ! to avoid
the != interpretation. One could imagine distinguishing ! = from != but the swallowing of spaces
is deeply coded in the parser. As bnumexpr by default supports no infix operator starting with !,
it is not worth it to include in the package extra overhead to solve such issues when extending the
syntax. At the level of xintexpr, there is no issue because there is no = operator.

8The effect of \bnumdefpostfix is global if under \xintglobaldefstrue setting.

13

http://www.ctan.org/pkg/bnumexpr
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/bnumexpr
http://www.ctan.org/pkg/xintexpr

7 Changes

\bnumeval{1+2+3+4+5+6+7+8+9+10 :: +1 :: *2 :: :: :}

612716271751406378427089874211

\bnumeval{123456789.r}

123456789123456789123456789

\bnumdefpostfix{.rep}{\xintReplicate5}{22}% .rep modified --> .r too

\bnumeval{123456789.r}

123456789123456789123456789123456789123456789

7 Changes

1.6 (2025/09/05)
Breaking changes:

• Release 1.4n or later of the xint bundle is required (for those com-
ponents actually used, which by default are xintkernel, xintcore

and xintbinhex).

• \evaltohex is deprecated and causes an auto-recovering error to
signal it. It will be removed at next release. Use new \bnumev⤸
al[h].

• \bnumexprsetup was deprecated at 1.5 and renamed into \bnumsetup.
It has now been removed.

• \bnumprintonetohex and \bnumhextodec, which were documented as
customizable do not exist anymore. Check the documentation for ⤸
\bnumprintonehex and \bnumsetup's key hextodec.

• Under the custom option, not only xintcore but also xintbinhex are
not loaded. Use customcore to avoid that. There is also custombin⤸
hex.

Bug fixes:

• An underscore _ located in front of a number used to cause an error.
It is now ignored.

New features:

• 0b, 0o and 0x are recognized as prefixes for binary, octal, and hex-
adecimal inputs. And ' is recognized as prefix for octal input, in

addition to " for hexadecimal.

• \bnumeval accepts an optional argument [b] or [o] or [h] for auto-
matic conversion of the calculated value (or comma separated val-

ues) to respectively binary, octal, or hexadecimal.

• Babel-active characters (such as : and ! with French) do not need
any preventive measures anymore such as using \string! in place of

!.

14

http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint

7 Changes

• \bnumsetup can now be used also to customize which macros implement
conversion from decimal to other bases.

The documentation was extensively revised and made more user-friendly.

1.5 (2021/05/17) • breaking change: the power operators act now in a

right associative way; this has been announced at xintexpr as a

probable future evolution, and is implemented in anticipation here

now.

• fix two bugs (imported from upstream xintexpr) regarding hexadec-
imal input: impossibility to use "\foo syntax (one had to do \exp⤸
andafter"\foo which is unexpected constraint; a very longstanding

xintexpr bug) and issues with leading zeros (since xintexpr 1.2m).

• renamed \bnumexprsetup into \bnumsetup; the former remains avail-
able but is deprecated. [REMOVED AT 1.6]

• the customizability and extendibility is now total:

1. \bnumprintone, \bnumprintonetohex, \bnumprintonesep, \bnumhe⤸
xtodec,

2. \bnumdefinfix which allows to add extra infix operators,

3. \bnumdefpostfix which allows to add extra postfix operators.

• \bnumsetup, \bnumdefinfix, \bnumdefpostfix obey the \xintglobald⤸
efstrue and \xintverbosetrue settings.

• documentation is extended, providing details regarding the prece-
dence model of the parser, as inherited from upstream xintexpr;

also an example of usage of \bnumsetup is included on how to trans-

form \bnumeval into a calculator with fractions.

1.4a (2021/05/13) • fix undefined control sequences errors encountered
by the parser in case of either extra or missing closing parenthe-

sis (due to a problem in technology transfer at 1.4 from upstream

xintexpr).

• fix \BNE_Op_opp must now be f-expandable (also caused as a collat-
eral to the technology transfer).

• fix user documentation regarding the constraints applying to the
user replacement macros for the core algebra, as they have changed

at 1.4.

1.4 (2021/05/12) • technology transfer from xintexpr 1.4 of 2020/01/31.
The \expanded primitive is now required (TeXLive 2019).

• addition to the syntax of the " prefix for hexadecimal input.

• addition of \evaltohex which is like \bnumeval with an extra con-
version step to hexadecimal notation.

1.2e (2019/01/08) Fixes a documentation glitch (extra braces when mention-
ing \the\numexpr or \thebnumexpr).

15

http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xintexpr

7 Changes

1.2d (2019/01/07) • requires xintcore 1.3d or later (if not using option
custom).

• adds \bnumeval{⟨expression⟩} user interface.

1.2c (2017/12/05) Breaking changes:

• requires xintcore 1.2p or later (if not using option custom).

• divtrunc key of \bnumexprsetup is renamed to div.

• the // and /: operators are now by default associated to the floored
division. This is to keep in sync with the change of xintcore at 1⤸
.2p.

• for backwards compatibility, one may add to existing document:
\bnumexprsetup{div=\xintiiDivTrunc, mod=\xintiiModTrunc}

1.2b (2017/07/09) • the _ may be used to separate visually blocks of dig-
its in long numbers.

1.2a (2015/10/14) • requires xintcore 1.2 or later (if not using option
custom).

• additions to the syntax: factorial !, truncated division //, its
associated modulo /: and ** as alternative to ^.

• all options removed except custom.

• new command \bnumexprsetup which replaces the commands such as \bn⤸
umexprusesbigintcalc.

• the parser is no more limited to numbers with at most 5000 digits.

1.1b (2014/10/28) • README converted to markdown/pandoc syntax,

• the package now loads only xintcore, which belongs to xint bun-
dle version 1.1 and extracts from the earlier xint package the core

arithmetic operations as used by bnumexpr.

1.1a (2014/09/22) • added l3bigint option to use experimental LATEX3 pack-
age of the same name,

• added Changes and Readme sections to the documentation,

• better \BNE_protect mechanism for use of \bnumexpr...\relax inside
an \edef (without \bnethe). Previous one, inherited from xintexp⤸
r.sty 1.09n, assumed that the \.=<digits> dummy control sequence

encapsulating the computation result had \relax meaning. But re-

moving this assumption was only a matter of letting \BNE_protect

protect two, not one, tokens. This will be backported to next ver-

sion of xintexpr, naturally (done with xintexpr.sty 1.1).

1.1 (2014/09/21) First release. This is down-scaled from the (development
version of) xintexpr. Motivation came the previous day from a chat

with Joseph Wright over big int status in LATEX3. The \bnumexpr...\relax

16

http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xintexpr

8 License

parser can be used on top of big int macros of one's choice. Function-

alities limited to the basic operations. I leave the power operator ^

as an option.

8 License

Copyright © 2014-2022, 2025 Jean-François Burnol

| This Work may be distributed and/or modified under the
| conditions of the LaTeX Project Public License 1.3c.
| This version of this license is in

> <http://www.latex-project.org/lppl/lppl-1-3c.txt>

| and version 1.3 or later is part of all distributions of
| LaTeX version 2005/12/01 or later.

This Work has the LPPL maintenance status "author-maintained".

The Author and Maintainer of this Work is Jean-François Burnol.

This Work consists of the main source file and its derived files

bnumexpr.dtx, bnumexpr.sty, bnumexpr.pdf, bnumexpr.tex,
bnumexprchanges.tex, README.md

17

9 Commented source code

9 Commented source code

Package identification . 9.1, p. 19
Load xintkernel . 9.2, p. 19
Save catcode regime and switch to our own . 9.3, p. 19
Load optionally xintcore and xintbinhex . 9.4, p. 19
\bnumsetup . 9.5, p. 19
Some extra constants needed for user defined precedences 9.6, p. 20
\bnumexpr, \bnethe, \bnumeval . 9.7, p. 21
\BNE_getnext . 9.8, p. 23
Parsing decimal, hexadecimal, octal, and binary 9.9, p. 25
\BNE_getop . 9.10, p. 31
Expansion spanning; opening and closing parentheses 9.11, p. 32
The comma as binary operator . 9.12, p. 34
The minus as prefix operator of variable precedence level 9.13, p. 35
The infix operators. 9.14, p. 36
Extending the syntax: \bnumdefinfix, \bnumdefpostfix 9.15, p. 38
! as postfix factorial operator . 9.16, p. 39
Cleanup . 9.17, p. 39

At 1.6, \bnumeval requires the 1.4n release of xintcore and xintbinhex (or at least

of xintkernel if option custom is used). It adds 0b, 0o, ', and 0x to the syntax, and

admits optional parameters [b], [o], and [h] to produce the output converted to binary,

octal, or hexadecimal.

It is amusing that implementing the support for the optional argument had the un-

anticipated corollary that Babel active characters (such as ! with French) are auto-

taming. See the code comments.

A problem with _ if upfront in numbers was fixed.

There was some refactoring, relative to extending \bnumsetup with new keys related

to base conversion macros and this lead to the removal of \bnumprintonetohex and

\bnumhextodec.

At 1.5, right-associativity was enforced for powers in anticipation of upstream xin-

texpr 1.4g 2021/05/25, and the customizability and extendibility of the package is made

total via added \bnumdefinfix and \bnumdefpostfix.
Older comments at time of 1.4 and 1.4a releases:

I transferred mid-May 2021 from xintexpr its \expanded based infra-structure from its own 1.4 release

of January 2020 and bumped version to 1.4. Also I added support for hexadecimal input and output, via

xintbinhex.

A few comments added here at 1.4a:

• It looked a bit costly and probably would have been mostly useless to end users to integrate in
bnumexpr support for nested structures via square brackets [,], which is in xintexpr since its

January 2020 1.4 release. But some of the related architecture remains here; we could make some

gains probably but diverging from upstream code would make maintenance a nightmare.

• Formerly, the \csname...\endcsname encapsulation technique had the after-effect to allow the macros
supporting the infix operators to be only x-expandable. At 1.4, I could have still allowed support

macros being only x-expandable, but, keeping in sync with upstream, I have used only a \romannumeral

18

http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/bnumexpr
http://www.ctan.org/pkg/xintexpr

bnumexpr implementation

trigger and did not insert an \expanded, so now the support macros must be f-expandable. The 1.4a

release fixes the related user documentation of \bnumsetup which was not updated at 1.4. The support

macro for the factorial however needs only be x-expandable.

• Also, I simply do not understand why the legacy (1.2e) user documentation said that the support
macros were supposed to f-expand their arguments, as they are used only with arguments being ex-

plicit digit tokens (and optional minus sign).

• The \bnumexpr\relax syntax creating an empty ople is by itself now legal, and can be injected (comma
separated) in an expression, keeping it invariant, however \bnumeval{} ends in a Paragraph ended ⤸
before \BNE_print_c was complete error because \BNEprint makes the tacit requirement that the 1D

ople to output has at least one item.

9.1 Package identification

1 \NeedsTeXFormat{LaTeX2e}%
2 \ProvidesPackage{bnumexpr}[2025/09/05 v1.6 Expressions with big integers (JFB)]%

9.2 Load xintkernel

At 1.6, in order to make the base conversion macros also customizable, hence not mandate

loading of xintbinhex, we only load unconditionally xintkernel.

We then switch to the familiar catcode regime of the xintexpr sources.

3 \RequirePackage{xintkernel}[2025/09/05]%

9.3 Save catcode regime and switch to our own

4 \edef\BNErestorecatcodesendinput{\XINTrestorecatcodes\noexpand\endinput}%
5 \XINTsetcatcodes%

9.4 Load optionally xintcore and xintbinhex

1.6 adds customcore as alias of legacy custom. It adds custombinhex to add possibility

of not loading xintbinhex either. Option custom now means both of customcore and custo⤸
mbinhex.

But who on Earth isn't going to use with delight both my xintcore and xintbinhex?

6 \def\BNE_tmpa{1}\def\BNE_tmpb{1}%
7 \DeclareOption{custom}{\def\BNE_tmpa{0}\def\BNE_tmpb{0}}%
8 \DeclareOption{customcore}{\def\BNE_tmpa{0}}%
9 \DeclareOption{custombinhex}{\def\BNE_tmpb{0}}%

10 \ProcessOptions\relax
11 \if1\BNE_tmpa\RequirePackage{xintcore}[2025/09/05]\fi
12 \if1\BNE_tmpb\RequirePackage{xintbinhex}[2025/09/05]\fi

9.5 \bnumsetup

\bnumsetup is the new name at 1.5 of \bnumexprsetup. The old name was kept as an alias

at 1.5, and deleted at 1.6.

Note that a final comma will cause no harm.

13 \catcode`! 3
14 \def\bnumsetup #1{\BNE_parsekeys #1,=!,}%
15 \def\BNE_parsekeys #1=#2#3,%

19

http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint

bnumexpr implementation

16 {%
17 \ifx!#2\expandafter\BNE_parsedone\fi
18 \XINT_global
19 \expandafter
20 \let\csname BNE_Op_\xint_zapspaces #1 \xint_gobble_i\endcsname%
21 =#2%
22 \ifxintverbose
23 \PackageInfo{bnumexpr}{assigned
24 \ifxintglobaldefs globally \fi
25 \string#2 to \xint_zapspaces #1 \xint_gobble_i\MessageBreak

Workaround for the space inserted by \on@line.

26 \expandafter\xint_firstofone}%
27 \fi
28 \BNE_parsekeys
29 }%
30 \def\BNE_parsedone #1\BNE_parsekeys {}%
31 \catcode`! 12

Final comma and spaces are only to check if it does work. But I will NOT insert spaces

before commas, even though they are allowed!

1.6 also handles base conversion macros here. Prior to 1.6 this \bnumsetup configu-

ration was not executed if package received option custom (now customcore). But as the

user is then responsible for redefining all keys, why bother.

32 \bnumsetup{%
33 add = \xintiiAdd, sub = \xintiiSub, opp = \xintiiOpp,
34 mul = \xintiiMul, pow = \xintiiPow, fac = \xintiiFac,
35 div = \xintiiDivFloor, mod = \xintiiMod, divround = \xintiiDivRound,
36 hextodec=\xintHexToDec, octtodec=\xintOctToDec, bintodec=\xintBinToDec,
37 dectohex=\xintDecToHex, dectooct=\xintDecToOct, dectobin=\xintDecToBin,
38 }%

By the way the keys should have been Add, Sub, ..., not add, sub, ..., so internally

\BNE_Op_Add etc... would have been the macros defined by \bnumsetup and used in the

code, not \BNE_Op_add (et al.) whose casing does not match my naming conventions.

9.6 Some extra constants needed for user defined precedences

For the mechanism of \bnumdefinfix we need precedence levels to be available as

\chardef's. xintkernel already provides 0-10, 12, 14, 16, 17, 18, 20, 22.

Left levels need to be represented by one token; right levels are hard-coded into c⤸
heckp_<op> macros and could have been there explicit digit tokens but we will use the

\xint_c_... \char-tokens.

39 \chardef\xint_c_xi 11
40 \chardef\xint_c_xiii 13
41 \chardef\xint_c_xv 15
42 \chardef\xint_c_xix 19
43 \chardef\xint_c_xxi 21

20

http://www.ctan.org/pkg/xint

bnumexpr implementation

9.7 \bnumexpr, \bnethe, \bnumeval

\XINTfstop has to be the same as defined in xintexpr, in order for a subexpression \xint⤸
iiexpr...\relax to get recognized in \bnumeval or conversely for \bnumexpr...\relax to

possibly serve inside an \xinteval. But why use bnumexpr then? Besides a sub xintexpr-

ession will break \bnumeval if it is anything else than a 1D flat sequence. And even

then it can work only if internal storage format are kept in sync.

1.6 deprecates \evaltohex in favor of \bnumeval[h].

The \protected \BNEprint will survive to \bnumexpr being expanded in a \write or

\edef. But its expansion will be forced by the \expanded from \bnethe.

I now really dislike \thebnumexpr macro name and at some point had replaced it with

\bnumtheexpr but this got reverted.

44 \def\XINTfstop {\noexpand\XINTfstop}%
45 \def\bnumexpr {\romannumeral0\bnumexpro}%
46 \def\bnumexpro {\expandafter\BNE_wrap\romannumeral0\BNE_bareeval}%

While preparing 1.6 I wondered why the ``.'' after \BNEprint in \BNE_wrap which is then

gobbled by \BNEprint. It was clear it came from xintexpr, but why was it kept here?

The reason is to support having a sub \bnumexpr...\relax inside \bnumeval or \xint⤸
eval. Indeed such a sub-expression is identified via the presence of the \XINTfstop

after its expansion, and the code inside bnumexpr handling this is inherited from xint-

expr, so it expects the structure \XINTfstop then a ``print'' macro, then possibly some

stuff delimited by a full stop (this is related to the implementation of the optional

arguments of \xintfloateval and \xintieval).

As we keep this stuff handled the same way we must inject the seemingly silly full

stop here for \bnumexpr...\relax (or a macro defined from it via an \edef) to be usable

inside \bnumval or another \bnumexpr...\relax.

A consequence is that \bnumexpr...\relax can be used as sub-unit in \xinteval and

conversely \xintiiexpr...\relax in \bnumeval, as long as it does not have nested struc-

tures via bracketed inputs, which are not supported by bnumexpr's syntax. But why would

one do such things? Also this can only work as long as internal storage of intermediate

result by \bnumeval is a sub-case of the way it is done for \xinteval.

47 \def\BNE_wrap {\XINTfstop\BNEprint.}%

It is important to keep in mind that #1 has the structure {{...}{...}...{...}} with an

external brace pair, which here gets removed. In the replacement the external {...}

are for \expanded.

See above about the strange ``.'' inserted by \BNE_wrap and gobbled here. We also

define a non \protected variant without the extra full stop, it will serve for \bnumeva⤸
l (and \thebnumexpr).

48 \protected\def\BNEprint.#1{{\BNE_print#1.}}%
49 \def\BNEprint_#1{{\BNE_print#1.}}%

\bnethe removes the \XINTfstop and activates the printing via \BNEprint.

Attention that prior to 1.6 \bnethe grabbed a #1, hence would work to print a braced

\bnumexpr...\relax, but I don't see the reason for doing that. Removed.

50 \def\bnethe{\expanded\expandafter\xint_gobble_i\romannumeral`&&@}%
51 \def\thebnumexpr{\expanded\expandafter\BNEprint_\romannumeral0\BNE_bareeval}%

21

http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/bnumexpr
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/bnumexpr
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/bnumexpr

bnumexpr implementation

At 1.6 after implementing the [h] optional argument of \bnumeval, there was the un-

anticipated result that this tamed Babel active characters. This is explained by the

expansion happening while a \csname is not yet closed. And by the fact that during its

expansion \bnumeval does not use delimited macros, for example to fetch up to a closing

parenthesis.

I extended the \csname trick to \bnumexpr. Backporting then to xintexpr, it proved

more economical to apply the trick at a lower level, at the level of the ``bareeval''

macros, because there are many more high level entry points overthere. And I am doing

this here too, so I am leaving \bnumexpr (and \thebnumexpr) unchanged.

To compensate a bit the slight overhead I removed one expansion step, so no more a

\BNE_start (which actually was there a bit for nicer tracing) and due to the history of

the development of xintexpr.

For \BNE_check see the section ``Expansion spanning''.

\BNE_bareeval was prior to 1.6 called \bnebareeval, but this was outside of the pack-

age namespace (it should have been \bnumbareeval, or \bnumexprbareeval). Upstream has

\xintbareeval without underscores for legacy reasons.

52 \def\BNE_bareeval{%
53 \csname BNE_check\expandafter\endcsname\romannumeral`&&@\BNE_getnext
54 }%

These next are not \protected because they are only used with \bnumeval, there is no

analog of the private format which \bnumexpr expands to. This also spares us having to

define macros with names which can be written to an external file and re-read using the

standard catcodes. Thus, no need for some \BNEprinthex et al. here.

55 \expandafter\def\csname BNEprint_[h]\endcsname#1{{\BNE_printhex#1.}}%
56 \expandafter\def\csname BNEprint_[o]\endcsname#1{{\BNE_printoct#1.}}%
57 \expandafter\def\csname BNEprint_[b]\endcsname#1{{\BNE_printbin#1.}}%
58 \expandafter\let\csname BNEprint_[]\endcsname\BNEprint_

[b], [o] and [h] added at 1.6.

59 \def\bnumeval #1#{\expanded\bnumeval_a{#1}}%
60 \def\bnumeval_a#1#2{%
61 \csname BNEprint_\xint_zapspaces #1 \xint_gobble_i\expandafter
62 \endcsname\romannumeral0\BNE_bareeval#2\relax
63 }%

This is deprecated at 1.6 and raises an expandable error.

64 \def\evaltohex {\expanded
65 \XINT_expandableerror{\evaltohex is DEPRECATED, use \bnumeval with [h]}%
66 \bnumeval_a{[h]}%
67 }%

This code is more compact at 1.6 than at 1.5.

68 \def\BNE_print#1{%
69 \bnumprintone{#1}\expandafter\BNE_print_a\string
70 }%
71 \def\BNE_print_a#1{%
72 \if#1.\BNE_print_z\fi\bnumprintonesep
73 \expandafter\BNE_print\expandafter{\iffalse}\fi
74 }%
75 \def\BNE_print_z\fi#1\fi{\fi}%

22

http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xintexpr

bnumexpr implementation

There is a breaking change at 1.6 as formerly there was a \bnumprintonetohex. Now, the

decimal to hexadecimal conversion is done always, and the customizable wrapper was thus

renamed to \bnumprintonehex.

76 \def\BNE_printhex#1{%
77 \expandafter\bnumprintonehex
78 \expandafter{\romannumeral`&&@\BNE_Op_dectohex{#1}}%
79 \expandafter\BNE_printhex_a\string
80 }%
81 \def\BNE_printhex_a#1{%
82 \if#1.\BNE_print_z\fi\bnumprintonesep
83 \expandafter\BNE_printhex\expandafter{\iffalse}\fi
84 }%

Octal and binary added at 1.6.

85 \def\BNE_printoct#1{%
86 \expandafter\bnumprintoneoct
87 \expandafter{\romannumeral`&&@\BNE_Op_dectooct{#1}}%
88 \expandafter\BNE_printoct_a\string
89 }%
90 \def\BNE_printoct_a#1{%
91 \if#1.\BNE_print_z\fi\bnumprintonesep
92 \expandafter\BNE_printoct\expandafter{\iffalse}\fi
93 }%
94 \def\BNE_printbin#1{%
95 \expandafter\bnumprintonebin
96 \expandafter{\romannumeral`&&@\BNE_Op_dectobin{#1}}%
97 \expandafter\BNE_printbin_a\string
98 }%
99 \def\BNE_printbin_a#1{%

100 \if#1.\BNE_print_z\fi\bnumprintonesep
101 \expandafter\BNE_printbin\expandafter{\iffalse}\fi
102 }%
103 \let\bnumprintone \xint_firstofone
104 \let\bnumprintonehex\xint_firstofone
105 \let\bnumprintoneoct\xint_firstofone
106 \let\bnumprintonebin\xint_firstofone
107 \def\bnumprintonesep{, }%

9.8 \BNE_getnext

The upstream \BNE_put_op_first has a string of included \expandafter, which was im-

ported here at 1.4 and 1.4a but they serve nothing in our context. Removed this useless

overhead at 1.5.

This \BNE_getnext token is injected via "start" macros associated to operators or

like syntax elements, as will be seen later on.

108 \def\BNE_getnext #1%
109 {%
110 \expandafter\BNE_put_op_first\romannumeral`&&@%
111 \expandafter\BNE_getnext_a\romannumeral`&&@#1%
112 }%
113 \def\BNE_put_op_first #1#2#3{#2#3{#1}}%

23

bnumexpr implementation

114 \def\BNE_getnext_a #1%
115 {%
116 \ifx\relax #1\xint_dothis\BNE_foundprematureend\fi
117 \ifx\XINTfstop#1\xint_dothis\BNE_subexpr\fi
118 \ifcat\relax#1\xint_dothis\BNE_countetc\fi
119 \xint_orthat{}\BNE_getnextfork #1%
120 }%
121 \def\BNE_foundprematureend\BNE_getnextfork #1{{}\xint_c_\relax}%
122 \def\BNE_subexpr #1.#2%
123 {%
124 \expanded{\unexpanded{{#2}}\expandafter}\romannumeral`&&@\BNE_getop
125 }%

At 1.6 this also filters for \catcode (as per xint 1.4g 2021/05/25).

126 \def\BNE_countetc\BNE_getnextfork#1%
127 {%
128 \if0\ifx\count#11\fi
129 \ifx\numexpr#11\fi
130 \ifx\catcode#11\fi
131 \ifx\dimen#11\fi
132 \ifx\dimexpr#11\fi
133 \ifx\skip#11\fi
134 \ifx\glueexpr#11\fi
135 \ifx\fontdimen#11\fi
136 \ifx\ht#11\fi
137 \ifx\dp#11\fi
138 \ifx\wd#11\fi
139 \ifx\fontcharht#11\fi
140 \ifx\fontcharwd#11\fi
141 \ifx\fontchardp#11\fi
142 \ifx\fontcharic#11\fi
143 0\expandafter\BNE_fetch_as_number\fi
144 \expandafter\BNE_getnext_a\number #1%
145 }%
146 \def\BNE_fetch_as_number
147 \expandafter\BNE_getnext_a\number #1%
148 {%
149 \expanded{{{\number#1}}\expandafter}\romannumeral`&&@\BNE_getop
150 }%

In the case of hitting a (, previous release inserted directly a \BNE_oparen. But the

expansion architecture imported from upstream \xintiiexpr has been refactored, and the

..._oparen meaning and usage evolved. We stick with {}\xint_c_ii^v (from upstream.

Also, at 1.6, slight refactoring to handle digit tokens and opening parenthesis a bit

faster (but this is only first token...); and to ignore an underscore as first character

(rather than raise an error in this case).

This merges former \BNE_getnextfork and \BNE_scan_number.

151 \def\BNE_getnextfork #1{%
152 \if#1-\xint_dothis {{}{}-}\fi
153 \if#1(\xint_dothis {{}\xint_c_ii^v (}\fi
154 \ifnum\xint_c_ix<1\string#1 \xint_dothis {\BNE_startint#1}\fi
155 \xint_orthat {\BNE_getnextfork_a #1}%
156 }%

24

http://www.ctan.org/pkg/xint

bnumexpr implementation

157 \def\BNE_getnextfork_a #1{%
158 \if#1_\xint_dothis \BNE_getnext_a \fi
159 \if#1+\xint_dothis \BNE_getnext_a \fi
160 \if#1'\xint_dothis \BNE_startoct\fi
161 \if#1"\xint_dothis \BNE_starthex\fi
162 \xint_orthat {\BNE_unexpected #1}%
163 }%

If user employs \bnumdefinfix with \string#, and then tries 100##3, the first # will be

interpreted as operator (assuming no operator starting with ## has actually been de-

fined) and the error "message" (which is not using \message or a \write) will then be

! xint error: Unexpected token `##'. Ignoring.

because the parser is actually looking for a digit but finds the second #, and TeX dis-

plays it doubled. This is doubly confusing, but well, let's not dwell on that.

\BNE_unexpected replaced here \BNE_notadigit at 1.6.

164 \def\BNE_unexpected#1%
165 {%
166 \XINT_expandableerror{Unexpected token `#1'. Ignoring.}\BNE_getnext_a
167 }%

9.9 Parsing decimal, hexadecimal, octal, and binary

Somewhat refactored at 1.6 compared to upstream 1.4m. Fix the case of an underscore _

as first character in input.

168 \def\BNE_startint #1%
169 {%
170 \if #10\expandafter\BNE_scanint_gobz_a\else\expandafter\BNE_scanint_a\fi #1%
171 }%
172 \def\BNE_wrapint_before{\expandafter{\romannumeral`&&@\iffalse}\fi}%
173 \def\BNE_wrapint_after{\iffalse{{{\fi}}}}%
174 \def\BNE_scanint_a #1#2%
175 {\expandafter\BNE_wrapint_before
176 \expanded\bgroup{\iffalse}\fi #1%
177 \expandafter\BNE_scanint_main\romannumeral`&&@#2}%
178 \def\BNE_scanint_gobz_a #1#2%
179 {\expandafter\BNE_scanint_gobz_b\romannumeral`&&@#2}%

It is important in case of x, o, or b to jump to \BNE_starthex (et al.) and not for ex-

ample to \BNE_scanhex_a because the latter expects an f-expansion to have been applied

already to what comes next. Besides, we do want to trim out leading zeroes after the

0b, 0o, or 0x prefix: although the macros of xintbinhex do accept leading zeros on in-

put, they may then produce decimal output with leading zeros, and the ``ii'' macros of

xintcore consider that an input is vanishing as soon as the first digit is 0.

180 \def\BNE_scanint_gobz_b #1%
181 {%
182 \ifx b#1\xint_dothis \BNE_startbin \fi
183 \ifx o#1\xint_dothis \BNE_startoct \fi
184 \ifx x#1\xint_dothis \BNE_starthex \fi
185 \xint_orthat {\BNE_scanint_gobz_c #1}%
186 }%
187 \def\BNE_scanint_gobz_c #1%

25

http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint

bnumexpr implementation

188 {%
189 \expandafter\BNE_wrapint_before\expanded\bgroup{\iffalse}\fi
190 \BNE_scanint_gobz_main#1%
191 }%
192 \def\BNE_scanint_main #1%
193 {%
194 \ifcat \relax #1\expandafter\BNE_scanint_hit_cs \fi
195 \ifnum\xint_c_ix<1\string#1 \else\expandafter\BNE_scanint_checkagain\fi
196 #1\BNE_scanint_again
197 }%
198 \def\BNE_scanint_again #1%
199 {%
200 \expandafter\BNE_scanint_main\romannumeral`&&@#1%
201 }%

Upstream (at 1.4f) has _getop here, but let's jump directly to BNE_getop_a.

202 \def\BNE_scanint_hit_cs \ifnum#1\fi#2\BNE_scanint_again
203 {%
204 \expandafter\BNE_wrapint_after\romannumeral`&&@\BNE_getop_a#2%
205 }%
206 \def\BNE_scanint_checkagain #1\BNE_scanint_again
207 {%
208 \if _#1\BNE_scanint_checkagain_skip\fi
209 \expandafter\BNE_wrapint_after\romannumeral`&&@\BNE_getop_a#1%
210 }%

#1 is \fi.

211 \def\BNE_scanint_checkagain_skip#1#2\BNE_getop_a#3{#1\BNE_scanint_again}%
212 \def\BNE_scanint_gobz_main #1%
213 {%
214 \ifcat \relax #1\expandafter\BNE_scanint_gobz_hit_cs\fi
215 \ifnum\xint_c_x<1\string#1 \else\expandafter\BNE_scanint_gobz_checkagain\fi
216 #1\BNE_scanint_again
217 }%
218 \def\BNE_scanint_gobz_again #1%
219 {%
220 \expandafter\BNE_scanint_gobz_main\romannumeral`&&@#1%
221 }%

Upstream (at 1.4f) has _getop here, but let's jump directly to BNE_getop_a. The #2

has been grabbed already and f-expanded. Nevertheless this means one brace-stripping

less.

222 \def\BNE_scanint_gobz_hit_cs\ifnum#1\fi#2\BNE_scanint_again
223 {%
224 0\expandafter\BNE_wrapint_after\romannumeral`&&@\BNE_getop_a#2%
225 }%

Fix at 1.6 for when an underscore is used as first character followed by digits. No need

to worry about being very efficient here.

226 \def\BNE_scanint_gobz_checkagain #1\BNE_scanint_again
227 {%
228 \if _#1\xint_dothis\BNE_scanint_gobz_again\fi
229 \if 0#1\xint_dothis\BNE_scanint_gobz_again\fi
230 \xint_orthat

26

bnumexpr implementation

231 {0\expandafter\BNE_wrapint_after\romannumeral`&&@\BNE_getop_a#1}%
232 }%

1.5 backported from xintexpr two bugfixes relative to parsing hexadecimal input. One

bug had \BNE_scanhex_a grab an unexpanded token and used it as is in an \ifcat... this

made syntax such as "\foo broken. The other bug was about leading hexadecimal zeros not

being trimmed.

At 1.6 the code here is refactored to be written exactly as the scanint one, rather

than downscaling upstream xintexpr which also has to handle fractional input. This

avoids gathering the hexadecimal digits then grabbing then again as a whole via a de-

limited macro.

233 \def\BNE_starthex #1%
234 {%
235 \expandafter\BNE_starthex_i\romannumeral`&&@#1%
236 }%
237 \def\BNE_starthex_i #1%
238 {%
239 \if #10\expandafter\BNE_scanhex_gobz_a\else\expandafter\BNE_scanhex_a\fi #1%
240 }%
241 \def\BNE_wraphex_before{\expandafter{\expandafter{%
242 \romannumeral`&&@\iffalse}}\fi\BNE_Op_hextodec}%
243 \def\BNE_wraphex_after{\iffalse{{{{\fi}}}}}%
244 \def\BNE_scanhex_a #1#2%
245 {\expandafter\BNE_wraphex_before
246 \expanded\bgroup{\iffalse}\fi #1%
247 \expandafter\BNE_scanhex_main\romannumeral`&&@#2}%
248 \def\BNE_scanhex_gobz_a #1#2%
249 {\expandafter\BNE_wraphex_before
250 \expanded\bgroup{\iffalse}\fi
251 \expandafter\BNE_scanhex_gobz_main\romannumeral`&&@#2}%

At 1.6 we apply exact same scheme as for the scanint code. The sole difference is the

more complicated test for recognizing a digit.

252 \def\BNE_scanhex_main #1%
253 {%
254 \ifcat \relax #1\expandafter\BNE_scanhex_hit_cs \fi
255 \if\ifnum`#1>`/
256 \ifnum`#1>`9
257 \ifnum`#1>`@
258 \ifnum`#1>`F
259 0\else1\fi\else0\fi\else1\fi\else0\fi 1\else
260 \expandafter\BNE_scanhex_checkagain\fi
261 #1\BNE_scanhex_again
262 }%
263 \def\BNE_scanhex_again #1%
264 {%
265 \expandafter\BNE_scanhex_main\romannumeral`&&@#1%
266 }%
267 \def\BNE_scanhex_hit_cs #1\BNE_scanhex_checkagain\fi#2\BNE_scanhex_again
268 {%
269 \expandafter\BNE_wraphex_after\romannumeral`&&@\BNE_getop_a#2%
270 }%

27

http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xintexpr

bnumexpr implementation

271 \def\BNE_scanhex_checkagain #1\BNE_scanhex_again
272 {%
273 \if _#1\BNE_scanhex_checkagain_skip\fi
274 \expandafter\BNE_wraphex_after\romannumeral`&&@\BNE_getop_a#1%
275 }%

#1 is \fi, #3 is underscore.

276 \def\BNE_scanhex_checkagain_skip#1#2\BNE_getop_a#3{#1\BNE_scanhex_again}%
277 \def\BNE_scanhex_gobz_main #1%
278 {%
279 \ifcat \relax #1\expandafter\BNE_scanhex_gobz_hit_cs\fi
280 \if\ifnum`#1>`0
281 \ifnum`#1>`9
282 \ifnum`#1>`@
283 \ifnum`#1>`F
284 0\else1\fi\else0\fi\else1\fi\else0\fi 1\else
285 \expandafter\BNE_scanhex_gobz_checkagain\fi
286 #1\BNE_scanhex_again
287 }%
288 \def\BNE_scanhex_gobz_again #1%
289 {%
290 \expandafter\BNE_scanhex_gobz_main\romannumeral`&&@#1%
291 }%
292 \def\BNE_scanhex_gobz_hit_cs#1\BNE_scanhex_gobz_checkagain\fi#2\BNE_scanhex_again
293 {%
294 0\expandafter\BNE_wraphex_after\romannumeral`&&@\BNE_getop_a#2%
295 }%
296 \def\BNE_scanhex_gobz_checkagain #1\BNE_scanhex_again
297 {%
298 \if _#1\xint_dothis\BNE_scanhex_gobz_again\fi
299 \if 0#1\xint_dothis\BNE_scanhex_gobz_again\fi
300 \xint_orthat
301 {0\expandafter\BNE_wraphex_after\romannumeral`&&@\BNE_getop_a#1}%
302 }%

Added at 1.6. Exact same code skeleton as for hexadecimal and decimal input. Leading

zeros are removed.

303 \def\BNE_startoct #1%
304 {%
305 \expandafter\BNE_startoct_i\romannumeral`&&@#1%
306 }%
307 \def\BNE_startoct_i #1%
308 {%
309 \if #10\expandafter\BNE_scanoct_gobz_a\else\expandafter\BNE_scanoct_a\fi #1%
310 }%
311 \def\BNE_wrapoct_before{\expandafter{\expandafter{%
312 \romannumeral`&&@\iffalse}}\fi\BNE_Op_octtodec}%
313 \def\BNE_wrapoct_after{\iffalse{{{{\fi}}}}}%
314 \def\BNE_scanoct_a #1#2%
315 {\expandafter\BNE_wrapoct_before
316 \expanded\bgroup{\iffalse}\fi #1%
317 \expandafter\BNE_scanoct_main\romannumeral`&&@#2}%
318 \def\BNE_scanoct_gobz_a #1#2%

28

bnumexpr implementation

319 {\expandafter\BNE_wrapoct_before
320 \expanded\bgroup{\iffalse}\fi
321 \expandafter\BNE_scanoct_gobz_main\romannumeral`&&@#2}%
322 \def\BNE_scanoct_main #1%
323 {%
324 \ifcat \relax #1\expandafter\BNE_scanoct_hit_cs \fi
325 \if\ifnum`#1>`/ \ifnum`#1>`7 0\else1\fi\else0\fi 1\else
326 \expandafter\BNE_scanoct_checkagain\fi
327 #1\BNE_scanoct_again
328 }%
329 \def\BNE_scanoct_again #1%
330 {%
331 \expandafter\BNE_scanoct_main\romannumeral`&&@#1%
332 }%
333 \def\BNE_scanoct_hit_cs #1\BNE_scanoct_checkagain\fi#2\BNE_scanoct_again
334 {%
335 \expandafter\BNE_wrapoct_after\romannumeral`&&@\BNE_getop_a#2%
336 }%
337 \def\BNE_scanoct_checkagain #1\BNE_scanoct_again
338 {%
339 \if _#1\BNE_scanoct_checkagain_skip\fi
340 \expandafter\BNE_wrapoct_after\romannumeral`&&@\BNE_getop_a#1%
341 }%

#1 is \fi, #3 is underscore.

342 \def\BNE_scanoct_checkagain_skip#1#2\BNE_getop_a#3{#1\BNE_scanoct_again}%
343 \def\BNE_scanoct_gobz_main #1%
344 {%
345 \ifcat \relax #1\expandafter\BNE_scanoct_gobz_hit_cs\fi
346 \if\ifnum`#1>`0 \ifnum`#1>`7 0\else1\fi\else0\fi 1\else
347 \expandafter\BNE_scanoct_gobz_checkagain\fi
348 #1\BNE_scanoct_again
349 }%
350 \def\BNE_scanoct_gobz_again #1%
351 {%
352 \expandafter\BNE_scanoct_gobz_main\romannumeral`&&@#1%
353 }%
354 \def\BNE_scanoct_gobz_hit_cs#1\BNE_scanoct_gobz_checkagain\fi#2\BNE_scanoct_again
355 {%
356 0\expandafter\BNE_wrapoct_after\romannumeral`&&@\BNE_getop_a#2%
357 }%
358 \def\BNE_scanoct_gobz_checkagain #1\BNE_scanoct_again
359 {%
360 \if _#1\xint_dothis\BNE_scanoct_gobz_again\fi
361 \if 0#1\xint_dothis\BNE_scanoct_gobz_again\fi
362 \xint_orthat
363 {0\expandafter\BNE_wrapoct_after\romannumeral`&&@\BNE_getop_a#1}%
364 }%

Added at 1.6. Exact same code skeleton as for octal and hexadecimal, based upon the one

for decimal input.

365 \def\BNE_startbin #1%
366 {%

29

bnumexpr implementation

367 \expandafter\BNE_startbin_i\romannumeral`&&@#1%
368 }%
369 \def\BNE_startbin_i #1%
370 {%
371 \if #10\expandafter\BNE_scanbin_gobz_a\else\expandafter\BNE_scanbin_a\fi #1%
372 }%
373 \def\BNE_wrapbin_before{\expandafter{\expandafter{%
374 \romannumeral`&&@\iffalse}}\fi\BNE_Op_bintodec}%
375 \def\BNE_wrapbin_after{\iffalse{{{{\fi}}}}}%
376 \def\BNE_scanbin_a #1#2%
377 {\expandafter\BNE_wrapbin_before
378 \expanded\bgroup{\iffalse}\fi #1%
379 \expandafter\BNE_scanbin_main\romannumeral`&&@#2}%
380 \def\BNE_scanbin_gobz_a #1#2%
381 {\expandafter\BNE_wrapbin_before
382 \expanded\bgroup{\iffalse}\fi
383 \expandafter\BNE_scanbin_gobz_main\romannumeral`&&@#2}%
384 \def\BNE_scanbin_main #1%
385 {%
386 \ifcat \relax #1\expandafter\BNE_scanbin_hit_cs \fi
387 \if1\if0#11\else\if1#11\else0\fi\fi\else
388 \expandafter\BNE_scanbin_checkagain\fi
389 #1\BNE_scanbin_again
390 }%
391 \def\BNE_scanbin_again #1%
392 {%
393 \expandafter\BNE_scanbin_main\romannumeral`&&@#1%
394 }%
395 \def\BNE_scanbin_hit_cs #1\BNE_scanbin_checkagain\fi#2\BNE_scanbin_again
396 {%
397 \expandafter\BNE_wrapbin_after\romannumeral`&&@\BNE_getop_a#2%
398 }%
399 \def\BNE_scanbin_checkagain #1\BNE_scanbin_again
400 {%
401 \if _#1\BNE_scanbin_checkagain_skip\fi
402 \expandafter\BNE_wrapbin_after\romannumeral`&&@\BNE_getop_a#1%
403 }%

#1 is \fi, #3 is underscore.

404 \def\BNE_scanbin_checkagain_skip#1#2\BNE_getop_a#3{#1\BNE_scanbin_again}%
405 \def\BNE_scanbin_gobz_main #1%
406 {%
407 \ifcat \relax #1\expandafter\BNE_scanbin_gobz_hit_cs\fi
408 \if1#1\else\expandafter\BNE_scanbin_gobz_checkagain\fi
409 #1\BNE_scanbin_again
410 }%
411 \def\BNE_scanbin_gobz_again #1%
412 {%
413 \expandafter\BNE_scanbin_gobz_main\romannumeral`&&@#1%
414 }%
415 \def\BNE_scanbin_gobz_hit_cs#1\BNE_scanbin_gobz_checkagain\fi#2\BNE_scanbin_again
416 {%
417 0\expandafter\BNE_wrapbin_after\romannumeral`&&@\BNE_getop_a#2%

30

bnumexpr implementation

418 }%
419 \def\BNE_scanbin_gobz_checkagain #1\BNE_scanbin_again
420 {%
421 \if _#1\xint_dothis\BNE_scanbin_gobz_again\fi
422 \if 0#1\xint_dothis\BNE_scanbin_gobz_again\fi
423 \xint_orthat
424 {0\expandafter\BNE_wrapbin_after\romannumeral`&&@\BNE_getop_a#1}%
425 }%

9.10 \BNE_getop

The upstream analog to \BNE_getop_a applies \string to #1 in its thirdofthree branch

before handing over to analog of \BNE_scanop_a, but I see no reason for doing it here

(and I do have to check if upstream has any valid reason to do it). Removed. First

branch was a \BNE_foundend, used only here, and expanding to \xint_c_\relax, let's move

the #1 (which will be \relax) last and simply insert \xint_c_.

The _scanop macros have been refactored at upstream and here 1.5.

426 \def\BNE_getop #1%
427 {%
428 \expandafter\BNE_getop_a\romannumeral`&&@#1%
429 }%
430 \catcode`* 11
431 \def\BNE_getop_a #1%
432 {%
433 \ifx \relax #1\xint_dothis\xint_firstofthree\fi
434 \ifcat \relax #1\xint_dothis\xint_secondofthree\fi
435 \ifnum\xint_c_ix<1\string#1 \xint_dothis\xint_secondofthree\fi
436 \if (#1\xint_dothis \xint_secondofthree\fi %)
437 \xint_orthat \xint_thirdofthree
438 \xint_c_
439 {\BNE_prec_tacit *}%
440 \BNE_scanop_a
441 #1%
442 }%
443 \catcode`* 12
444 \def\BNE_scanop_a #1#2%
445 {%
446 \expandafter\BNE_scanop_b\expandafter#1\romannumeral`&&@#2%
447 }%
448 \def\BNE_scanop_b #1#2%
449 {%
450 \unless\ifcat#2\relax
451 \ifcsname BNE_itself_#1#2\endcsname
452 \BNE_scanop_c
453 \fi\fi
454 \BNE_foundop_a #1#2%
455 }%
456 \def\BNE_scanop_c #1#2#3#4#5% #1#2=\fi\fi
457 {%
458 #1#2%
459 \expandafter\BNE_scanop_d\csname BNE_itself_#4#5\expandafter\endcsname

31

bnumexpr implementation

460 \romannumeral`&&@%
461 }%
462 \def\BNE_scanop_d #1#2%
463 {%
464 \unless\ifcat#2\relax
465 \ifcsname BNE_itself_#1#2\endcsname
466 \BNE_scanop_c
467 \fi\fi
468 \BNE_foundop #1#2%
469 }%

If a postfix say ?s is defined and ?r is encountered the ? will have been interpreted

as a shortcut to ?s and then the r will be found with the parser (after having executed

the already found postfix) now looking for another operator so the error message will

be Operator? (got `r') which is doubly confusing... well, let's not dwell on that.

Update 2021/05/22, I have changed the message, as part of a systematic removal of I<⤸
something> invites, in part because xint 1.4g changed its expandable error method and

now has a nice message saying xint will try to recover by itself. And now I have about

55 characters available for the message.

470 \def\BNE_foundop_a #1%
471 {%
472 \ifcsname BNE_precedence_#1\endcsname
473 \csname BNE_precedence_#1\expandafter\endcsname
474 \expandafter #1%
475 \else
476 \expandafter\BNE_getop_a\romannumeral`&&@%
477 \xint_afterfi{\XINT_expandableerror
478 {Expected an operator but got `#1'. Ignoring.}}%
479 \fi
480 }%
481 \def\BNE_foundop #1{\csname BNE_precedence_#1\endcsname #1}%

9.11 Expansion spanning; opening and closing parentheses

There was refactoring of expandable error messages at xint 1.4g and I can now use up to

55 characters, but should not really invite user to Insert something as it does not fit

well with generic message saying xint will go ahead "hoping repair was complete".

At 1.6, we define one less macro, see comment at location of definition of \BNE_baree⤸
val. Upstream code has \BNE_tmpa do all three definitions, (and for the three parsers

via an \xintFor loop) here we do things one by one.

482 \def\BNE_tmpa#1{%
483 \def\BNE_check##1%
484 {%
485 \xint_UDsignfork
486 ##1{\expandafter\BNE_checkp\romannumeral`&&@#1}%
487 -{\BNE_checkp##1}%
488 \krof
489 }%
490 }\expandafter\BNE_tmpa\csname BNE_op_-xii\endcsname
491 \def\BNE_tmpa#1{%
492 \def\BNE_checkp##1##2%

32

http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint

bnumexpr implementation

493 {%
494 \ifcase ##1%
495 \expandafter\BNE_done
496 \or\expandafter#1%
497 \else
498 \expandafter\BNE_checkp
499 \romannumeral`&&@\csname BNE_op_##2\expandafter\endcsname
500 \fi
501 }%
502 }\expandafter\BNE_tmpa\csname BNE_extra_)\endcsname
503 \expandafter\def\csname BNE_extra_)\endcsname{%
504 \XINT_expandableerror
505 {An extra) was removed. Hit <return>, fingers crossed.}%
506 \expandafter\BNE_check\romannumeral`&&@\expandafter\BNE_put_op_first
507 \romannumeral`&&@\BNE_getop_legacy
508 }%
509 \let\BNE_done\space
510 \def\BNE_getop_legacy #1%
511 {%
512 \expanded{\unexpanded{{#1}}\expandafter}\romannumeral`&&@\BNE_getop
513 }%

Code style left untouched at 1.6.

514 \catcode`) 11
515 \def\BNE_tmpa #1#2#3#4#5#6%
516 {%
517 \def #1##1% op_(
518 {%
519 \expandafter #4\romannumeral`&&@\BNE_getnext
520 }%
521 \def #2##1% op_)
522 {%
523 \expanded{\unexpanded{\BNE_put_op_first{##1}}\expandafter}%
524 \romannumeral`&&@\BNE_getop
525 }%
526 \def #3% oparen
527 {%
528 \expandafter #4\romannumeral`&&@\BNE_getnext
529 }%
530 \def #4##1% check-
531 {%
532 \xint_UDsignfork
533 ##1{\expandafter#5\romannumeral`&&@#6}%
534 -{#5##1}%
535 \krof
536 }%
537 \def #5##1##2% checkp
538 {%
539 \ifcase ##1\expandafter\BNE_missing_)
540 \or \csname BNE_op_##2\expandafter\endcsname
541 \else
542 \expandafter #5\romannumeral`&&@\csname BNE_op_##2\expandafter\endcsname
543 \fi

33

bnumexpr implementation

544 }%
545 }%
546 \expandafter\BNE_tmpa
547 \csname BNE_op_(\expandafter\endcsname
548 \csname BNE_op_)\expandafter\endcsname
549 \csname BNE_oparen\expandafter\endcsname
550 \csname BNE_check-_)\expandafter\endcsname
551 \csname BNE_checkp_)\expandafter\endcsname
552 \csname BNE_op_-xii\endcsname
553 \let\BNE_precedence_)\xint_c_i
554 \def\BNE_missing_)
555 {\XINT_expandableerror{Missing). Hit <return> to proceed.}%
556 \xint_c_ \BNE_done }%
557 \catcode`) 12

9.12 The comma as binary operator

At 1.4, it is simply a union operator for 1D oples. Inserting directly here a <comma><s⤸
pace> separator (as in earlier releases) in accumulated result would avoid having to do

it on output but to the cost of diverging from xintexpr upstream code, and to have to let

the \evaltohex output routine handle comma separated values rather than braced values.

558 \def\BNE_tmpa #1#2#3#4#5%
559 {%
560 \def #1##1% \BNE_op_,
561 {%
562 \expanded{\unexpanded{#2{##1}}\expandafter}%
563 \romannumeral`&&@\expandafter#3\romannumeral`&&@\BNE_getnext
564 }%
565 \def #2##1##2##3##4{##2##3{##1##4}}% \BNE_exec_,
566 \def #3##1% \BNE_check-_,
567 {%
568 \xint_UDsignfork
569 ##1{\expandafter#4\romannumeral`&&@#5}%
570 -{#4##1}%
571 \krof
572 }%
573 \def #4##1##2% \BNE_checkp_,
574 {%
575 \ifnum ##1>\xint_c_iii
576 \expandafter#4%
577 \romannumeral`&&@\csname BNE_op_##2\expandafter\endcsname
578 \else
579 \expandafter##1\expandafter##2%
580 \fi
581 }%
582 }%
583 \expandafter\BNE_tmpa
584 \csname BNE_op_,\expandafter\endcsname
585 \csname BNE_exec_,\expandafter\endcsname
586 \csname BNE_check-_,\expandafter\endcsname
587 \csname BNE_checkp_,\expandafter\endcsname
588 \csname BNE_op_-xii\endcsname

34

http://www.ctan.org/pkg/xintexpr

bnumexpr implementation

589 \expandafter\let\csname BNE_precedence_,\endcsname\xint_c_iii

9.13 The minus as prefix operator of variable precedence level

This \BNE_Op_opp caused trouble at 1.4 as it must be f-expandable, whereas earlier it

expanded inside \csname...\endcsname context, so I could define it as

\if-#1\else\if0#10\else-#1\fi\fi

where #1 was the first token of unbraced argument but this meant at 1.4 an added \xint_⤸
firstofone here. Well let's return to sanity at 1.4a and not add the \xint_firstofone

and simply default \BNE_Op_opp to \xintiiOpp, which it should have been all along! And

on this occasion let's trim user documentation of complications.

The package used to need to define unary minus operator with precedences 12, 14, and

18. It also defined it at level 16 but this was unneedeed actually, no operator possibly

generating usage of an op_-xvi.

At 1.5 the right precedence of powers was lowered to 17, so we now need here only 12,

14, and 17.

Due to \bnumdefinfix it is needed to support also, perhaps, the other levels 13, 15,

16, 18, This will be done only if necessary and is the reason why the macros \BNE_de⤸
fminus_a and \BNE_defminus_b are given permanent names. In fact it is now \BNE_defbin_b

which will decide to invoke or not the \BNE_defminus_a, and we activate it here only for

the base precedence 12.

The \XINT_global's are absent from upstream xintexpr as it does not incorporate yet

some analog to \bnumdefinfix/\bnumdefpostfix.

590 \def\BNE_defminus_b #1#2#3#4#5%
591 {%
592 \XINT_global\def #1% \BNE_op_-<level>
593 {%
594 \expandafter #2\romannumeral`&&@\expandafter#3%
595 \romannumeral`&&@\BNE_getnext
596 }%
597 \XINT_global\def #2##1##2##3% \BNE_exec_-<level>
598 {%
599 \expandafter ##1\expandafter ##2\expandafter
600 {\expandafter{\romannumeral`&&@\BNE_Op_opp##3}}%
601 }%
602 \XINT_global\def #3##1% \BNE_check-_-<level>
603 {%
604 \xint_UDsignfork
605 ##1{\expandafter #4\romannumeral`&&@#1}%
606 -{#4##1}%
607 \krof
608 }%
609 \XINT_global\def #4##1##2% \BNE_checkp_-<level>
610 {%
611 \ifnum ##1>#5%
612 \expandafter #4%
613 \romannumeral`&&@\csname BNE_op_##2\expandafter\endcsname
614 \else
615 \expandafter ##1\expandafter ##2%
616 \fi

35

http://www.ctan.org/pkg/xintexpr

bnumexpr implementation

617 }%
618 }%
619 \def\BNE_defminus_a #1%
620 {%
621 \expandafter\BNE_defminus_b
622 \csname BNE_op_-#1\expandafter\endcsname
623 \csname BNE_exec_-#1\expandafter\endcsname
624 \csname BNE_check-_-#1\expandafter\endcsname
625 \csname BNE_checkp_-#1\expandafter\endcsname
626 \csname xint_c_#1\endcsname
627 }%
628 \BNE_defminus_a {xii}%

9.14 The infix operators.

I could have at the 1.4 refactoring injected usage of \expanded here, but kept in sync

with upstream xintexpr code. Any x-expandable macro can easily be converted into an

f-expandable one using \expanded, so this is no serious limitation.

Macro names are somewhat bad and there is much risk of confusion in future maintenance

of \BNE_Op_ prefix (used for \BNE_Op_add etc...; besides this should have been \BNE_Op⤸
_Add) and \BNE_op_ prefix (used for \BNE_op_+ etc...).

At 1.5 decision is made to anticipate the announced upstream change to let the power

operators be right associative, matching Python behaviour. This change is simply im-

plemented by hardcoding in \BNE_checkp_<op> the right precedence which so far, for such

operators, had been identical with the left precedence (upstream has examples of direct

coding without formalization). In fact the right precedence existed already as argu-

ment to \BNE_defbin_b as the precedence to assign to unary minus following <op>.

Note1: although it is easy to change the left precedence at user level, the right

precedence is now more inaccessible. But on the other hand bnumexpr provides \bnumdef⤸
infix so all is customizable at user level.

Note2: Tacit multiplication is not really a separate operator, it is the * with an

elevated left precedence, which costs nothing to create and this precedence is stored

in chardef token \BNE_prec_tacit.

Compared to upstream, we use here numbers as arguments to \BNE_defbin_b, and convert

to roman numerals internally, also the operator macro is passed as a control sequence

not as its name (and #6 and #7 are permuted in \BNE_defbin_c).

629 \def\BNE_defbin_c #1#2#3#4#5#6#7%
630 {%
631 \XINT_global\def #1##1% \BNE_op_<op>
632 {%
633 \expanded{\unexpanded{#2{##1}}\expandafter}%
634 \romannumeral`&&@\expandafter#3\romannumeral`&&@\BNE_getnext
635 }%
636 \XINT_global\def #2##1##2##3##4% \BNE_exec_<op>
637 {%
638 \expandafter##2\expandafter##3\expandafter
639 {\expandafter{\romannumeral`&&@#7##1##4}}%
640 }%
641 \XINT_global\def #3##1% \BNE_check-_<op>

36

http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/bnumexpr

bnumexpr implementation

642 {%
643 \xint_UDsignfork
644 ##1{\expandafter#4\romannumeral`&&@#5}%
645 -{#4##1}%
646 \krof
647 }%
648 \XINT_global\def #4##1##2% \BNE_checkp_<op>
649 {%
650 \ifnum ##1>#6%
651 \expandafter#4%
652 \romannumeral`&&@\csname BNE_op_##2\expandafter\endcsname
653 \else
654 \expandafter ##1\expandafter ##2%
655 \fi
656 }%
657 }%
658 \def\BNE_defbin_b #1#2#3#4%
659 {%
660 \expandafter\BNE_defbin_c
661 \csname BNE_op_#1\expandafter\endcsname
662 \csname BNE_exec_#1\expandafter\endcsname
663 \csname BNE_check-_#1\expandafter\endcsname
664 \csname BNE_checkp_#1\expandafter\endcsname
665 \csname BNE_op_-\romannumeral\ifnum#3>12 #3\else 12\fi
666 \expandafter\endcsname
667 \csname xint_c_\romannumeral#3\endcsname #4%
668 \XINT_global
669 \expandafter
670 \let\csname BNE_precedence_#1\expandafter\endcsname
671 \csname xint_c_\romannumeral#2\endcsname
672 \unless
673 \ifcsname BNE_exec_-\romannumeral\ifnum#3>12 #3\else 12\fi\endcsname

This will execute only for #3>12 as \BNE_exec_-xii exists.

674 \expandafter\BNE_defminus_a\expandafter{\romannumeral#3}%
675 \fi
676 }%
677 \BNE_defbin_b + {12} {12} \BNE_Op_add
678 \BNE_defbin_b - {12} {12} \BNE_Op_sub
679 \BNE_defbin_b * {14} {14} \BNE_Op_mul
680 \BNE_defbin_b / {14} {14} \BNE_Op_divround
681 \BNE_defbin_b {//} {14} {14} \BNE_Op_div
682 \BNE_defbin_b {/:} {14} {14} \BNE_Op_mod
683 \BNE_defbin_b ^ {18} {17} \BNE_Op_pow

xintexpr uses shortcut

\expandafter\def\csname XINT_expr_itself_**\endcsname {^}

But doing it would mean that any redefinition of ^ propagates to **. And it creates a

special case which would need consideration by \BNE_dotheitselves, or special restric-

tions to add to user documentation. Better to simply handle ** as a full operator.

684 \BNE_defbin_b {**} {18} {17} \BNE_Op_pow
685 \expandafter\def\csname BNE_itself_**\endcsname {**}%
686 \expandafter\def\csname BNE_itself_//\endcsname {//}%

37

http://www.ctan.org/pkg/xintexpr

bnumexpr implementation

687 \expandafter\def\csname BNE_itself_/:\endcsname {/:}%
688 \let\BNE_prec_tacit\xint_c_xvi

9.15 Extending the syntax: \bnumdefinfix, \bnumdefpostfix

9.15.1 \bnumdefinfix

#1 gives the operator characters, #2 the associated macro, #3 its left-precedence and

#4 its right precedence (as integers).

The "itself" definitions are done in such a way that unambiguous abbreviations work;

but in case of ambiguity the first defined operator is used.

However, if for example operator $a was defined after $ab, then although $ will use

$ab which was defined first, $a will use as expected the second defined operator.

The mismatch \BNE_defminus_a vs \BNE_defbin_b is inherited from upstream, I keep it

to simplify maintenance.

689 \def\bnumdefinfix #1#2#3#4%
690 {%
691 \edef\BNE_tmpa{#1}%
692 \edef\BNE_tmpa{\xint_zapspaces_o\BNE_tmpa}%
693 \edef\BNE_tmpL{\the\numexpr#3\relax}%
694 \edef\BNE_tmpL{\ifnum\BNE_tmpL<4 4\else\ifnum\BNE_tmpL<23 \BNE_tmpL\else 22\fi\fi}%
695 \edef\BNE_tmpR{\the\numexpr#4\relax}%
696 \edef\BNE_tmpR{\ifnum\BNE_tmpR<4 4\else\ifnum\BNE_tmpR<23 \BNE_tmpR\else 22\fi\fi}%
697 \BNE_defbin_b \BNE_tmpa\BNE_tmpL\BNE_tmpR #2%
698 \expandafter\BNE_dotheitselves\BNE_tmpa\relax
699 \ifxintverbose
700 \PackageInfo{bnumexpr}{infix operator \BNE_tmpa\space
701 \ifxintglobaldefs globally \fi
702 does
703 \unexpanded{#2}\MessageBreak with precedences \BNE_tmpL, \BNE_tmpR;}%
704 \fi
705 }%
706 \def\BNE_dotheitselves#1#2%
707 {%
708 \if#2\relax\expandafter\xint_gobble_ii
709 \else
710 \XINT_global
711 \expandafter\edef\csname BNE_itself_#1#2\endcsname{#1#2}%
712 \unless\ifcsname BNE_precedence_#1\endcsname
713 \XINT_global
714 \expandafter\edef\csname BNE_precedence_#1\endcsname
715 {\csname BNE_precedence_\BNE_tmpa\endcsname}%
716 \XINT_global
717 \expandafter\odef\csname BNE_op_#1\endcsname
718 {\csname BNE_op_\BNE_tmpa\endcsname}%
719 \fi
720 \fi
721 \BNE_dotheitselves{#1#2}%
722 }%

38

bnumexpr implementation

9.15.2 \bnumdefpostfix

Support macros for postfix operators only need to be x-expandable.

723 \def\bnumdefpostfix #1#2#3%
724 {%
725 \edef\BNE_tmpa{#1}%
726 \edef\BNE_tmpa{\xint_zapspaces_o\BNE_tmpa}%
727 \edef\BNE_tmpL{\the\numexpr#3\relax}%
728 \edef\BNE_tmpL{\ifnum\BNE_tmpL<4 4\else\ifnum\BNE_tmpL<23 \BNE_tmpL\else 22\fi\fi}%
729 \XINT_global
730 \expandafter\let\csname BNE_precedence_\BNE_tmpa\expandafter\endcsname
731 \csname xint_c_\romannumeral\BNE_tmpL\endcsname
732 \XINT_global
733 \expandafter\def\csname BNE_op_\BNE_tmpa\endcsname ##1%
734 {%
735 \expandafter\BNE_put_op_first
736 \expanded{{{#2##1}}\expandafter}\romannumeral`&&@\BNE_getop
737 }%
738 \expandafter\BNE_dotheitselves\BNE_tmpa\relax
739 \ifxintverbose
740 \PackageInfo{bnumexpr}{postfix operator \BNE_tmpa\space
741 \ifxintglobaldefs globally \fi
742 does \unexpanded{#2}\MessageBreak
743 with precedence \BNE_tmpL;}%
744 \fi
745 }%

9.16 ! as postfix factorial operator

746 \bnumdefpostfix{!}{\BNE_Op_fac}{20}%

9.17 Cleanup

747 \let\BNE_tmpa\relax \let\BNE_tmpb\relax \let\BNE_tmpc\relax
748 \let\BNE_tmpR\relax \let\BNE_tmpL\relax
749 \BNErestorecatcodesendinput%

39

	Title page
	\bnumeval
	Dependencies
	Examples
	Customizing how output is ``printed out''
	Printing big numbers
	\bnumprintone, \bnumprintonesep
	\bnumprintonehex, \bnumprintoneoct, \bnumprintonebin

	Babel-active characters are not a problem!
	Fine print (not needed to read this for regular use)
	The \bnumsetup command
	Example of customization: let's handle fractions!
	Significant differences between \bnumexpr and \numexpr
	For the expert user: expression syntax and its customizability
	Expression syntax
	Precedences
	\bnumdefinfix
	\bnumdefpostfix

	Changes
	License
	Commented source code
	Package identification
	Load xintkernel
	Save catcode regime and switch to our own
	Load optionally xintcore and xintbinhex
	\bnumsetup
	Some extra constants needed for user defined precedences
	\bnumexpr, \bnethe, \bnumeval
	\BNE_getnext
	Parsing decimal, hexadecimal, octal, and binary
	\BNE_getop
	Expansion spanning; opening and closing parentheses
	The comma as binary operator
	The minus as prefix operator of variable precedence level
	The infix operators.
	Extending the syntax: \bnumdefinfix, \bnumdefpostfix
	\bnumdefinfix
	\bnumdefpostfix

	! as postfix factorial operator
	Cleanup

