
the barracuda manual
https://github.com/robitex/barracuda

Roberto Giacomelli
email: giaconet.mailbox@gmail.com

Date 2022-06-23 — Version v0.0.12 — Beta stage

Abstract

Welcome to the barracuda software project devoted to barcode printing.
This manual shows you how to print barcodes in your TEX documents and how to

export such graphic content to an external file.
barracuda is written in Lua and is free software released under the GPL 2 License.

Contents
1 Getting started 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Manual Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Required knowledge and useful resources . . . . . . . . . . . . . . . . . . 4
1.4 Running Barracuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 A Lua script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.2 A LuaTEX source file . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.3 A LuaLATEX source file . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 A more deep look . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Installing barracuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6.1 Installing for Lua . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6.2 Installing for TeX Live . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Barracuda LATEX Package 7

3 Barcode Reference 7
3.1 Common, Global and Local Barcode Options . . . . . . . . . . . . . . . . 7
3.2 Code39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Code128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Developer zone 8
4.1 The Barracuda Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Error Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Encoder Treename . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.4 API reference of Lua modules . . . . . . . . . . . . . . . . . . . . . . . . 9
4.5 ga specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.5.1 Hard coded an horizontal line . . . . . . . . . . . . . . . . . . . . 10
4.5.2 Encoding ga with the gaCanvas class . . . . . . . . . . . . . . . . 10
4.5.3 ga reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.6 Vbar class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.6.1 Vbar class arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.7 ga programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.7.1 Example 1: a rectangle . . . . . . . . . . . . . . . . . . . . . . . . 15
4.7.2 Example 2: a chessboard . . . . . . . . . . . . . . . . . . . . . . . 16
4.7.3 Example 3: a staircase . . . . . . . . . . . . . . . . . . . . . . . . 17

1

https://github.com/robitex/barracuda
giaconet.mailbox@gmail.com


5 Practical examples and use cases 18

2



1 Getting started

1.1 Introduction
Barcode symbols are usually a sequence of vertical lines representing encoded data that
can be retrived with special laser scanner or more simpler with a smartphone running
dedicated apps. Almost every store item has a label with a printed barcode for automatic
identification purpose.

So far, barracuda supported symbologies are as the following:

• Code 39,

• Code 128,

• EAN family (ISBN, ISSN, EAN 8, EAN 13, and the add-ons EAN 2 and EAN 5),

• ITF 2of5, interleaved Two of Five (ITF14, i2of5 in general),

• UPC-A.

The package provides different output graphic format. At the moment they are:

• PDF Portable Document Format (a modern TEX engine is required),

• SVG Scalable Vector Graphic.

The name barracuda is an assonance to the name Barcode. I started the project back
in 2016 for getting barcode in my TEX generated PDF documents, studying the LuaTEX
technology such as direct pdfliteral node creation.

At the moment barracuda is in beta stage. In this phase the Lua API may change
respect to the result of development activity.

1.2 Manual Content
The manual is divided into five part. In part 1.1 introduces the package and gives to the
user a proof of concept to how to use it. The next parts present detailed information
about option parameter of each barcode symbology and methods description to change
themodule width of a EAN-13 barcode. It’s also detailed how the Lua code works inter-
nally and how to implement a barcode symbology not already included in the package.

The manual plan is:

Part 1: Getting started

• general introduction → 3
• print your first barcode → 4
• installing barracuda on your system → 6

Part 2: LATEX packages

• barracuda LATEX package → 7

Part 3: Barcode Reference

• barcode symbologies reference → 7

Part 4: Developer zone

• the Lua framework → 8
• encoder identification rule → 9
• API reference → 9
• ga specification → 9

Part 5: Real examples

• working example and use cases → 18

3



1.3 Required knowledge and useful resources
barracuda is a Lua package that can be executed by any Lua interpreter. To use it,
it’s necessary a minimal knowledge of Lua programming language and a certain ability
with the terminal of your computer system in order to run command line task or make
software installation.

It’s also possible to run barracuda directly within a TEX source file, and compile it
with a suitable typesetting engine like LuaTEX. In this case a minimal TEX system knowl-
edge is required. As an example of this workflow you simply can look to this manual
because itself is typesetted with LuaLaTEX, running barracuda to include barcodes as a
vector graphic object.

A third way is to use the LATEX package barracuda.sty with its high level macros.
A minimal knowledge of the LATEX format is obviously required.

Here is a collection of useful learning resources:

Lua: to learn Lua the main reference is the book called PIL that stands for Programming
in Lua from one of the language’s Author Roberto Ierusalimschy.

LuaTEX: the typesetting engine manual can be opened running the texdoc utility in a
terminal window of your system, typing the command:

$ texdoc luatex

1.4 Running Barracuda
The starting point to work with barracuda is always a plain text file with some code
processed by a command line program with a Lua interpreter.

In this section you’ll take a taste of barracuda coding in three different execution
context: a Lua script, a LuaTEX document and a LATEX source file using themacro package
barracuda.sty providing an high level interface to the Lua library.

High level package like barracuda.stymake to write Lua code unnecessary. It will
be always possible to return to Lua code in order to resolve complex barcode require-
ments.

1.4.1 A Lua script

The paradigm of barracuda is the Object Oriented Programming. Generally speaking
every library object must be created with a function called constructor and every action
on it must be run calling an object method.

In Lua a constructor or even a method call syntax it’s a little bit different from the
usual form because we have to use the colon notation: object:method(args)

As a practical example, to produce an EAN 13 barcode, open a text editor of your
choice on an empty file and save it as first-run.lua with the content of the following
two lines of code:
first-run.lua

local barracuda = require "barracuda"
barracuda:save("ean-13", "8006194056290", "my_barcode", "svg")

What you have done is to write a script. If you have installed a Lua interpreter along
with barracuda, open a terminal and run it with the command: $ lua first-run.lua

Into the same directory of your script you will see a new file called my_barcode.svg
with the drawing:

8 0 0 6 1 9 4 0 5 6 2 9 0

4



Coming back to the script, the first statement loads the library barracuda with the
standard Lua function require() that returns an object—more precisely a reference to
a table where are stored all the package machinery.

With the second line of code, an EAN 13 barcode is saved as my_barcode.svg using
the method save() of the barracuda object. The save() method takes four mandatory
argumetns: the barcode symbology identifier called treename, an argument as a string
or as a whole number that represents data to be encoded, the output file name and
the optional output format. With a fifth optional argument we can pass options to the
barcode encoder as a Lua table in the option=value format.

In more detail, thanks to treename identifier explained at section 4.3 is possible to
build more encoders of the same symbology each with a different set of parameters.

It’s also possible to run a Lua script with texlua, the Lua interpreter improved with
certain LuaTEX libraries delivered by any modern TEX distribution. texlua saves you to
install Lua if you are a TEX user.

The command to run first-run.lua is the same as before, just a substitution of the
name lua with texlua, but an adjustment is required if we want to run the script with
TEX delivered barracuda library leaving untouched the system outside texmf.

An alternative path searching procedure consists to find the main file of barracuda
with an internal LuaTEX library called kpse:

-- texlua script
kpse.set_program_name("luatex")
local path_to_brcd = kpse.find_file("barracuda", "lua")
local barracuda = dofile(path_to_brcd)
barracuda:save("ean-13", "8006194056290", "my_barcode", "svg")

1.4.2 A LuaTEX source file

barracuda can also runs with LuaTEX and any others Lua powered TEX engines. The
source file is a bit difference respect to the previous script: the Lua code lives inside the
argument of a \directlua primitive, moreover we must use an horizontal box register
as the output destination.

first-run.tex: LuaTEX version

% !TeX program = LuaTeX
\newbox\mybox
\directlua{

local require "barracuda"
barracuda:hbox("ean-13", "8006194056290", "mybox")

}\leavevmode\box\mybox
\bye

The method hbox() works only with LuaTEX. It takes three1 arguments: encoder
treename, encoding data as a string, the TEX horizontal box name.

1.4.3 A LuaLATEX source file

A LATEX working minimal example would be:

first-run.tex: LuaLATEX version

% !TeX program = LuaLaTeX
\documentclass{article}
\usepackage{barracuda}
\begin{document}
\barracuda{ean-13}{8006194056290}
\end{document} 8 0 0 6 1 9 4 0 5 6 2 9 0

1A fourth argment is optional as a table with user defined barcode parameters.

5



1.5 A more deep look
barracuda is designed to be modular and flexible. For example it is possible to draw
different barcodes on the same canvas or tuning barcode parameters.

The low level workflow to draw a barcode object reveals more details on the internal
architecture. In fact, we must do at least the following steps divided into three phases:

a.1 load the library,
a.2 get a reference to the Barcode abstract class,
a.3 build an encoder,
a.4 build a symbol passing data to an encoder’s constructor,
b.1 get a reference to a new canvas object,
b.2 draw barcode on the canvas object,
c.1 load the driver,
c.2 print the figure as an external svg file.

In the phase a a barcode symbols is created, then in phase b a canvas object is filled
with the graphic elements of the symbol, and finally in the phase c the canvas is sent to
the driver output channel.

Following the procedure step by step, the resulting code is as the following listing,
where the encoder is EAN variant 13:

-- a lua script
local barracuda = require "barracuda" -- step a.1
local barcode = barracuda:barcode() -- step a.2
local ean13, err_enc = barcode:new_encoder("ean-13") -- step a.3
assert(ean13, err_enc)
local symb, err_symb = ean13:from_string("8006194056290") -- step a.4
assert(symb, err_symb)

local canvas = barracuda:new_canvas() -- step b.1
symb:draw(canvas) -- step b.2

local drv = barracuda:get_driver() -- step c.1
local ok, err_out = drv:save("svg", canvas, "my_barcode") -- step c.2
assert(ok, err_out)

Anyway, more abstract methods allow the user to write a more compact code. For
instance, phase b can be fuse with c, thanks to a a reference to the driver object included
in the canvas object:

-- phase b + c
local canvas = barracuda:new_canvas() -- step bc.1
symb:draw(canvas) -- step bc.2
local ok, err_out = canvas:save("svg", "my_barcode") -- step bc.3
assert(ok, err_out)

As we have been seen before an high level method provides a way to unify all the
phases:

-- unique phase version
local require "barracuda"
barracuda:save("ean-13", "8006194056290", "my_barcode", "svg")

Low level code offers more control while high level programming is quite compact.
Late in the manual you will find the objects and methods reference at section 4.4.

1.6 Installing barracuda

1.6.1 Installing for Lua

Manually copy src folder content to a suitable directory of your system that is reachable
to the system Lua interpreter.

6



Figure 1: Barcode class hierarchy.

1.6.2 Installing for TeX Live

If you have TeX Live installed from CTAN or from DVD TeX Collection, before any
modification to your system check if the package is already installed looking for installed
key in the output of the command:

$ tlmgr show barracuda

If barracuda is reported as not installed, run the command:

$ tlmgr install barracuda

If you have installed TeX Live via your Linux repository, try your distribution’s pack-
age manager an update or check for optional packages not yet installed.

It’s also possible to install barracuda manually with these steps:

1. Grab the sources from CTAN or from the official repository https://github.
com/robitex/barracuda.

2. Unzip it at the root of one of your TDS trees (local or personal).

3. You may need to update some filename database after this, see your TEX distribu-
tion’s manual for details.

2 Barracuda LATEX Package
The LATEX package delivered with barracuda is still under an early stage of development.
The only macro available is \barracuda[option]{encoder}{data}. A simple example
is the following source file for LuaLATEX:

% !TeX program = LuaLaTeX
\documentclass{article}
\usepackage{barracuda}
\begin{document}
\leavevmode
\barracuda{code128}{123ABC}\\[2ex]
\barracuda[text_star=true]{code39}{123ABC}
\end{document}

*123ABC*

Every macro barracuda typesets a barcode symbol with the encoder defined in the
first argument, encoding data defined by the second.

3 Barcode Reference

3.1 Common, Global and Local Barcode Options
Every barcode encoder inherits from Barcode abstract class methods and options. If we
change its option values, the changes will be global for all the encoders except if the
encoder has not an own local option overwritten before.

7

https://github.com/robitex/barracuda
https://github.com/robitex/barracuda


The same schema applying also for encoder and the barcode symbols build apart
from it. Every symbol inherits methods and options from its encoder.

Such three levels option system is designed to allow the user to set up option not
only in a certain point in the tree object, but also any time in the code. When changes
are accepted by an object they become valid for that time on.

The architecture of barcode classes is shown in more details in figure 1. At the top
of the hierarchy there is the Barcode class. It’s an abstract class in the sense that no
symbols can be printed by that class.

At an intermediate level we found a Builder with an instance of one of its Encoder
class. When we call method new_encoder() provided by Barcode class, what really
happen is the loading of the Builder if not just loaded before, that is the actual library
of the specific simbology, and a linked Encoder object incorporates its own options.

At the last level are placed the symbol instances derived both from the Builder and
Encoder, the first provides methods while the second provides option values. Only these
objects are printable in a barcode graphic.

Common options of Barcode are the following:

Option Id Type/default Description

ax numeric/0 Relative x-coordinate for insertion point of the bar-
code symbol

ay numeric/0 Relative y-coordinate for insertion point of the bar-
code symbol

debug_bbox enum/none Draw symbol bounding box with a thin dashed line
none do nothing
symb draw the bbox of the symbol
qz draw the bbox at quietzone border

qzsymb draw symbol and quietzone bboxes

For each barcode symbologies the next section reports parameters and optionalmeth-
ods of it.

3.2 Code39
Code39 is one of the oldest symbologies ever invented. It doesn’t include any checksum
digit and the only encodable characters are digits, uppercase letters and a few symbol
like + or $.

3.3 Code128

4 Developer zone

4.1 The Barracuda Framework
The barracuda package framework consists in independent modules: a barcode class
hierarchy encoding a text into a barcode symbology; a geometrical library called libgeo
modeling several graphic objects; an encoding library for the ga format (graphic assem-
bler) and several driver to print a ga stream into a file or in a TEX hbox register.

To implement a barcode encoder you have towrite a component called encoder defin-
ing every parameters and implementing the encoder builder, while a driver must under-
stand ga opcode stream and print the corresponding graphic object.

Every barcode encoder come with a set of parameters, some of them can be reserved
and can’t be edit after the encoder was build. So, you can create many instances of the
same encoder for a single barcode type, with its own parameter set.

The basic idea is getting faster encoders, for which the user may set up parameters
at any level: barcode abstract class, encoder globally, down to a single symbol object.

The Barcode class is completely independent from the output driver and vice versa.

8



4.2 Error Management
Functions in Lua may return more than one parameters. barracuda methods takes ad-
vantage by this feature for the error management. In fact, barracuda as a library, remind
the responsibility to the caller in order to choose what to do in case an error is reported.

When a method may fail depending on the correctness of the input, it returns two
parameters alternatively valid: the first is the expected result while the second is the
error description.

This behavior perfectlymatch the arguments required by the assert() built-in func-
tion.

4.3 Encoder Treename
In barracuda in order to draw a barcode symbol it’s necessary to create an Encoder
object

4.4 API reference of Lua modules
TODO

4.5 ga specification
This section defines and explains with code examples the ga instruction stream. ga
stands for graphic assembler, a sort of essential language that describes geometrical ob-
ject like lines and rectangles mainly for a barcode drawing library on a cartesian plane
(O, x, y).

The major goal of any barracuda encoder is to create the ga stream corresponding
to a vector drawing of a barcode symbol.

In details, a ga stream is a numeric sequence that like a program defines what must
be draw. It is not a fully binary sequence—which is a byte stream and ideally is what a
ga stream would really be—but a sequence of integers or floating point numbers.

In Lua this is very easy to implement. Simply append a numeric value to a table that
behave as an array. Anyway ga must be basically a binary format almost ready to be
sent or received by means of a network channel.

In the Backus–Naur form a valid ga stream grammar is described by the following
code:

<valid ga stream> ::= <instructions>
<instructions> ::= <instruction>

| <instruction> <instructions>
<instruction> ::= <opcode>

| <opcode> <operands>

<opcode> ::= <state>
| <object>
| <func>

<state> ::= 1 .. 31; graphic properties
<object> ::= 32 .. 239; graphic objects
<func> ::= 240 .. 255; functions

<operands> ::= <operand>
| <operand> <operands>

<operand> ::= <len>
| <coord>
| <qty>
| <char seq>
| <enum>
| <abs>
| <points>
| <bars>

9



<len> ::= f64; unit measure scaled point sp = 1/65536pt
<coord> ::= f64; unit measure scaled point sp = 1/65536pt
<qty> ::= u64
<char seq> ::= <chars> 0
<chars> ::= <char>

| <char> <chars>
<char> ::= u64
<enum> ::= u8
<abs> ::= f64
<points> ::= <point>

| <point> <points>
<point> ::= <x coord> <y coord>
<x coord> ::= <coord>
<y coord> ::= <coord>
<bars> ::= <bar>

| <bar> <bars>
<bar> := <coord> <len>

; u8 unsigned 8 bit integer
; u64 unsigned 64 bit integer
; f64 floating point 64 bit number

Every <instruction> changes the graphic state—for instance the current linewidth—
or defines a graphic object, depending on the opcode value. Coordinates or dimen-
sions must be expressed as scaled point, the basic unit of measure of TEX equivalent to
1/65536 pt.

4.5.1 Hard coded an horizontal line

The opcode for the linewidth operation is 1, while for the hline operation is 33. An
horizontal line 6pt width from the point (0pt, 0pt) to the point (32pt, 0pt) is represented
by this ga stream:

1 393216 33 0 2097152 0

Introducing mnemonic opcode in opcode places and separate the operations in a
multiline fashion, the same sequence become more readable and more similar to an
assembler listing:

linewidth 393216 ; set line width to 393216sp
hline 0 2097152 0 ; draw hline x1 x2 y

To prove and visualize the meaning of the stream, we can simply use the native
graphic driver of barracuda compiling this LuaTEX source file:

% !TeX program = LuaTeX
\newbox\mybox
\directlua{

local barracuda = require "barracuda"
local ga = {1, 393216, 33, 0, 2097152, 0}
local drv = barracuda:get_driver()
drv:ga_to_hbox(ga, "mybox")

}\leavevmode\box\mybox
\bye

The result is:

4.5.2 Encoding ga with the gaCanvas class

A more abstract way to write a ga stream is provided by the gaCanvas class of the
libgeo module. Every operation with identifier opcode is mapped to a method named
encode_<opcode>() of a canvas object:

10



% !TeX program = LuaTeX
\newbox\mybox
\directlua{

local barracuda = require "barracuda"
local canvas = barracuda:new_canvas()
local pt = canvas.pt
canvas:encode_linewidth(6*pt)
canvas:encode_hline(0, 32*pt, 0)
local drv = barracuda:get_driver()
drv:ga_to_hbox(canvas, "mybox")
tex.print("[")
for _, n in ipairs(canvas:get_stream()) do

tex.print(tostring(n))
end
tex.print("]")

} results in \box\mybox
\bye

The stream is printed beside the drawing in the output PDF file. Therefore the same
ga stream can also generate a different output, for instance a SVG file. For this purpose
execute the save() method of the Driver class (the drawing is showed side-by-side the
listing):

% !TeX program = LuaTeX
\newbox\mybox
\directlua{

local barracuda = require "barracuda"
local canvas = barracuda:new_canvas()
local pt = canvas.pt
local side = 16*pt
local s = side/2 - 1.5*pt
local l = side/2 - 2*pt
local dim = 4
canvas:encode_linewidth(1*pt)
canvas:encode_disable_bbox()
for c = 0, dim do

for r = 0, dim do
local x, y = c*side, r*side
canvas:encode_hline(x-l, x+l, y-s)
canvas:encode_hline(x-l, x+l, y+s)
canvas:encode_vline(y-l, y+l, x-s)
canvas:encode_vline(y-l, y+l, x+s)

end
end
local b1 = -s - 0.5*pt
local b2 = dim*side + s + 0.5*pt
canvas:encode_set_bbox(b1, b1, b2, b2)
canvas:ga_to_hbox("mybox")
canvas:save("svg", "grid")

}\leavevmode\box\mybox
\bye

An automatic process updates the bounding box of the figure meanwhile the stream
is read instruction after instruction. The disable_bbox operation produces a more fast
execution and the figure maintains the bounding box computed until that point. The
set_bbox operation imposes a bounding box in comparison to the current one of the
figure.

The initial bounding box is simply empty. As a consequence, different strategies can
be used to optimize runtime execution, such as in the previous code example, where

11



bounding box is always disabled and it is set up at the last canvas method call. More
often than not, we know the bounding box of the barcode symbol including quiet zones.

Every encoding method of gaCanvas class gives two output result: a boolean value
called ok plus an error err. If ok is true then err is nil and, viceversa, when ok is false
then err is a string describing the error.

The error management is a responsability of the caller. For instance, if we decide
to stop the execution this format is perfectly suitable for the Lua function assert(),
otherwise we can explicity check the output pair:

local pt = 65536
assert(canvas:encode_linewidth(6*pt)) --> true, nil
local ok, err = canvas:encode_hline(nil, 32*pt, 0)
-- ok = false
-- err = "[ArgErr] 'x1' number expected"

4.5.3 ga reference

Properties of the graphic state
OpCode Mnemonic key Graphic property Operands

1 linewidth Line width w <len>
2 linecap Line cap style e <enum>

0: Butt cap
1: Round cap
2: Projecting square cap

3 linejoin Line join style e <enum>
0: Miter join
1: Round join
2: Bevel join

5 dash_pattern Dash pattern line style p <len> n <qty> [bi <len>]+
p: phase lenght
n: number of array element
bi: dash array lenght

6 reset_pattern Set the solid line style -

29 enable_bbox Compute bounding box -
30 disable_bbox Do not compute bounding box -
31 set_bbox Overlap current bounding box x1 y1 <point> x2 y2 <point>

Lines
OpCode Mnemonic key Graphic object Operands

32 line Line x1 y1 <point> x2 y2 <point>
33 hline Horizontal line x1 x2 <point> y <coord>
34 vline Vertical line y1 y2 <point> x <coord>

12



Group of bars
OpCode Mnemonic key Graphic object Operands

36 vbar Vertical bars y1 <coord> y2 <coord> b <qty> [xi wi <bars>]+
y1: bottom y-coord
y2: top y-coord
b: number of bars
xi: axis x-coord of bars number i
wi: width of bars number i

37 hbar Horizontal bars x1 <coord> x2 <coord> b <qty> [yi wi <bars>]+
unimplemented

38 polyline Opened polyline n <qty> [xi yi <points>]+
n: number of points
xi: x-coord of point i
yi: y-coord of point i

39 c_polyline Closed polyline n <qty> [xi yi <points>]
unimplemented

Rectangles
OpCode Mnemonic key Graphic object Operands

48 rect Rectangle x1 y1 <point> x2 y2 <point>
49 f_rect Filled rectangle x1 y1 <point> x2 y2 <point>

unimplemented
50 rect_size Rectangle x1 y1 <point> w <len> h <len>

unimplemented
51 f_rect_size Filled rectangle x1 y1 <point> w <len> h <len>

unimplemented

Text
OpCode Mnemonic key Graphic object/Operands

130 text A text with several glyphs
ax <abs> ay <abs> xpos ypos <point> [c <chars>]+

131 text_xspaced A text with glyphs equally spaced on its vertical axis
x1 <coord> xgap <len> ay <abs> ypos <coord> [c <chars>]+

132 text_xwidth Glyphs equally spaced on vertical axis between two x coordinates
ay <abs> x1 <coord> x2 <coord> y <coord> c <chars>

140 _text_group Texts on the same baseline
ay <abs> y <coord> n <qty> [xi <coord> ai <abs> ci <chars>]+
unimplemented

4.6 Vbar class
This section show you how to draw a group of vertical lines, the main component of
every 1D barcode symbol. In the barracuda jargon a group of vertical lines is called
Vbar and is defined by a flat array of pair numbers sequence: the first one is the x-
coordinate of the bar while the second is its width.

For instance, consider a Vbar of three bars for which width is a multiple of the fixed
length called mod, defined by the array and figure showed below:

-- { x1, w1, x2, w2, x3, w3}
{1.5*mod, 3*mod, 5.5*mod, 1*mod, 7.5*mod, 1*mod}

13



For clearness, to the drawing were added a gray vertical grid stepping one module
and white dashed lines at every vbar axis.

Spaces between bars can be seen as white bars. In fact, an integer number can repre-
sents the sequence of black and white bars with the rule that the single digit is the width
module multiplier. So, the previous Vbar can be defined by 32111 with module equals to
2 mm.

The class Vbar ofmodule libgeo has several constructors one ofwhich is from_int().
Its arguments are the multiplier integer ngen, the module length mod and the optional
boolean flag is_bar, true if the first bar is black (default to true):

b = Vbar:from_int(32111, 2*mm)

A Vbar object has a local axis x and is unbounded. Constructors place the axis origin
at the left of the first bar. Bars are infinite vertical straight lines. In order to draw a Vbar
addition information must be passed to encode_vbar() method of the gaCanvas class:
the global position of the local origin x0, and the bottom and top limit y1 y2:

canvas:encode_vbar(ovbar, x0, y1, y2)

The following listing is the complete source code to draw the Vbar taken as example
in this section:

% !TeX program = LuaTeX
\newbox\mybox
\directlua{

local barracuda = require "barracuda"
local Vbar = barracuda:libgeo().Vbar
local drv = barracuda:get_driver()
local mm = drv.mm
local b = Vbar:from_int(32111, 2*mm)
local canvas = barracuda:new_canvas()
canvas:encode_vbar(b, 0, 0, 25*mm)
drv:ga_to_hbox(canvas, "mybox")

}\leavevmode\box\mybox
\bye

4.6.1 Vbar class arithmetic

Can two Vbar objects be added? Yes, they can! And also with numbers. Thanks to
metamethod and metatable feature of Lua, libgeo module can provide arithmetic for
Vbars. More in detail, to add two Vbars deploy them side by side while to add a num-
ber put a distance between the previous or the next object, depending on the order of
addends.

Anyway, every sum creates or modifies a VbarQueue object that can be encoded in
a ga stream with the method encode_vbar_queue(). The method arguments’ are the
same needed to encode a Vbar: an axis position x0 and the two y-coordinates bound y1
and y2.

A VbarQueue code example is the following:

14



% !TeX program = LuaTeX
\newbox\mybox
\directlua{

local barracuda = require "barracuda"
local Vbar = barracuda:libgeo().Vbar
local canvas = barracuda:new_canvas()
local mm = canvas.mm
local mod = 2 * mm
local queue = Vbar:from_int(32111, mod)
for _, ngen in ipairs {131, 21312, 11412} do

queue = queue + mod + Vbar:from_int(ngen, mod)
end
canvas:encode_vbar_queue(queue, 0, 0, 25*mm)
canvas:ga_to_hbox "mybox"

}\leavevmode\box\mybox
\bye

a

aRespect to the showed code some graphical helps has been added: a vertical grid
marks the module wide steps and light colored bars mark the space added between
two Vbars.

4.7 ga programming
To provide a better learning experience several ga stream examples is discussed, each of
which must be compiled with LuaTEX.

4.7.1 Example 1: a rectangle

Suppose we want to draw a simple rectangle. In the ga reference of section 4.5.3 there
is a dedicated instruction <rect>. Let’s give it a try:

Example 1: dealing with raw ga stream

% !TeX program = LuaTeX
\newbox\mybox
\directlua{

local barracuda = require "barracuda"
local pt = 65536
local ga = {48, 0, 0, 72*pt, 36*pt}
local drv = barracuda:get_driver()
drv:ga_to_hbox(ga, "mybox")

}\leavevmode\box\mybox
\bye

Dealingwith low level ga stream is not necessary. We can usemore safely a gaCanvas
object running its encode_rect() method:

...
local canvas = barracuda:new_canvas()

15



assert(canvas:encode_rect(0, 0, 2*side, side))
assert(canvas:ga_to_hbox("mybox"))
...

4.7.2 Example 2: a chessboard

A more complex drawing is a chessboard. Let’s begin to draw a single cell with a square
1cm wide:

% !TeX program = LuaTeX
\newbox\mybox
\directlua{

local barracuda = require "barracuda"
local canvas = barracuda:new_canvas()
local mm = canvas.mm
local s, t = 7.5*mm, 1.5*mm
canvas:encode_linewidth(t)
assert(canvas:encode_rect(t/2, t/2, s-t/2, s-t/2))
assert(canvas:ga_to_hbox("mybox"))

}\leavevmode\box\mybox
\bye

Then repeat the game for the entire grid:

% !TeX program = LuaTeX
\newbox\mybox
\directlua{

local barracuda = require "barracuda"
local canvas = barracuda:new_canvas()
local mm = canvas.mm
local s, t = 6*mm, 1*mm
assert(canvas:encode_linewidth(t))
for row = 1, 5 do

for col = 1, 5 do
local l = (row + col)/2
if l == math.floor(l) then

local x = (col - 1)*s
local y = (row - 1)*s
local x1, y1 = x + t/2, y + t/2
local x2, y2 = x + s - t/2, y + s - t/2
assert(canvas:encode_rect(x1, y1, x2, y2))

end
end

end
drv:ga_to_hbox(canvas, "mybox")

}\leavevmode\box\mybox
\bye

16



4.7.3 Example 3: a staircase

Adrawing of a zig zag staircase can be represented by a ga streamwith a <polyline> op-
eration. The gaCanvas method we have to call is encode_polyline() that accept a Lua
table as a flat structurewith the coordinates of every point of the polyline: {x1, y1, x2, y2, ..., xn, yn}

It is what we do with this code:

% !TeX program = LuaTeX
\newbox\mybox
\directlua{

local barracuda = require "barracuda"
local pt = 65536
local side = 16*pt
local dim = 5
local x, y = 0, 0
local point = {x, y}
local i = 3
for _ = 1, dim do

y = y + side
point[i] = x; i = i + 1
point[i] = y; i = i + 1
x = x + side
point[i] = x; i = i + 1
point[i] = y; i = i + 1

end
local canvas = barracuda:new_canvas()
canvas:encode_linewidth(2.25*pt)
canvas:encode_polyline(point)
canvas:ga_to_hbox("mybox")

}\leavevmode\box\mybox
\bye

A feature of encode_<opcode>() methods is their polymorphic behavior for their
first argument. They accept different types as an object of a geometric class or the raw
geometric data.

Method encode_polyline is not an exception: it accepts a Polyline object provided
by the libgeo module, or instead a flat array of coordinates. For instance the previous
code may be re-implement as:

% !TeX program = LuaTeX
\newbox\mybox
\directlua{

local barracuda = require "barracuda"
local pt = 65536
local side = 18*pt
local dim = 5
local Polyline = barracuda:libgeo().Polyline
local pl = Polyline:new(0, 0)
for _ = 1, dim do

pl:add_relpoint(0, side)
pl:add_relpoint(side, 0)

end

17



local canvas = barracuda:new_canvas()
canvas:encode_linewidth(2.5*pt)
canvas:encode_polyline(pl)
canvas:ga_to_hbox("mybox")

}\leavevmode\box\mybox
\bye

Pretty sure that this new version is more clear and intuitive.

5 Practical examples and use cases
Previous sections as shown how barracuda is capable to draw simple graphics. This
section is dedicated to barcode applications.

18


	Getting started
	Introduction
	Manual Content
	Required knowledge and useful resources
	Running Barracuda
	A Lua script
	A LuaTeX source file
	A LuaLaTeX source file

	A more deep look
	Installing barracuda
	Installing for Lua
	Installing for TeX Live


	Barracuda LaTeX Package
	Barcode Reference
	Common, Global and Local Barcode Options
	Code39
	Code128

	Developer zone
	The Barracuda Framework
	Error Management
	Encoder Treename
	API reference of Lua modules
	ga specification
	Hard coded an horizontal line
	Encoding ga with the gaCanvas class
	ga reference

	Vbar class
	Vbar class arithmetic

	ga programming
	Example 1: a rectangle
	Example 2: a chessboard
	Example 3: a staircase


	Practical examples and use cases

