81 Lr K Vocabulary COPYRIGHT 1

1. Copyright.
Copyright (©) Dave Bone 1998 - 2015

2 K SYMBOLS VOCABULARY Lr K Vocabulary 82

2. K symbols vocabulary.

Ahh the “Constant grammar” symbols used throughout all grammars. Depending on the command line
options O3 can generate the grammar and possibly the various flavours of the Terminal vocabulary. Under
normal development, the grammar writer compiles and emits just the grammar. Flavours of the terminal
vocabulary are not usually generated unless there have been changes to either error or terminal with
accompaning command line option. At the initial “big bang” of bootstrapping Os’s library and compiler /
compiler, both raw characters and Ir k terminals were generated using their command line options /rc
and /lrk. The command line option now uses an Unix style -t, -err and these 2 terminal types “Irk” and
“raw characters” are now cast in cement: u cannot regen them from their “*.T” file definitions but u can
change their “big bang” generated “c++" modules. These terminals are now read-only: they will never be
changed by a user of O, and who’d want to anyway?.

The hardwired “k” terminals are used by Os’s library for internal parsing situations. Apart from eog who
represents the end-of-grammar and end-of-file conditions, all other definitions are not part of the token source
stream being parsed. I call them meta terminals as they are never in the token stream but represent internal
parsing conditions within the emitted finite-state table that triggers the Os’s library routines. For example,
the presence of | | | within a parse state indicates the potential “to run” threads. If u look carefully, their file
definitions and implementations reside in Os’s “../yacco2/library/grammars” folder. Their definition files
are “yacco2_k_symbols.T” and “yacco2_characters.T” with their “c+4” variants having the “.h” and ”.cpp”
extensions.

3. eog.

Enum: T_LR1_eog-

Class: LR1_eog AB: N AD: N
Used to indicate an end-of-grammar or an end-of-file condition. When the token container is reached, calls

for another terminal will always return the eog. It’s your door bouncer before hell.

4. eog user-declaration directive.

(eog user-declaration directive 4) =
LR1_eog();

5. eog user-implementation directive.

(eog user-implementation directive 5) =
LR1_eog::LR1 eog()T_CTOR("eog", T-LR1_eoq-,0, false, false)
{}

LR1_eog LR1 _eog__;
yacco? :: CAbs_lrl_sym * yacco2 :: PTR_LR1_eog-- = &LR1_eog__;

6. eolr.

Enum: T_LR1 eolr_

Class: LR1_eolr AB: N AD: N
Used to indicate all-terminals of the terminal vocabulary including itself. It saves finger blisters by not

having to be explicit in the thread’s lookahead expression. Dieting hasn’t been this effective to code bloat.

7. eolr user-declaration directive.

(eolr user-declaration directive 7) =
LR1_eolr();

68 Lr K Vocabulary EOLR USER-IMPLEMENTATION DIRECTIVE 3

8. eolr user-implementation directive.

(eolr user-implementation directive 8) =
LR1_eolr:: LR1_eolr()T_CTOR("eolr", T_LR1 eolr_,0, false, false)

{}
LR1_eolr LR1 _eolr__;
yacco2 :: CAbs_lrl_sym x NS_yacco2_k_symbols :: PTR_LR1_eolr-_ = &LR1_eolr__;

9. [+].
Enum: T_LR1_ all_shift_operator_
Class: LR1_all_shift_operator AB: N AD: N
Represents the wild token situation. Lowers the specific shifts of the finite-state-table and allows the
grammar writer to field the unexpected from returned threads. Good stuff.
Caveat: One should use the |?]to field unknow return Tes if they are to be interpreted as errors.

10. |+|{} user-declaration directive.

(1+1{} user-declaration directive 10) =
LR1_all_shift_operator();

11. |+|{} user-implementation directive.
(1+1{} user-implementation directive 11) =
LR1_all_shift_operator :: LR1_all_shift_operator ()T_CTOR(" |+|", T_LR1_all_shift_operator_, 0, false, false)
{1
LR1_all_shift_operator LR1_all_shift_operator__;
yacco? :: CAbs_lri_sym x NS_yacco2-k_symbols :: PTR_LR1_all_shift_operator-_ = & LR1_all_shift_operator__;

12, |.].
Enum: T_LR1_invisible_shift_operator_
Class: LR1_invisible_shift_operator AB: N AD: N

It’s a nice way to program out of an ambiguous grammar. It can also lower the code bloat of a thread’s
first set.

13. | .1{} user-declaration directive.

(1.1{} user-declaration directive 13) =
LR1_invisible_shift_operator();

14. |.|{} user-implementation directive.

(1.1{} user-implementation directive 14) =
LR1_invisible_shift_operator :: LR 1_invisible_shift_operator ()T_CTOR(" | . | ",
T_LR1_invisible_shift_operator_, 0, false, false)
{}

LR 1 _invisible_shift_operator LR 1 _invisible_shift_operator__;
yacco? :: CAbs_lrl_sym *x NS_yacco2_k_symbols :: PTR_LR1_invisible_shift_operator__ =
& LR 1 _invisible_shift_operator__;

4 [7] Lr K Vocabulary 815

15. |7].
Enum: T_LR1_questionable_shift_operator_
Class: LR1_questionable_shift_operator AB: N AD: N

Represents a questionable grammar situation. It pinpoints programmed error points within the grammar.
The subrule using this symbol has a Ir(0) reduction as the lookahead is not kosher and so would probably
not reduce in the Ir(1) context. It can be used both in the following grammar expressions:

1) =171

2) =11l 1?1l NULL
Point 1 covers the state where the current token being parsed is improper. Point 2 is more interesting as it
captures a returned terminal that the thread passes back as an error.

The |7 |was not one of the original “k” terminals. It replaced the “eof” terminal which was marginal in
intent. I felt the |?|symbol drew the reader’s eye of the grammar where “faulty” points where captured
and to force Ir(0) context processing to reduce its subrule. Why Ir(0) context? Glad u asked, the lookahead
terminal — the current terminal being parsed, is in error and so “how is the subrule with the |7 |to reduce
after its shifted T?”. It must be divorced of any lookahead and just acted upon.

Now another question arises: “how is this condition detected in a parsing state of mixed conditions —
threading, shifting, reducing”? There is a pecking order on the conditions tried by the parser:

o threading

if tried and unsuccessful the balance of conditions are attempted
o shifts pecking order by their presence in current parse state:

can the current token be shifted?

| 7| — error condition

| . |— explicit ¢

|+|— any terminial
o reduce

note shifting is favoured over reducing

16. |71 {} user-declaration directive.

(1?71{} user-declaration directive 16) =
LR1_questionable_shift_operator();

17. |?7|{} user-implementation directive.

(1?71{} user-implementation directive 17) =
LR1_questionable_shift_operator :: LR1_questionable_shift_operator ()T_CTOR("|?|",
T_LR1_all_shift_operator-, 0, false, false)
{}

LR1_questionable_shift_operator LR1_questionable_shift_operator__;
yacco? :: CAbs_lri_sym x NS_yacco2_k_symbols :: PTR_LR1_questionable_shift_operator__ =
& LR1_questionable_shift_operator__;

18. Irl.
Enum: T_LR1_reduce_operator_
Class: LR1_reduce_operator AB:Y AD:Y

Its presence within the individual state of the “fsm” table is to force a reduce operation. Why? it’s a
back-to-back situation within the state table whereby a thread should reduce while its reducing lookahead
is the | | lindicating to run a thread.

§19 Lr K Vocabulary [t] 5

19. |tl.
Enum: T_LR1_fset_transience_operator_
Class: LR1_fset_transience_operator AB: Y AD:Y

[t has dual purposes: used in Oslinker to process the transient first sets generated by threads, and used
within a grammar’s “chained call procedure” expression to lower thread overhead by calling a procedure
with explicit intent on double use of its “first set” token. I'll give an example of a “chained procedure call”
expression drawn from the “pass3.lex” grammar handling the grammar’s file include expression:

—”@” Rprefile_inc_dispatcher
The “Rprefile_inc_dispatcher” grammar rule has the following subrule:

— |t |7 file-inclusion” NS_prefile_include:: PROC_TH _prefile_include

The “chained” part is in the duplicating of “@”; that is, the parsing mechanism does not get a new terminal
when shifted but passes this T onto the called procedure. The called PROC_TH_prefile_include procedure /
thread has its start rule as:

—7@” Rpossible_ws Rfile_string Reof

The repeated use of “@Q” was to reenforce the idea that the procedure called cuz of “@”: there’s that
“first set” again. Well time will pass its comments on this thought process.

20. |t|{} user-declaration directive.

(1t1{} user-declaration directive 20) =
LR1_fsel_transience_operator();

21. |t|{} user-implementation directive.

(1t1{} user-implementation directive 21) =
LR1_fset_transience_operator :: LR1_fset_transience_operator ()T_CTOR(" [t | ",
T_LR1_fset_transience_operator_, 0, false, false)
{}

LR1_fset_transience_operator LR1_fset_transience_operator__;
yacco? :: CAbs_lrl_sym * NS_yacco2_k_symbols :: PTR_LR1_fset_transience_operator._ =
& LR1_fset_transience_operator-_;

22, ||I.
Enum: T_LR1 _parallel operator_
Class: LR1_parallel_operator AB: N AD: N

Its presence within the individual state of the “fsm” table dictates potential threads to run. You see it
sprinkled throughout my grammars to call threads. This is part of Os’s raison d’étre.

23. ||| {} user-declaration directive.

(111{} user-declaration directive 23) =
LR1_parallel_operator();

6 | 1 1{} USER-IMPLEMENTATION DIRECTIVE Lr K Vocabulary §24

24. ||1{} user-implementation directive.

(111{} user-implementation directive 24) =
LR1_parallel_operator :: LR1_parallel_operator ()T_CTOR(" | | | ", T_-LR1_parallel_operator-, 0, false, false)
{}
LR1_parallel_operator LR1_parallel_operator-_;
yacco2 :: CAbs_lri_sym x NS_yacco2_k_symbols :: PTR_LR1_parallel_operator__ = & LR1_parallel_operator__;

§25 Lr K Vocabulary LRK-SUFX DIRECTIVE 7

25. Irk-sufx directive.

As they are constants, they are defined globally to save space / overhead in the typical new create / delete

cycle of terminals.

(Irk-sufx directive

extern yacco?2 :
extern yacco? :
extern yacco? :
extern yacco? :
extern yacco? :
extern yacco?2 :

Thar’s recycling going on in this green space.

25) =

CAbs_lri_sym+=PTR_LR1_parallel_operator__;
CAbs_lri_sym+«PTR_LR1_fset_transience_operator__;
CAbs_lri1_sym+PTR_LR1_invisible_shift_operator__;
CAbs_lrl_symxPTR_LR1_questionable_shift_operator__;
CAbs_lrl_symxPTR_LR1_all_shift_operator__;
CAbs_lr1_symxPTR_LR1 _eolr__;

8 INDEX Lr K Vocabulary 626

26. Index.
CAbs_lri_sym: 5,8, 11, 14, 17, 21, 24, 25.
eog: 3.

false: 5, 8, 11, 14, 17, 21, 24.
LR1_all_shift_operator: 10, 11.
LR1_all_shift_operator__: 11.

LR1 eog: 4, 5.

LR1 eog-_: b.

LRI eolr: 7, 8.

LRI _eolr__: 8.
LR1_fset_transience_operator: 20, 21.
LR1_fset_transience_operator__: 21.

LR1 invisible_shift_operator: 13, 14.

LR 1 _invisible_shift_operator__: 14.
LR1_parallel_operator: 23, 24.
LR1_parallel_operator__: 24.
LR1_questionable_shift_operator: 16, 17.
LR1_questionable_shift_operator__: 17.
NS_yacco2_k_symbols: 8, 11, 14, 17, 21, 24.
PTR_LR1_all_shift_operator__: 11, 25.
PTR_LR1_eog__: 5.

PTR_LR1_eolr__: 8, 25.
PTR_LR1_fset_transience_operator__: 21, 25.
PTR_LR1_invisible_shift_operator__: 14, 25.
PTR_LR1_parallel_operator__: 24, 25.
PTR_LR1_questionable_shift_operator__: 17, 25.
T_CTOR: 5, 8, 11, 14, 17, 21, 24.
T_LR1_all_shift_operator_: 11, 17.

T LR1_eog_: 5.

T_LR1_eolr_: 8.
T_LR1_fsel_transience_operator_: 21.
T_LR1_invisible_shift_operator_: 14.
T_LR1_parallel_operator_: 24.

yacco2: 5, 8, 11, 14, 17, 21, 24, 25.

Lr K Vocabulary NAMES OF THE SECTIONS 9

(1+1{} user-declaration directive 10)
(1+1{} user-implementation directive 11)
(1.1{} user-declaration directive 13)
(1.1{} user-implementation directive 14)
(111{} user-declaration directive 23)
(111{} user-implementation directive 24)
(1?71{} user-declaration directive 16)
(1?1{} user-implementation directive 17)
(

(

(

(

(

(

(

[t1{} user-declaration directive 20)
[t|1{} user-implementation directive 21)
eog user-declaration directive 4)
eog user-implementation directive 5)
eolr user-declaration directive 7)

eolr user-implementation directive 8)
Irk-sufx directive 25)

Lr K Vocabulary
Date: January 2, 2015 at 16:31
File: yacco2 k_symbols Namespace: NS_yacco2 k symbols

Number of terminals: 8

Section Page

Copyright ... 1 1
K symbols vocabulary 2 2
B0 i 3 2

eog user-declaration directive 4 2

eog user-implementation directive 5 2

COIT 6 2

eolr user-declaration directive 7 2

eolr user-implementation directive 8 3

1 PP 9 3

[+]{} user-declaration directivei.iiniiiiinininninenan.. 10 3

[+]{} user-implementation directive 11 3

S 12 3

| . 1{} user-declaration directiveiiiiniiriininannnanann. 13 3

|.1{} user-implementation directive 14 3

R PP 15 4

[?7]1{} user-declaration directivec.iiniiuiinininninenann. 16 4

[?7]1{} user-implementation directive 17 4

5o O PP 18 4

7 P 19 5

[t1{} user-declaration directivec.iiniiniinininnenenann. 20 5

[t]1{} user-implementation directive, 21 5

[l 22 5

| I 1{} user-declaration directivet 23 5

[11{} user-implementation directiveiiuuiiuiinnennn... 24 6

Irk-sufx directive 25 7
Index ..o 26 8

	Copyright
	K symbols vocabulary
	eog
	eog user-declaration directive
	eog user-implementation directive

	eolr
	eolr user-declaration directive
	eolr user-implementation directive

	
	 user-declaration directive
	 user-implementation directive

	
	 user-declaration directive
	 user-implementation directive

	
	 user-declaration directive
	 user-implementation directive

	
	
	 user-declaration directive
	 user-implementation directive

	
	 user-declaration directive
	 user-implementation directive

	lrk-sufx directive
	Index
	Names of the sections
	 user-declaration directive
	 user-implementation directive
	 user-declaration directive
	 user-implementation directive
	 user-declaration directive
	 user-implementation directive
	 user-declaration directive
	 user-implementation directive
	 user-declaration directive
	 user-implementation directive
	eog user-declaration directive
	eog user-implementation directive
	eolr user-declaration directive
	eolr user-implementation directive
	lrk-sufx directive

