spelling”

Stephan Hennig!

25th May 2013

Abstract

This package supports spell-checking of TEX documents compiled
with the LuaTgX engine. It can give visual feedback in PDF output
similar to WYSIWYG word processors. The package relies on an external
spell-checker application that can check a plain text file and output a
list of bad spellings. The package should work with most spell-checkers,
even dumb, TEX-unaware ones.

Warning! This package is in a very early state. FEverything may

change!
Contents 2.5 Textoutput
2.6 Text extraction
1 Introduction 1 2.7 Code point mapping . . .
2.8 Tables
2 Usage 2
2.1 Work-flow 2 3 LanguageTool support
22 Word lists 3 3.1 Installation
2.3 Matchrules 4 3.2 Usage
2.4 Highlighting spellling
mistakes L. 7 4 Bugs

1 Introduction
Ther! are three main approaches to spell-checking TEX documents:

1. checking spelling in the .tex source file,

“This document describes the spelling package v0.41.
fsh2d@arcor.de
LA footnote containing mispellings.

2. converting a .tex file to another format, for which a proved spell-
checking solution exists,

3. checking spelling after a .tex file has been processed by TEX.

All of these approaches have their strengths and weaknesses. This pack-
age follows the third approach, providing some unique features:

e In traditional solutions, text is extracted from typeset DVI, PS or PDF
files, including hyphenated words. To avoid (lots of) false positives
being reported by the spell-checker, hyphenation needs to be switched
off during the TEX run. That is, one doesn’t work on the original
document any more.

In contrast to that, the spelling package works transparently on the
original .tex source file. Text is extracted during typesetting, after
LuaTgX has applied its catcode and macro machinery, but before hy-
phenation takes place.

e The spelling package can highlight words with known incorrect spelling
in PDF output, giving visual feedback similar to WysSiwyaG word pro-

cessors.Q

2 Usage

The spelling package requires the LuaTgX engine. All functionality of the
package is implemented in Lua. The IKTEX interface, which is described
below, is effectively a wrapper around the Lua interface.

Implementing such wrappers for other formats shouldn’t be too difficult.
The author is a BTEX-only user, though, and therefore grateful for contri-
butions. By the way, the BTEX package needs some polishing, too, e.g., a
key-value interface is desirable. Patches welcome!

2.1 Work-flow

Here’s a short outline of how using the spelling package fits into the general
process of compiling a document with LuaTEX:

1. After loading the package in the preamble of a .tex source file, a list
of bad spellings is read from a file (if that file exists).

2Currently, only colouring words is implemented.

2. During the LuaTEX run, text is extracted from pages and all words
are checked against the list of bad spellings. Words with a known
incorrect spelling are highlighted in PDF output.

3. At the end of the LuaTgX run, in addition to the PDF file, a text file
is written, containing most of the text of the typeset document.

4. The text file is then checked by your favourite external spell-checker
application, e. g., Aspell or Hunspell. The spell-checker should be able
to write a list of bad spellings to a file. Otherwise, visual feedback in
PDF output won’t work.

5. Visually minded people may now compile their document a second
time. This time, the new list of bad spellings is read-in and words with
incorrect spelling found by the spell-checker should now be highlighted
in PDF output. Users can then apply the necessary corrections to the
.tex source file.

Whatever way spell-checker output is employed, users not interested in
visual feedback (because their spell-checker has an interactive mode only
or because they prefer grabbing bad spellings from a file directly) can also
benefit from this package. Using it, LuaTEX writes a pure text file that is
particularly well suited as spell-checker input, because it contains no hy-
phenated words (and neither macros, nor active characters). That way,
any spell-checker application, even TEX-unaware ones, can be used to check
spelling of TEX documents.

2.2 Word lists

As described above, after loading the spelling package, a list of bad spellings
is read from a file (jobname).spell.bad, if that file exists. Words found
in this file are stored in an internal list of bad spellings and are later used
for highlighting spelling mistakes in PDF output. Additionally, a list of
good spellings is read from a file (jobname).spell.good, if that file exists.
Words found in the latter file are stored in an internal list of good spellings.
File format for both files is one word per line. Files must be in the UTF-8
encoding. Letter case is significant.

A word in the document is highlighted, if it occurs in the internal list of
bad spellings, but not in the internal list of good spellings. That is, known
good spellings take precedence over known bad spellings.

Users can load additional files containing lists of bad or good spellings
with macros \spellingreadbad and \spellingreadgood. Argument to

\spellingreadbad
\spellingreadgood

both macros is a file name. If a file cannot be found, a warning is written
to the console and log file and compilation continues. As an example, the
command

\spellingreadgood{myproject.whitelist}

reads words from a file myproject.whitelist and adds them to the list of
good spellings.

Known good spellings can be used to deal with words wrongly repor-
ted as bad spellings by the spell-checker (false positives). But note, most
spell-checkers also provide means to deal with unknown words via additional
dictionaries. It is recommended to configure your spell-checker to report as
few false positives as possible.

2.3 Match rules

This section describes an advanced feature. You may safely skip this section
upon first reading.

The spelling package provides an additional way to deal with bad and
good spellings, match rules. Match rules can be used to employ regular
patterns within certain ‘words’ A typical example are bibliographic refer-
ences like Lin86, which are often flagged by spell-checkers, but need not be
highlighted as they are generated by TEX.

There are two kinds of rules, bad and good rules. A rule is a Lua function
whose boolean return value indicates whether a word matches the rule. A
bad rule should return a true value for all strings identified as bad spellings,
otherwise a false value. A good rule should return a true value for all strings
identified as good spellings, otherwise a false value. A word in the document
is highlighted if it matches any bad rule, but no good rule.

Function arguments are a rew string and a stripped string. The raw
string is a string representing a word as it is found in the document possibly
surrounded by punctuation characters. The stripped string is the same
string with surrounding punctuation already stripped.

As an example, the rule in Listing 1 matches all words consisting of ex-
actly three letters. The function matches the stripped string against the Lua
string pattern ~%a%a%a$ via function unicode.utf8.find from the Selene
Unicode library. The latter function is a UTF-8 capable version of Lua’s
built-in function string.find. It returns nil (a false value) if there has
been no match and a number (a true value) if there has been a match. The
pattern %a represents a character class matching a single letter. Characters
~ and $ are anchors for the beginning and the end of the string in question.

Listing 1: Matching three-letter words.

function three_letter_words(raw, stripped)
return unicode.utf8.find(stripped, '~%aka%ka$')
end

Listing 2: Matching double punctuation.

function double_punctuation(raw, stripped)
return unicode.utf8.find(raw, '%p%p')
end

Note, pattern %a%a’%a without anchors would match any string containing
three letters in a row. More information about Lua string patterns can be
found in the Lua reference manual®, the Selene Unicode library document-
ation’ and in the Unicode standard®.

Listing 2 shows a rule matching all ‘words’ containing double punctu-
ation. Note, how the raw string is examined instead of the stripped one.

The rule in Listing 3 combines the results of three string searches to
match bibliographic references as generated by the BibTEX style alpha.

Match rules have to be provided by means of a Lua module. Such mod-
ules can be loaded with the \spellingmatchrules command. Argument is
a module name. To tell bad rules from good rules, the table returned by the
module must follow this convention: Function identifiers representing bad
and good match rules are prefixed bad_rule_ and good_rule_, resp. The
rest of an identifier is actually irrelevant. Other and non-function identifiers
are ignored.

Listing 4 shows an example module declaring the rules from Listing 1
and Listing 2 as bad match rules and the rule from Listing 3 as a good match
rule. Note, how function identifiers are made local and how exported func-
tion identifiers are prefixed bad_rule_ and good_rule_, while local func-
tion identifiers have no prefixes. When the module resides in a file named
myproject.rules.lua, it can be loaded in the preamble of a document via

\spellingmatchrules{myproject.rules}

3http://www.lua.org/manual/5.2/manual .html#6.4

“https://github.com/LuaDist/slnunicode/blob/master/unitest

Shttp://www.unicode.org/Public/4.0-Updatel/UCD-4.0.1.html#General _
Category_Values

\spellingmatchrules

http://www.lua.org/manual/5.2/manual.html#6.4
https://github.com/LuaDist/slnunicode/blob/master/unitest
http://www.unicode.org/Public/4.0-Update1/UCD-4.0.1.html#General_Category_Values
http://www.unicode.org/Public/4.0-Update1/UCD-4.0.1.html#General_Category_Values

Listing 3: Matching references generated by the BibTEX style alpha.

function bibtex_alpha(raw, stripped)
return unicode.utf8.find(stripped, '~%u%l%17%d%d$')
or unicode.utf8.find(stripped, '~%ululu?%u?%d%d$’)
or unicode.utf8.find(stripped, '~%ululul+%td%d$’)
end

Listing 4: A Lua module containing two bad and one good match rule.

—-— Module table.
local M = {}

-— Import Selene Unicode library.
local unicode = require('unicode')
-— Add short-cut.

local Ufind = unicode.utf8.find

-— Local function matching three letter words.

local function three_letter_words(raw, stripped)
return Ufind(stripped, '~“%a%aka$')

end

-— Make this a bad rule.

M.bad_rule_three_letter_words = three_letter_words

local function double_punctuation(raw, stripped)
return Ufind(raw, '%plkp')

end

M.bad_rule_double_punctuation = double_punctuation

local function bibtex_alpha(raw, stripped)
return Ufind(stripped, '~%u’%l%17%d%d$"')
or Ufind(stripped, '~Jululu?%u?%d%ds$')
or Ufind(stripped, '~%ululul%+%d%d$")
end
M.good_rule_bibtex_alpha = bibtex_alpha

-— Ezport module table.
return M

How are match rules and lists of bad and good spellings related? Intern-
ally, the lists of bad and good spellings are referred to by two special default
match rules, that look-up raw and stripped strings and return a true value if
either argument has been found in the corresponding list. Since good rules
take precedence over bad rules, an entry in the list of good spellings takes
precedence over any user-supplied bad rule. Likewise, any user-supplied
good rule takes precedence over an entry in the list of bad spellings.

Some final remarks on match rules It must be stressed that the
boolean return value of a match rule does not indicate whether a spelling is
bad or good, but whether a word matches a certain rule or not. Whether
it’s a bad or a good spelling, depends on the name of the match rule in the
module table.

Match rules are only called upon the first occurrence of a spelling in a
document. The information, whether a spelling needs to be highlighted, is
stored in a cache table. Subsequent occurrences of a spelling just need a
table look-up to determine highlighting status. For that reason, it is safe
to do relatively expensive operations within a match rule without affecting
compilation time too much. Nevertheless, match rules should be stated as
efficient as possible.’

When written without care, match rules can easily produce false posit-
ives as well as false negatives. While false positives in bad rules and false
negatives in good rules can easily be spotted due to the unexpected high-
lighting of words, the other cases are more problematic. To avoid all kinds
of false results, match rules should be stated as specific as possible.

2.4 Highlighting spellling mistakes

Enabling/disabling Highlighting spelling mistakes (words with known
incorrect spelling) in PDF output can be toggled on and off with command
\spellinghighlight. If the argument is on, highlighting is enabled. For
other arguments, highlighting is disabled. Highlighting is enabled, by de-
fault.

Colour The colour used for highlighting bad spellings can be determined
by command \spellinghighlightcolor. Argument is a colour statement
in the PDF language. As an example, the colour red in the RGB colour space is

6Some Lua performance tips can be found in the book Lua Programming Gems by
Figueiredo, Celes and Ierusalimschy (eds.), 2008, ch. 2. That chapter is also available
online at http://www.lua.org/gems/.

\spellinghighlight

http://www.lua.org/gems/

represented by the statement 1 0 0 rg. In the CMYK colour space, a reddish
colour is represented by 0 1 1 0 k. Default colour used for highlighting is
1 0 0 rg, i.e., red in the RGB colour space.

2.5 Text output

Text file After loading the spelling package, at the end of the LuaTEX
run, a text file is written that contains most of the document text. The
text file is no close text rendering of the typeset document, but serves as
input for your favourite spell-checker application. It contains the document
text in a simple format: paragraphs separated by blank lines. A paragraph
is anything that, during typesetting, starts with a local_par whatsit node
in the node list representing a typeset page of the original document, e. g.,
paragraphs in running text, footnotes, marginal notes, (in-lined) \parbox
commands or cells from p-like table columns etc.

Paragraphs consist of words separated by spaces. A word is the textual
representation of a chain of consecutive nodes of type glyph, disc or kern.
Boxes are processed transparently. That is, the spelling package (highly
imperfectly) tries to recognise as a single word what in typeset output looks
like a single word. As an example, the ATEX code

foo\mbox{'s bar}s
which is typeset as
foo’s bars

is considered two words foo’s and bars, instead of the four words foo, ’s, bar
7
and s.

Enabling/disabling Text output can be toggled on and off with com-
mand \spellingoutput. If the argument is on, text output is enabled. For
other arguments, text output is disabled. Text output is enabled, by default.

File name Text output file name can be configured via command
\spellingoutputname. Argument is the new file name. Default text output
file name is (jobname).spell.txt.

"This document has been compiled with a custom list of bad spellings, which is why
the word foo’s should be highlighted.

\spellingoutput

\spellingoutputname

Line length In text output, paragraphs can either be put on a single line
or broken into lines of a fixed length. The behaviour can be controlled via
command \spellingoutputlinelength. Argument is a number. If the
number is less than 1, paragraphs are put on a single line. For larger argu-
ments, the number specifies maximum line length. Note, lines are broken
at spaces only. Words longer than maximum line length are put on a single
line exceeding maximum line length. Default line length is 72.

2.6 Text extraction

Enabling/disabling Text extraction can be enabled and disabled in the
document via command \spellingextract. If the argument is on, text
extraction is enabled. For other arguments, text extraction is disabled. The
command should be used in vertical mode, i. e., outside paragraphs. If text
extraction is disabled in the document preamble, an empty text file is written
at the end of the LuaTgX run. Text extraction is enabled, by default.
Note, text extraction and visual feedback are orthogonal features. That
is, if text extraction is disabled for part of a document, e. g., a long table,
words with a known incorrect spelling are still highlighted in that part.

2.7 Code point mapping

As explained in subsection 2.5, the text file written at the end of the LuaTgpX
run is in the UTF-8 encoding. Unicode contains a wealth of code points with
a special meaning, such as ligatures, alternative letters, symbols etc. Un-
fortunately, not all spell-checker applications are smart enough to correctly
interpret all Unicode code points that may occur in a document. For that
reason, a code point mapping feature has been implemented that allows for
mapping certain Unicode code points that may appear in a node list to ar-
bitrary strings in text output. A typical example is to map ligatures to the
characters corresponding to their constituting letters. The default mappings
applied can be found in Table 1.

Additional mappings can be declared by command \spellingmapping.
This command takes two arguments, a number that refers to the Unicode
code point, and a sequence of arbitrary characters that is the mapping target.
The code point number must be in a format that can be parsed by Lua. The
characters must be in the UTF-8 encoding.

New mappings only have effect on the following document text. The
command should therefore be used in the document preamble. As an ex-
ample, the character A can be mapped to Z and vice versa with the following

\spellingoutputlinele

\spellingextract

\spellingmapping

sample code target

Unicode name glyph® point characters
LATIN CAPITAL LIGATURE IJ I 0x0132 1J
LATIN SMALL LIGATURE 1J ij 0x0133 1ij
LATIN CAPITAL LIGATURE OE E 0x0152 OE
LATIN SMALL LIGATURE OE e 0x0153 oe
LATIN SMALL LETTER LONG S { 0x017f s
LATIN SMALL LIGATURE FF ff 0xfb00 f£ff
LATIN SMALL LIGATURE FI fi 0xfb01 fi
LATIN SMALL LIGATURE FL fl 0xfpb02 f£f1
LATIN SMALL LIGATURE FFI i 0xfb03 ffi
LATIN SMALL LIGATURE FFL fil 0xfb04 ff1l
LATIN SMALL LIGATURE LONG S T ft 0xfb05 st
LATIN SMALL LIGATURE ST §t 0xfb06 st

Table 1: Default code point mappings.

“Sample glyphs are taken from font Linux Libertine O.

code:

\spellingmapping{65}{Z}/ 4 => Z
\spellingmapping{90}{A}/ Z => 4

Another command \spellingclearallmappings can be used to remove \spellingclearallmapj
all existing code point mappings.

2.8 Tables

How do tables fit into the simple text file format that has only paragraphs
and blank lines as described in subsection 2.57 What is a paragraph with
regards to tables? A whole table? A row? A single cell?

By default, only text from cells in p(aragraph)-like columns is put on
their own paragraph, because the corresponding node list branches contain
a local_par whatsit node (¢f. subsection 2.5). The behaviour can be
changed with the \spellingtablepar command. This command takes as \spellingtablepar
argument a number. If the argument is 0, the behaviour is described as
above. If the argument is 1, a blank line is inserted before and after every
table row (but at most once between table rows). If the argument is 2, a
blank line is inserted before and after every table cell. By default, no blank
lines are inserted.

10

3 LanguageTool support

Installing spell-checkers and dictionaries can be a difficult task if there are
no pre-built packages available for an architecture. That’s one reason the
spelling package is rather spell-checker agnostic and the manual doesn’t re-
commend a particular spell-checker application. Another reason is, there is
no best spell-checker. The only recommendation the author makes is not
to trust in one spell-checker, but to use multiple spell-checkers at the same
time, with different dictionaries or, better yet, different checking engines
under the hood.

Among the set of options available, LanguageTool®, a style and grammar
checker that can also check spelling since version 1.8, deserves some notice for
its portability, ease of installation and active development. For these reasons,
the spelling package provides explicit LanguageTool support. LanguageTool
uses Hunspell as the spell-checking engine, augmenting results with a rule
based engine and a morphological analyser (depending on the language).
The spelling package can parse LanguageTool’s error reports in the XML
format, pick those errors that are spelling related and use them to highlight
bad spellings.”

3.1 Installation

Here are some brief installation instructions for the stand-alone version of
LanguageTool (tested with LanguageTool 2.1). The stand-alone version
contains a GUI as well as a command-line interface. For the spelling package,
the latter is needed.

1. LanguageTool is primarily written in Java. Make sure a recent Java
Runtime Environment (JRE) is installed.

2. Open a command-line and type

java -version

If you get an error message, find out the full path to the Java execut-
able (called java.exe on Windows) for later reference.

3. Download the stand-alone version of LanguageTool (should be a zip
archive).

8http://www.languagetool.org/
9Highlighting style and grammar errors found by LanguageTool should be possible, but
requires major restructuring of the spelling package.

11

http://www.languagetool.org/

4. Uncompress the downloaded archive to a location of your choice.

5. Open a command-line in the directory containing file languagetool-commandline. jar
and type

(path to)/java -jar languagetool-commandline.jar --help

Prepending the path to the Java executable is optional, depending on
the result in step 2. If you now see a list of LanguageTool’s command-
line options rush by, all is well.

6. For easier access to LanguageTool, create a small batch script and put
that somewhere into the PATH.

e For users of unixoide systems, the script might look like

#!/bin/sh
(path to)/java -jar {path to)/languagetool-commandline.jar $x

where {path to) should point to the Java executable (optional)
and file languagetool-commandline. jar (mandatory). If the
script is named 1t.sh, you should be able to run LanguageTool
on the command shell by typing, e. g.,

sh 1t.sh —--version

Don’t forget to put the script into the PATH! For other ways of
making scripts executable, please consult the operating system
documentation.

o For Windows users, the script might look like

Q@echo off
{path to)\java -jar {path to)\languagetool-commandline.jar %

where {path to) should point to the Java executable (optional)
and file languagetool-commandline. jar (mandatory). If the
script is named 1t.bat, you should be able to run LanguageTool
on the command-line by typing, e. g.,

1t --version

Don’t forget to put the script into the PATH!

12

3.2 Usage

The results of checking a text file with LanguageTool are written to an er-
ror report, either in a human readable format or in a machine friendly XML
format. The spelling package can only parse the latter format. When it was

said in subsection 2.2 that the spelling package reads files (jobname) .spell.bad

and (jobname).spell.good, if they exist, that was not the whole truth. Ad-
ditionally, a file (jobname).spell.xml is read, if it exists. This file should
contain a LanguageTool error report in the XML format. Additional Langua-
geTool XML error reports can be loaded via the \spellingreadLT command.
Argument is a file name. Macros \spellingreadLT, \spellingreadbad and
\spellingreadgood can be used in combination in a TEX file.

To check a text file and create an error report in the XML format, Lan-
guageTool can be called on the command-line like this

1t <options) (imput file) > {error report)

where {options) is a list of options described below, {input file) is the
text file written by the spelling package in the first LuaTEX run and {error
report) is the file containing the error report. Note, how standard output
is redirected to a file via the > operator. By default, LanguageTool writes
error reports to standard output, that is, the command-line. Redirection is
a feature most operating systems provide.

o Option -1 determines the language (variant) of the file to check. As an
example, language variant US English can be selected via -1 en-US.
The full list of languages supported by LanguageTool can be requested
via option —-1list.

e Option -c determines the encoding of the input file. Since the text
file written by the spelling package is in the UTF-8 encoding, this part
should be -c utf-8.

e By default, LanguageTool outputs error reports in a human readable
format. The spelling package can only parse error reports in the XML
format. If the —-api option is present, LanguageTool outputs XML
data.

e Users that don’t want to highlight bad spellings, but prefer to study
the list of bad spellings themselves, should refer to the —u option. But
note, that with the latter option present, LanguageTool doesn’t output
pure XML any more, even if the ——api option is present. Make sure
such error reports aren’t read by the spelling package.

13

\spellingreadLT

o If the ——help option is present, LanguageTool shows more information
about command-line options.

As an example, to compile a IATEX file myletter.tex written in French
that uses the spelling package with standard settings to highlight bad spellings
and to use LanguageTool as a spell-checker, the following commands should
be typed on the command-line:

lualatex myletter
1t --api -c utf-8 -1 fr myletter.spell.txt > myletter.spell.xml
lualatex myletter

4 Bugs

Note, this package is in a very early state. Expect bugs! Package develop-

ment is hosted at GitHub. The full list of known bugs and feature requests

can be found in the issue tracker. New bugs should be reported there.
The most user-visible issues are listed below:

e There’s no support for the Plain TEX or ConTEX formats other than
the APIT of the package’s Lua modules, yet (issue 1).

e Macros provided by the IATEX package have very long names. A key-
value package option interface would be much more user-friendly (is-
sue 2).

e There are a couple of issues with text extraction and highlighting in-
correct spellings:

— Text in head and foot lines is neither extracted nor highlighted
(issue 7).

— The first word starting right after an hlist, e.g., the first word
within an \mbox, is never highlighted. It is extracted and written
to the text file, though. This might affect acronyms, names etc.
(issue 6).

— Bad spellings that are hyphenated at a page break are not high-
lighted (issue 10).

Patches welcome!

Happy TpXing!

14

http://github.com/sh2d/spelling/
http://github.com/sh2d/spelling/issues/
https://github.com/sh2d/spelling/issues/1
https://github.com/sh2d/spelling/issues/2
https://github.com/sh2d/spelling/issues/2
https://github.com/sh2d/spelling/issues/7
https://github.com/sh2d/spelling/issues/6
https://github.com/sh2d/spelling/issues/10

	Introduction
	Usage
	Work-flow
	Word lists
	Match rules
	Highlighting spellling mistakes
	Text output
	Text extraction
	Code point mapping
	Tables

	LanguageTool support
	Installation
	Usage

	Bugs

