
§1 WLIBRARY LICENSE 1

1. License.
Gened date: January 31, 2015
Copyright c© 1998-2015 Dave Bone

This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the
MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

2 SUMMARY OF YACCO2’S USER LIBRARY WLIBRARY §2

2. Summary of Yacco2’s user library.
These are the building blocks of various definitions for all derived code emitted from Yacco2 with their
runtime objects. All code blocks are genereted by cweb ’s ctangle program drawn from their source file
names having an extension of “.w”. Points 8 and 9 are created from the thread .w source. The following are
the outputted files:

1) yacco2 .h — common definitions for all implementations and use
2) yacco2 .cpp — common parts of yacco2’s library created from this document
3) wthread .cpp — thread components
4) wrc .cpp — raw characters mapping into terminals
5) wset .cpp — set routines for the finite automaton tables
6) wpp core .cpp wproc pp core .cpp — include code for generated pp threads
6.5) wpp core .cpp thread, while wproc pp core .cpp procedure call version
7) wtok can .cpp — specialized token containers: reads chr from file and string
8) war begin code .h — arbitrator’s start code
9) war end code .h — arbitrator’s end code
10) wtree .cpp — tree container, walkers, and functors

The 3 files generated outside this environment and referenced within Yacco2’s library:
1) yacco2 k symbols .h — lr k terminal definitions
2) yacco2 characters .h — raw character terminal definitions
3) yacco2 T enumeration .h — enumeration of symbols

Some Yacco2 memorabilia:
1) yacco2 — library namespace
2) directory — “/usr/local/yacco2/library”
3) wlibrary .w — yacco2’s cweb document
4) Look at the Global macrodefinitions and Typedef for limitations

At the end of this document is a Notes tomyself section that you should read. These are a quasi set
of ramblings on old / new reasons for changes, whys of the current implementation, and items for future
redress. Please have a browse during this document reading. The notes are in an order of my programming
thought zones while being developed.

§3 WLIBRARY INTRODUCTION TO YACCO2’S PARSE LIBRARY 3

3. Introduction to Yacco2’s parse library.
Welcome to Yacco2 ’s library. This is the oracle of typedefs , macros of assorted functionality, and constant
definitions. By having a common source code generator of definitions for the library, it should make this
project easier to maintain and evolve. Instead of using the basic type definitions of the C++ language, I
felt the typedef facility will make it easier to port the project onto another platform of nbit evolution —
ahh the crazy world of bit envy 16...32...64 etc. Any inconsistency within the c language like char and
its smorgasbord of flavors should be minimized by this approach to handling the pain-no-gain syndrome of
supported systems.

Now I’m a fan of macros as it gives a nice way to dynamicly generate source code patterns. Unfortunately,
the c language preprocessor was a hack that people are still living with while the PDP11 macro assembler
facility of bygone years from now defunct Digital Equipment Corporation had class. All this to say, I am still
using macros but trying to restrict their use. Within this project, macros provide the tracing facilities for
the emitted grammar code, and the library’s debug version. From experience with this library first written
in C++, various refinements to the tracing output were needed. When one parses a large file having possibly
hundreds of threaded grammars running dynamically within a session, if all tracing classifications are turned
on, the traced session output can get rather large. Message tracing alone is very verbous but at least you
have options to track down problems. This was very helpful when I relied on Microsoft’s take on messaging.
When threads become latent due to dropped messages (unexpressed limitation of the number of messages
allowed in their Window queue), at least I could re-evaluate how I would roll my own. Well you’ll see later
how I re-implemented message queues with mutexes.

Now cweb provides various flavors of macros. Some macros use parametric substitution per c source line.
A great feature of cweb is its code snippet insertion facility. The description of the code section provides a
better reading of the code. One is not caught up with the details but the intent. I consider it a version of
pseudo-programming in the real or is it a real coding in the pseudo? So the following is an re-engineering of
Yacco2’s library from C++ code to cweb .

4. Using Yacco2.
Where are those damn objects? Make sure your C++ compiler and linker are given the directions to where
the # include "yacco2.h" file resides and Yacco2’s appropriate object library. For example, the Yacco2
environment to use and link to are as follows:

/usr/local/yacco2/library - where the include file resides
/usr/local/yacco2/library/xxxx - where xxxx is debug or release for the object library

Within the “Visual studio C++” product, one can provide the appropriate directions within the project
properties and preprocessor symbol definitions used to control code inclusion. One can also create an
Environment variable in NT by going to the ‘System panel’, choosing ‘System properties’ followed by
‘Advanced properties’. You can possiblely use ‘Yacco2’ and ‘Yacco2lib’ as the variable names: it’s to your
taste. The HP C++ product and linker can be expressed by command line parameters.

5. Overview of Yacco2’s components:.
Still under thought construction — procastinating am i...?

4 RULES OF THE NAME WLIBRARY §6

6. Rules of the name.
There are not too many dictates. I try to give meaningful names to the components, be it methods, variables,
or symbols. I lean a little too far in verbousity as in the Germanic description given to a symbol’s name. Use
of cweb will lower this trait. Cryptic names don’t have a long life in their intent: future readings of the code
usually requires a rebuilding of code comprehension. Typical coding comments are not enough. There are
usually unspoken premises that trip up the programmer. This is why, for me, ‘Literate programming’ is the
only way to go with its adjunct mpost diagrams (Meta Post). I say this in an asymtompic way as perfection
is the carrot before the coder striving for a moment’s perfection that is just a drop in the programming
space. Too many programmers are stuck in the one dimension of code: ‘just get it done’ that becomes a
debugging issue of learning that does not get reframed into documentation. Judge accordingly my attempt
at the how,why,when,where,what,and whom are expressed. This is a quasi diary of my internal debats,
mistakes, and evolutionary corrections in comprehension to programming Yacco2.

Rule number one: Use the imperative verb form to express a method name. For example to read or
set a variable named xxx, the imperative actions can be read xxx having no parameter, and set xxx with
it’s appropriate parameter. From experience, overloading the method name by presence or absence of a
parameter tempts error. I am more disciplined on the setting of variables due to past trapings. Regards to
reading of a vaiable value, I’m more relaxed as you will see some variations.

You’ll find for efficiency reasons, I access the variables directly instead of thru the wrapper function: yes
I know the arguments of “OO” but inlining in my opinion got fumbled.

7. Legend of terms.
th - thread
pp - grammar requesting parallel parse
ar - arbitrator

§8 WLIBRARY THE PREPROCESSOR CODING GAME 5

8. The preprocessor coding game.
To cope with variations in source code, the C++ preprocessor’s #if directives are used. The # if ’s
constant expression is used where appropriate values are tested using the # if / #elif preprocessor ex-
pressions. The yacco2 compiler symbols .h file contains the 2 preprocessor symbols for compilation of O2:
THREAD_LIBRARY_TO_USE__ — Pthreads(0) or Microsoft(1) thread library, and THREAD_VS_PROC_CALL__ —
run by thread(0) or by a procedure call(1). THREAD_VS_PROC_CALL__ is an optimization attempt or a bailout
when the platform being ported to has threading problems. Please see “Notes to myself” as to why it’s been
removed.

Initially the below symbols were used to control the inclusion of tracing code by the macro preprocessor.
This really was a pain-in-the-???. As the number of options increased, how many O2 library variations do
u need? So now there are only 2 O2 library flavours: clean-no-chafe tracing code and all-u-can-trace. To
achieve this binary approach to O2 libraries, instead of conditionals, global tracing variables are now
used that are checked at runtime to exercise their tracing behaviors.

The run program that uses the O2 library can use the YACCO2 define trace variables macro to generate
the tracing variable definitions. U can still do it the hard way by individually coding each definition but why
not use this short cut? So far these tracing global definitions take a binary value of 0 indicating do-not-trace
while 1 means use it. There is a very slight run speed bump having their runtime presence within O2’s
library and whether it’s nobler to trace or not...but their benefits outweight their hiccups. One can turn on
or off there use anywhere through one’s code. Directory of variables:

YACCO2_T__ — trace terminal when fetched
YACCO2_TLEX__ — trace macros of emitted grammar: rules and user emergency macros
YACCO2_MSG__ — trace thread messages
YACCO2_MU_TRACING__ — trace acquire / release of trace mutex
YACCO2_MU_TH_TBL__ — trace acquire / release mutex of thread table
YACCO2_MU_GRAMMAR__ — trace acquire / release each grammar’s mutex
YACCO2_TH__ — trace the parse stack: fsa and syntax directed activities
YACCO2_AR__ — trace arbitrator procedure
YACCO2_THP__ — trace thread performance
VMS__ — Alpha VMS port to correct their Pthread limitations
VMS_PTHREAD_STACK_SIZE__ see bug’s talk and yacco2 compile symbols .h

They are enrobed by namespace yacco2. To set the trace variable be sure the namespace is delared: either
explicitly as in:

yacco2 ::YACCO2_T__ = 1;
or implicitly by a “using namespace yacco2;” statement somewhere preceding the assignment:

using namespace yacco2;
...
YACCO2_T__ = 1;

9. Thread library use.
THREAD_LIBRARY_TO_USE__ indicates what thread library to gen up. It is a macro conditional symbol.
There are currently 2 libraries supported: Microsoft’s thread support and the Pthread POSIX library. Both
libraries have been used. The Pthread library of 32 and 64 bit flavours was tested on HP’s VMS operating
system — Alpha hardware, Apple’s OS X PowerPC laptop, and Sun’s Solaris Ultra M20 AMD 64 bit dual
core work station. As THREAD_LIBRARY_TO_USE__ is binary valued for now, the value 1 selects the Microsoft
thread library while the value 0 selects the Pthread library.

6 PARSING TRACE VARIABLES WLIBRARY §10

10. Parsing trace variables.
To help in debugging a grammar, the following variables symbols are defined: YACCO2_T__ , YACCO2_TH__
, YACCO2_TLEX__ , YACCO2_MSG__ , YACCO2_MU_GRAMMAR__ , and YACCO2_AR__. So far the tracing facilities
fall into 3 catagories: trace the token when fetched, trace the message correspondence between threads, and
trace the parsing stack of the grammar per action taken. Each symbol name tries by use of a suffix to
indicate its functionality. For example, _MSG__ suffix controls tracing of the messages between all threads
and process. Specific arbitrator functor uses the _AR__ suffix. These are workers supporting parallel parsing
per grammar that require arbitration and thread control.

The symbols are all binary expressions where “1” (one) includes their functionality. As parallel parsing
can use many threads, to refine the volume of traced output, macros that use these symbols YACCO2_TLEX__
,YACCO2_TH__ , and YACCO2_AR__ also test whether their associated grammar has the fsm’s debug parameter
value of ‘true’. YACCO2_TLEX__ symbol controls the specific tracings that are emitted by Yacco2 in the C++

code per rule.
YACCO2 MU xxx helps to verify that mutexes are properly acquired and released. There are 2 contexts

that mutexes are used:
1) global mutexes — thread table and tracing
2) grammar mutex

To aid in identifying a grammar mutex, (UN)LOCK_MUTEX_OF_CALLED_PARSER external routines were created
so that the grammar’s context could be passed as a parameter. This allowed one to trace the grammar’s
name and assigned thread no. Why are LOCK_MUTEX and UNLOCK_MUTEX routines not sufficient? There are
contexts where the parse context is too far down the chain of calls to pass the parser context or there is no
parser context availible: eg, handle tracing by the grammar writer outside the parser context.

11. Thread performance.
To get a feel of why threads are a tad sluglish, the YACCO2_THP__ conditional was invented. It allows one to
see the serpentine meanderings of how the thread library works: flow control dodos.

When the environment is a single cpu, the flow control is how the cpu relinquishes control to the various
threads. As cpus are added, this serpentine tracking becomes non-deterministic: That is, the traces are
parallel or branched competing on the same race trace side-by-side where the number of lanes is the number
of cpus actively running.

12. Section organization.
To control the output of various cweb code sections, the section names and their order are as follows:
〈 Include files 14 〉,〈Type defs 16 〉,〈Structure defs 18 〉, and 〈External rtns and variables 22 〉. As include

statements can take on different definitions: type, constant, structures, sometimes the dependency of the
include file order is important particularly when the files are outside one’s developmental control or there
are circular references. For structures not defined yet but referenced, at the point of use, the standard C++

statement will be added infront of the to-be-defined structure. Maybe a bit imperfect but pratical. So this
is my take...

13. C macros.
Conditionally defined macros for tracing. They are bracketed by the conditional preprocessor code controlling
their inclusion.

〈 c macros 13 〉 ≡ /∗ c macros ∗/
See also sections 630 and 631.

This code is used in section 35.

§14 WLIBRARY INCLUDE FILES 7

14. Include files.
To start things off, these are the Standard Template Library (STL) includes needed by Yacco2.

〈 Include files 14 〉 ≡
〈 iSTL 32 〉;

See also section 138.

This code is cited in section 12.

This code is used in section 35.

8 GLOBAL MACRO DEFINITIONS WLIBRARY §15

15. Global macro definitions. These are references throughout all Yacco2’s cweb files. One definition
to watch for is SIZE CAbs lr1 sym . It attempts to optimize the allocation of raw characters. Due to some
of CAbs lr1 sym items — the boolean and short ints, there are slack bytes generated when alignment for 64
bit support takes place for pointers on 8 byte boundries. SIZE_RC_MALLOC is used to eliminate dflt ctor of
CAbs lr1 sym .

#define START_OF_LRK_ENUMERATE 0
#define END_OF_LRK_ENUMERATE 7
#define START_OF_RC_ENUMERATE END_OF_LRK_ENUMERATE + 1
#define END_OF_RC_ENUMERATE START_OF_RC_ENUMERATE + 256− 1
#define START_OF_ERROR_ENUMERATE END_OF_RC_ENUMERATE + 1
#define SEQ_SRCH_VS_BIN_SRCH_LIMIT 71
#define MAX_UINT (#ffffffff) /∗ 1024*1024*1024*4 - 1 ∗/
#define MAX_USINT 256 ∗ 256− 1
#define MAX_LR_STK_ITEMS 256
#define C_MAX_LR_STK_ITEMS MAX_LR_STK_ITEMS + 1
#define BITS_PER_WORD 32
#define BITS_PER_WORD_REL_0 BITS_PER_WORD − 1
#define MAX_NO_THDS 1024
#define START_OF_RC_ENUM 8
#define SIZE CAbs lr1 sym 56 /∗ 32 bit: 24..28 bytes, 64 bit: 56 ∗/
#define NO CAbs lr1 sym ENTRIES 1024 ∗ 1024
#define SIZE_RC_MALLOC NO CAbs lr1 sym ENTRIES ∗ SIZE CAbs lr1 sym
#define ASCII_8_BIT 256
#define START_LINE_NO 1
#define START_CHAR_POS 0
#define LINE_FEED 10
#define EOF_CHAR_SUB 256
#define YES true
#define NO false
#define ON true
#define OFF false
#define BUFFER_SIZE 1024 ∗ 4
#define BIG_BUFFER_32K 1024 ∗ 32
#define SMALL_BUFFER_4K 1024 ∗ 4
#define THREAD_WORKING 0
#define THREAD_WAITING_FOR_WORK 1
#define ALL_THREADS_BUSY 2
#define NO_THREAD_AT_ALL 3
#define THREAD_TO_EXIT 4
#define EVENT_RECEIVED 0
#define WAIT_FOR_EVENT 1
#define Token start pos 0 /∗ rel 0 for now ∗/
#define No Token start pos Token start pos − 1 /∗ rel 0 for now ∗/
#define CALLED_AS_THREAD true
#define CALLED_AS_PROC false
#define ACCEPT_FILTER true
#define BYPASS_FILTER false

§16 WLIBRARY TYPEDEF DEFINITIONS 9

16. Typedef definitions.
These are the basic types to aid in porting or maintaining the code. Other sections will add to this section
as they get developed.

〈Type defs 16 〉 ≡
typedef const char ∗KCHARP;
typedef unsigned char UCHAR;
typedef char CHAR;
typedef UCHAR ∗UCHARP;
typedef unsigned short int USINT;
typedef short int SINT;
typedef CHAR ∗CHARP;
typedef const void ∗KVOIDP;
typedef void ∗VOIDP;
typedef int INT;
typedef unsigned int UINT;
typedef unsigned int ULINT;
typedef void(∗FN_DTOR)(VOIDP This ,VOIDP Parser);
typedef UCHARP LA set type;
typedef LA set type LA set ptr;
struct CAbs lr1 sym;
struct State;
struct Parser;
struct Shift entry;
struct Shift tbl;
struct Reduce tbl;
struct State s thread tbl;
struct Thread entry;
struct T array having thd ids;
struct Set entry;
struct Recycled rule struct;
struct Rule s reuse entry;
typedef Shift entry Shift entry array type[1024 ∗ 100];
typedef Set entry Set entry array type[1024 ∗ 100];

See also sections 44, 124, 125, 139, 170, 316, 423, and 431.

This code is cited in section 12.

This code is used in section 35.

17. Recursion index for internal tracing of output.
Used to prefix spaces according to its count. Allows one to output messages to lrclog where the prefix
number of spaces is the recursive call level.

#define Recursion count () int RECURSION_INDEX__(0);

18. Structure definitions.

〈Structure defs 18 〉 ≡ /∗ structures ∗/
See also sections 45, 51, 52, 53, 58, 78, 79, 80, 81, 82, 83, 104, 106, 107, 108, 112, 113, 114, 115, 117, 171, 184, 222, 429, 443,

444, 445, 446, 447, 448, 449, 526, 527, 528, 529, 530, 531, 532, and 533.

This code is cited in section 12.

This code is used in section 35.

10 GLOBAL EXTERNAL VARIABLES FROM YACCO2’S LINKER WLIBRARY §19

19. Global external variables from yacco2’s linker.

Apart from PTR LR1 eog which is defined by the yacco2 k symbols .lex grammar, yacco2’s linker gener-
ates the balance of these symbol definitions. All these symbols are covered by namespace yacco2. They are
dangling references within this library that get resolved by the regular language linker from other objects
when the program is built.

The first 5 symbols can only be defined by yacco2’s linker due to the condition that all grammars and
their threads must be known before these symbols can be defined specific to the developed language. Here
we have a general piece of software that has dangling references of future knowns.

〈Global external variables from yacco2’s linker 19 〉 ≡
/∗ Global externals from yacco2’s linker and yacco2 k symbols .lex ∗/

extern void ∗THDS_STABLE__;
extern void ∗T_ARRAY_HAVING_THD_IDS__;
extern void ∗BIT_MAPS_FOR_SALE__;
extern int TOTAL_NO_BIT_WORDS__;
extern int BIT_MAP_IDX__;
extern CAbs lr1 sym ∗PTR LR1 eog ;

This code is cited in section 109.

This code is used in section 35.

20. Global tracing variables.
See Thepreprocessor coding game for their meanings.

〈Global externals for yacco2 tracing variables 20 〉 ≡
extern int YACCO2_T__;
extern int YACCO2_TLEX__;
extern int YACCO2_MSG__;
extern int YACCO2_TH__;
extern int YACCO2_AR__;
extern int YACCO2_THP__;
extern int YACCO2_MU_TRACING__;
extern int YACCO2_MU_TH_TBL__;
extern int YACCO2_MU_GRAMMAR__;

This code is used in section 35.

21. Global variables.

〈Global variables 21 〉 ≡ /∗ gbl variables ∗/
See also sections 172, 424, 425, and 426.

This code is used in section 35.

22. External rtns.

〈External rtns and variables 22 〉 ≡ /∗ extern rtns + gbl variables ∗/
See also sections 46, 140, 173, 211, 427, and 632.

This code is cited in section 12.

This code is used in section 35.

§23 WLIBRARY EXTERNAL RTNS 11

23. Using library’s namespace yacco2. The acronyms should be obvious to the user within their context.

〈uns 23 〉 ≡
using namespace yacco2;

This code is cited in section 666.

This code is used in sections 36, 76, 189, 193, 200, 203, and 209.

24. Begin namespace yacco2.

〈bns 24 〉 ≡
namespace yacco2 {

This code is cited in section 666.

This code is used in section 35.

25. End namespace yacco2.

〈 ens 25 〉 ≡
} ; /∗ end namespace yacco2 ∗/

This code is cited in section 666.

This code is used in section 35.

26. Include Yacco2 header.

〈 iyacco2 26 〉 ≡
#include "yacco2.h"

This code is used in sections 36, 42, 55, 76, 169, and 450.

27. Include Yacco2’s raw characters header.

〈 irc 27 〉 ≡
#include "yacco2_characters.h"

This code is used in sections 55 and 76.

28. Include Yacco2’s constants header.

〈 ilrk 28 〉 ≡
#include "yacco2_k_symbols.h"

This code is used in sections 55 and 76.

29. Include Yacco2’s conditional compile control symbols header.

〈 icompile??? 29 〉 ≡
#include "yacco2_compile_symbols.h"

This code is used in section 35.

30. Include Yacco2’s arbitrator’s begin code.

〈 iar begin 30 〉 ≡
#include "war_begin_code.h"

This code is used in section 175.

31. Include Yacco2’s arbitrator’s end code.

〈 iar end 31 〉 ≡
#include "war_end_code.h"

This code is used in section 175.

12 EXTERNAL RTNS WLIBRARY §32

32. A wrapper file that brings in the required Standard Template Library (STL) containers used by
Yacco2.

〈 iSTL 32 〉 ≡
#include <stdlib.h>

#include <limits.h>

#include <assert.h>

#include "std_includes.h"

#include <time.h>

This code is used in section 14.

33. Accrue yacco2 code.

〈 accrue yacco2 code 33 〉 ≡ /∗ accrue yacco2 code ∗/
See also sections 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 120, 121, 122, 126, 130, 131, 133, 134, 135, 136, 230,

232, 233, 234, 236, 238, 240, 241, 243, 249, 265, 267, 269, 272, 279, 282, 283, 284, 285, 286, 288, 289, 297, 298, 300, 301,
302, 303, 305, 306, 307, 309, 310, 311, 312, 313, 315, 318, 319, 320, 322, 323, 324, 326, 327, 328, 330, 331, 332, 334, 336,

337, 338, 342, 343, 344, 345, 346, 347, 348, 350, 362, 364, 365, 366, 367, 368, 369, 371, 372, 375, 376, 385, 386, 393, 396,

399, 401, 402, 414, 418, 421, 422, 428, 430, 432, 433, and 636.

This code is used in section 36.

34. cweb output of Yacco2’s user library.
The implementation code is emitted by cweb ’s @c or @(operators throughout this discourse. Definitions etc
are outputted to the common include file yacco2 . h. All implementations will include this file into their
implementation.

§35 WLIBRARY CWEB OUTPUT OF YACCO2’S USER LIBRARY 13

35. Create header file for Yacco2 library environment. Note, the “include search” directories for the C++

compiler has to be supplied.

〈 yacco2.h 35 〉 ≡
〈 copyright notice 565 〉;

#ifndef yacco2
#define yacco2 1
〈 icompile??? 29 〉;
〈Preprocessor definitions 〉
〈 Include files 14 〉;
〈bns 24 〉;
〈Type defs 16 〉;
〈Global variables 21 〉;
〈Global externals for yacco2 tracing variables 20 〉;
〈Global external variables from yacco2’s linker 19 〉;
〈Structure defs 18 〉;
〈External rtns and variables 22 〉;
〈 ens 25 〉;
namespace NS yacco2 k symbols {

extern yacco2 ::CAbs lr1 sym ∗PTR LR1 questionable shift operator ;
extern yacco2 ::CAbs lr1 sym ∗PTR LR1 eog ;
extern yacco2 ::CAbs lr1 sym ∗PTR LR1 eolr ;
extern yacco2 ::CAbs lr1 sym ∗PTR LR1 parallel operator ;
extern yacco2 ::CAbs lr1 sym ∗PTR LR1 fset transience operator ;
extern yacco2 ::CAbs lr1 sym ∗PTR LR1 invisible shift operator ;
extern yacco2 ::CAbs lr1 sym ∗PTR LR1 all shift operator ;
};
〈 c macros 13 〉;

#endif

36. Yacco2’s library implementation.
Start the code output to yacco2 . cpp by appending its include file.

〈 yacco2.cpp 36 〉 ≡
〈 copyright notice 565 〉;
〈 iyacco2 26 〉;
〈uns 23 〉;
〈 accrue yacco2 code 33 〉;

14 CONSTANT DEFINITIONS WLIBRARY §37

37. Constant definitions.
These are used by a hodge-podge of functionalities. The majority of the constants are enumerates:
LR1 Questionable operator to LR1 Procedure call operator are the lr constants. Some individual definitions
below have comments relating their grammar’s logical symbol. I did this as a memory jog to read the gram-
mars. For example, to introduce parallelism into the grammar, the |||symbol is used. These constants
allow one to efficiently test against an abstract symbol for its appropriate identity. Why test its identity?:
to cast to a concrete object or to do conditional processing. Why not use C++ cast type operators — just
too expensive in space and time! This is not a complaint but expressed from experience with Yacco2’s
environment — lots and lots of symbols and type cast operators lead to ‘fat city’.

All grammar symbols (terminals and rules) have an emitted enumeration definition. The reason for
these hardwired definitions is that they are also referenced within the Yacco2 compiler/compiler before I
bootstrapped Yacco2 to compile its own grammars. These symbols will be explained when the code is
developed. Possibly as I recast Yacco2 into cweb , these constants could be dropped for their generated
look-alikes. Until then, they have earned their keep.

38. Enumerates. Events.

#define FORCE_STK_TRACE 0
#define COND_STK_TRACE 1
#define Accept parallel parse 1
#define Shutdown 2
#define LR1 Questionable operator 0 /∗ |?| ∗/
#define LR1 Eog 1
#define LR1 Eolr 2
#define LR1 Parallel operator 3 /∗ ||| ∗/
#define LR1 Reduce operator 4 /∗ |r| ∗/
#define LR1 Invisible shift operator 5 /∗ |.| ∗/
#define LR1 All shift operator 6 /∗ |+| ∗/
#define LR1 FSET transience operator 7 /∗ |t| ∗/
#define LR1 Procedure call operator 7 /∗ |t| ∗/

39. The only reason for this section is to stop the appended slash to the last cweb macro above. This is
a slight deviation in cweb code emission. Another abnormality is the use of the word “error” within C++

code: eg. enums. cweb has a slight clearing of the throat. So, just rename “error” to some other form: err
...

§40 WLIBRARY ENUMERATION OF ALPHABETS — TERMINALS AND RULES 15

40. Enumeration of Alphabets — Terminals and Rules.

41. Enumeration.
The terminal alphabet is represented by the positive integers starting at zero. Lr constant terminals (meta
terminals) are indicators of parsing situations like end-of-token stream reached, parallel parsing to take place,
to different wild type shifts. None of these meta-terminals are found within the input language being parsed.

Raw characters represent the mapping from the 8 bit ASCII character into its raw character terminal.
Both the meta and raw characters terminals are fixed and will never expand. They are therefore constant
in their positions. Error terminals are internally generated situations produced by the parsing grammars
manufactured by the grammar writer. They indicate the appropriate faulty situation detected and will grow
in numbers as new error situations are developed. Regular terminals are composites that get created by the
grammars from streams of other raw character terminals or composite terminals. They are evolutionary and
come into existance from various passes made on the token streams: lexical to syntactic. Consequently, both
errors and regular terminals are variable in their numbers as the grammar system is being developed.

To help speed up bottom-up parsing, the enumerate value of each terminal is computed to its compressed
set key. This will be used in the various set operations like reduce, shift, and accept against the lookahead
sets. The following Set handling section describes the details.

16 SET HANDLING WLIBRARY §42

42. Set handling. This is an interesting section.
The original Yacco2 generated code to create each thread’s tables at startup time by C++ templates. Well
the 10 megabyte gorilla thumped its chest. By use of the marvelous book “Efficient C++” by Bulka and
Mayhew, Yacco2 became a diet marvel. Have you heard any testimonials? No, well I’m now one. Go groan
and sweat, your software will thank you for it and so will its life span.

As lookahead sets are rather sparse, to make set processing reasonably efficient, the following approach
was implemented. The out-of-the-box binary search function is used to search a set. To minimize set size,
the range of enumerated elements is divided up into 8 elements per partition where the remainder is the
specific element.

Now why an 8 element partition? As Yacco2 currently uses 8 bit ASCII encoding and the density of the
sets are sparse and my machine has 8 bits per byte, I felt that this was a reasonable compromise in the age
of Aquarius. If the sets were more dense, then the number of elements per partition could be 16 or greater.
As always, there is a compromise between space and speed. It’s upto the person porting the software to
decide. Hash tables were considered but I decided that space would be too wasteful.

Thought: Is there a dynamic hash faclity that rivals the set space but beats it in accessing speed? Other
thoughts: use of complement sets if set size too big.

Elements are ordered in ascending sequence such that the set becomes a binary array of partitions. The
binary functor takes two set structures: one is the key that is being searched within the set table, and the
set table. To shrink the set size, LR1 Eolr is a special element used to signify ‘use all terminals defined
including self’. It’s grammar tag is “eolr”.

Output is directed to wset .cpp .

#define SET_ELEM_NO_BITS 8

〈 wset.cpp 42 〉 ≡
〈 copyright notice 565 〉;
〈 iyacco2 26 〉;
〈 accrue set code 43 〉;

43. Accrue set code.

〈 accrue set code 43 〉 ≡ /∗ acrue set code ∗/
See also section 47.

This code is used in section 42.

44. Some set types used in constructing search sets.

〈Type defs 16 〉 +≡
typedef std ::map < yacco2 ::USINT , yacco2 ::USINT > yacco2 set type ;
typedef yacco2 set type :: iteratoryacco2 set iter type ;

§45 WLIBRARY STRUCTURE OF A SET 17

45. Structure of a set.
Current implementation uses 2 bytes of 8 bit size. The first byte is the partition number with a range of
0..255. The 2nd byte is the elements where x in 2x indicates its position within the byte. An element’s
position within the byte is its remainder of modulo SET_ELEM_NO_BITS. This set structure supports 2048
elements — 256 partitions by 8 elements. If there are more terminals to be supported, then there is 2 ways to
increase the supported number of terminals: increase the partition size from a byte to an integer or expand
the size of the number of elements per partition.

〈Structure defs 18 〉 +≡
struct Set entry { /∗ set structure: byte no of set pairs, partition , set pair(s) ∗/

yacco2 ::UCHAR partition ; /∗ whole no ∗/
yacco2 ::UCHAR elements ; /∗ 7..0 in bit order due to remainder: 0 = 1 while 7 = 128 value ∗/
};
struct Set tbl {

yacco2 ::UCHAR no entries ;
yacco2 ::Set entry first entry [1];
};

46. Set element compare functor.
This is just your basic binary search functor whose address is passed to the binary search routine. The only
interesting part is c’s bitwise logical ‘and’ to determine if the element is in the 2nd byte of the structure. If
the element is not found, it forces the search to continue down a cul-du-sac by returning a false ‘less than’
comparison.

Now i roll my own bsearch to speed things up. The compare functor is just too expensive in run time so
out damn spot.

〈External rtns and variables 22 〉 +≡
extern void create set entry (yacco2 ::USINT Enum id ,yacco2 ::Set entry &Set);

47. From a terminal’s enumeration create a set’s key for searching.
This routine maps an enumeration into a set’s co-ordinates.

〈 accrue set code 43 〉 +≡
extern void yacco2 ::create set entry (yacco2 ::USINT Enum id ,yacco2 ::Set entry &Set)
{

INT R = Enum id % SET_ELEM_NO_BITS;

Set .partition = Enum id /SET_ELEM_NO_BITS;
Set .elements = 1� R;
}

48. create set entry .

〈 create set entry 48 〉 ≡
INT R = Enum id % SET_ELEM_NO_BITS;

la set .partition = Enum id /SET_ELEM_NO_BITS;
la set .elements = 1� R;

This code is used in section 290.

49. create set entry for RC.

〈 create set entry for Rc 49 〉 ≡
INT R = sym~enumerated id % SET_ELEM_NO_BITS;

sym~ tok co ords .set entry .partition = sym~enumerated id /SET_ELEM_NO_BITS;
sym~ tok co ords .set entry .elements = 1� R;

This code is used in section 57.

18 FROM A TERMINAL’S ENUMERATION CREATE A SET’S KEY FOR SEARCHING WLIBRARY §50

50. create set entry for CAbs lr1 sym.

〈 create set entry for CAbs lr1 sym 50 〉 ≡
INT R = Enum id % SET_ELEM_NO_BITS;

tok co ords .set entry .partition = Enum id /SET_ELEM_NO_BITS;
tok co ords .set entry .elements = 1� R;

This code is used in section 60.

§51 WLIBRARY TABLE LOOKUP FUNCTOR 19

51. Table lookup functor. Inheritance earns its keep. See “Yacco2 - symbol table” document as an
example of use.

〈Structure defs 18 〉 +≡
template <typename Functor>

struct functor2 {
struct functor { };
void operator()(Functor ∗ Func)
{

Func~operator()();
}
;

};
template <typename T>

class tble lkup : public std ::unary function <T,T>

{
public:

tble lkup()
: lkup (ON) { }
;

∼tble lkup()
{ }
;

virtual Toperator()(Tt) = 0;

void turn off lkup()
{

lkup = OFF; /∗ / yacco2::lrclog ¡¡ ”TURN OFF TBLE LK” ¡¡ std::endl; ∗/
}
;

void turn on lkup()
{

lkup = ON; /∗ / yacco2::lrclog ¡¡ ”TURN ON TBLE LK” ¡¡ std::endl; ∗/
}
;

bool lkup()
{

return lkup ;
}
;

bool lkup ;
}
;

52.

〈Structure defs 18 〉 +≡
typedef tble lkup < yacco2 ::CAbs lr1 sym ∗ > tble lkup type ;

20 RAW CHARACTER MAPPER WLIBRARY §53

53. Raw character mapper. Maps an 8 bit character into the raw character object. This is the raw
character part of a grammar’s terminal alphabet. To provide some performance, a static pool of objects is
used instead of trashing malloc memory manager. Though it’s a fixed size defined by SIZE_RC_MALLOC an
overflow test at runtime throws an error if the memory pool is exhausted. All the raw character objects are
of same size. Their differences comes in their genes: blue eyes, id , enumerated id , and delete attributes.
It is the same dog with the same spots of color being called by a different nickname. To improve startup
performance where the array was being initialized to the default ctor layout that actually was useless,
CAbs lr1 sym’s default ctor has been eliminated. Now a raw character pool is used with casting to the
newly minted CAbs lr1 sym.

Output is directed to wrc .cpp .

〈Structure defs 18 〉 +≡
struct rc map {

enum rc size {
rc size = ASCII_8_BIT + 1

};
yacco2 ::CAbs lr1 sym ∗map char to raw char sym (yacco2 ::UINT Char ,yacco2 ::UINT

File ,yacco2 ::UINT Pos ,UINT ∗Line no ,UINT ∗Pos in line);
static char array chr sym [SIZE_RC_MALLOC];
static INT current rc malloc sub ;
static yacco2 ::KCHARP chr literal [ASCII_8_BIT];
};

54. Set up Raw characters malloc variables.

〈 accrue rc code 54 〉 ≡ /∗ acrue rc code ∗/
int yacco2 ::rc map ::current rc malloc sub (−1);
char yacco2 ::rc map ::array chr sym [SIZE_RC_MALLOC];
yacco2 ::KCHARP yacco2 ::rc map ::chr literal [ASCII_8_BIT] = {"\x00", "\x01", "\x02", "\x03",

"\x04", "\x05", "\x06", "\x07", "\x08", "\x09", "\x0a", "\x0b", "\x0c", "\x0d", "\x0e", "\x0f",
"\x10", "\x11", "\x12", "\x13", "\x14", "\x15", "\x16", "\x17", "\x18", "\x19", "\x1a", "\x1b",
"\x1c", "\x1d", "\x1e", "\x1f", "\x20", "\x21", "\x22", "\x23", "\x24", "\x25", "\x26", "\x27",
"\x28", "\x29", "\x2a", "\x2b", "\x2c", "\x2d", "\x2e", "\x2f", "\x30", "\x31", "\x32", "\x33",
"\x34", "\x35", "\x36", "\x37", "\x38", "\x39", "\x3a", "\x3b", "\x3c", "\x3d", "\x3e", "\x3f",
"\x40", "\x41", "\x42", "\x43", "\x44", "\x45", "\x46", "\x47", "\x48", "\x49", "\x4a", "\x4b",
"\x4c", "\x4d", "\x4e", "\x4f", "\x50", "\x51", "\x52", "\x53", "\x54", "\x55", "\x56", "\x57",
"\x58", "\x59", "\x5a", "\x5b", "\x5c", "\x5d", "\x5e", "\x5f", "\x60", "\x61", "\x62", "\x63",
"\x64", "\x65", "\x66", "\x67", "\x68", "\x69", "\x6a", "\x6b", "\x6c", "\x6d", "\x6e", "\x6f",
"\x70", "\x71", "\x72", "\x73", "\x74", "\x75", "\x76", "\x77", "\x78", "\x79", "\x7a", "\x7b",
"\x7c", "\x7d", "\x7e", "\x7f", "\x80", "\x81", "\x82", "\x83", "\x84", "\x85", "\x86", "\x87",
"\x88", "\x89", "\x8a", "\x8b", "\x8c", "\x8d", "\x8e", "\x8f", "\x90", "\x91", "\x92", "\x93",
"\x94", "\x95", "\x96", "\x97", "\x98", "\x99", "\x9a", "\x9b", "\x9c", "\x9d", "\x9e", "\x9f",
"\xa0", "\xa1", "\xa2", "\xa3", "\xa4", "\xa5", "\xa6", "\xa7", "\xa8", "\xa9", "\xaa", "\xab",
"\xac", "\xad", "\xae", "\xaf", "\xb0", "\xb1", "\xb2", "\xb3", "\xb4", "\xb5", "\xb6", "\xb7",
"\xb8", "\xb9", "\xba", "\xbb", "\xbc", "\xbd", "\xbe", "\xbf", "\xc0", "\xc1", "\xc2", "\xc3",
"\xc4", "\xc5", "\xc6", "\xc7", "\xc8", "\xc9", "\xca", "\xcb", "\xcc", "\xcd", "\xce", "\xcf",
"\xd0", "\xd1", "\xd2", "\xd3", "\xd4", "\xd5", "\xd6", "\xd7", "\xd8", "\xd9", "\xda", "\xdb",
"\xdc", "\xdd", "\xde", "\xdf", "\xe0", "\xe1", "\xe2", "\xe3", "\xe4", "\xe5", "\xe6", "\xe7",
"\xe8", "\xe9", "\xea", "\xeb", "\xec", "\xed", "\xee", "\xef", "\xf0", "\xf1", "\xf2", "\xf3",
"\xf4", "\xf5", "\xf6", "\xf7", "\xf8", "\xf9", "\xfa", "\xfb", "\xfc", "\xfd", "\xfe", "\xff"};

See also section 56.

This code is used in section 55.

§55 WLIBRARY OUTPUT RC CODE 21

55. Output rc code.

〈 wrc.cpp 55 〉 ≡
〈 copyright notice 565 〉;
〈 iyacco2 26 〉;
〈 irc 27 〉;
〈 ilrk 28 〉;
using namespace NS yacco2 characters;

〈 accrue rc code 54 〉;

56. Map raw character to character symbol.
Place line detection by line feed. Call of this method requires the line number and character position. It
determines the line boundary and augments their values.

〈 accrue rc code 54 〉 +≡
yacco2 ::CAbs lr1 sym ∗yacco2 ::rc map ::map char to raw char sym
(yacco2 ::UINT Char ,yacco2 ::UINT File no ,yacco2 ::UINT Pos ,UINT ∗Line no ,UINT

∗Pos in line)
{
map char to symbol :
〈Validate File no parameter 548 〉;
if (Char ≥ rc size) {
〈Error bad character mapping 562 〉;
return 0;

}
〈Trace raw characters 646 〉;
if (Char ≡ EOF_CHAR_SUB) {

yacco2 ::PTR LR1 eog ~ tok co ords .external file id = File no ;
yacco2 ::PTR LR1 eog ~ tok co ords .rc pos = Pos ;
yacco2 ::PTR LR1 eog ~set line no and pos in line (∗Line no , 1);
return yacco2 ::PTR LR1 eog ;

}
〈malloc raw characters from static pool instead of newing 57 〉;
++(∗Pos in line);
sym~set line no and pos in line (∗Line no , ∗Pos in line);
if (Char ≡ LINE_FEED) { /∗ set for next char ∗/

++(∗Line no);
∗Pos in line = START_CHAR_POS;

}
return sym ;
}

22 MALLOC RAW CHARACTERS FROM STATIC POOL INSTEAD OF NEWING OF MALLOCWLIBRARY §57

57. Malloc raw characters from static pool instead of newing of Malloc.
Note: the raw character pool used to eliminate the default CAbs lr1 sym ctor initialization of the array
at start up time. Now it’s just a raw cess pool waiting to evolve.

〈malloc raw characters from static pool instead of newing 57 〉 ≡
++rc map ::current rc malloc sub ;

long rc sub = current rc malloc sub ∗ SIZE CAbs lr1 sym ;

if (rc sub > SIZE_RC_MALLOC) {
〈Error no more raw character storage 563 〉;
}
CAbs lr1 sym ∗sym = (CAbs lr1 sym ∗) &rc map ::array chr sym [rc sub];

sym~ id = rc map ::chr literal [Char];
sym~enumerated id = Char + START_OF_RC_ENUM;
sym~ tok co ords .external file id = File no ;
sym~ tok co ords .rc pos = Pos ;
〈 create set entry for Rc 49 〉;

This code is used in section 56.

§58 WLIBRARY ABSTRACT SYMBOL CLASS FOR ALL ALPHABETS 23

58. Abstract symbol class for all alphabets.
CAbs lr1 sym is your base structure from which all grammar symbols of terminal and rule alphabets are
derived. Two symbol identities are maintained: description and enumeration. The descriptive form is its
name used in the grammar while the enumeration id depends on how Yacco2 has iterated across the Terminal
alphabet. This iteration is described elsewhere.

To save space, an union structure is used between the co-ordinate of a terminal and the rule’s associated
number of right-handside elements (subrule) and parser context. At one time there was a distinction of
generated symbols for the rule and its subrules. Now a subrule is a method within the rule’s class. The
utility for separate symbols for rules and their subrules was evaluated. The cost of the extra subrule symbols
was too heavy in the little utility that they gave but rarely exercised!

A rule and the lrk constants terminals have no association with the token source stream, only terminals do
in their various forms — error, raw characters, and user defined. The source file co-ordinates are expressed
in terms of a line number and a character position within the line. A file number index is kept as a key into
the global table of copied files that holds their file names.

The balance of the variables are grammatical attributes: ‘auto delete’, ‘auto abort’, and its destructor
function if present. Why is there a dtor function instead of a class destructor. Efficiency! Virtual tables
can be expensive in space and time. In this case, it is not needed very often and it is controlled by Yacco2’s
output code. Remember there are hoards of symbols: at least one per character.

I’ve added the terminal’s compressed set key to speed things up for the lookahead set operations. Some
parsing operations use the raw enumerate value as it is a 1:1 in content. Lookahead sets are composed of
sorted dupples where each dupple is composed of a partition no and its elements members derived from
the terminal’s enumerated value. This eliminates the calculation of a terminal’s enumerate value to its set
equivalent every time it is checked for membership within a set.

〈Structure defs 18 〉 +≡
struct CAbs lr1 sym {

CAbs lr1 sym(yacco2 ::KCHARP Id ,yacco2 ::FN_DTORDtor ,yacco2 ::USINT Enum id ,bool
Auto delete ,bool Affected by abort);

CAbs lr1 sym(yacco2 ::KCHARP Id ,yacco2 ::FN_DTORDtor ,yacco2 ::USINT Enum id ,bool
Auto delete ,bool Affected by abort ,yacco2 ::USINT Ext file no ,yacco2 ::UINT Rc pos);

CAbs lr1 sym(yacco2 ::KCHARP Id ,yacco2 ::FN_DTORDtor ,yacco2 ::USINT
Enum id ,yacco2 ::Parser ∗P ,bool Auto delete = false ,bool Affected by abort = false);

yacco2 ::KCHARP id () const;
yacco2 ::USINT enumerated id () const;
void set enumerated id (yacco2 ::USINT Id);
void set auto delete (bool X);
bool auto delete () const;
void set affected by abort (bool X);
bool affected by abort () const;
yacco2 ::UINT rc pos ();
void set rc pos (yacco2 ::UINT Pos);
yacco2 ::UINT external file id ();
void set external file id (yacco2 ::UINT File);
void set rc(yacco2 ::CAbs lr1 sym &Rc ,yacco2 ::KCHARP GPS_FILE = __FILE__,

yacco2 ::UINT GPS_LINE = __LINE__);
yacco2 ::UINT line no();
void set line no(yacco2 ::UINT Line no);
yacco2 ::UINT pos in line ();
void set pos in line (yacco2 ::UINT Pos in line);
void set line no and pos in line (yacco2 ::CAbs lr1 sym &Rc);
void set line no and pos in line (yacco2 ::UINT Line no ,yacco2 ::UINT Pos in line);
void set who created (yacco2 ::KCHARP File ,yacco2 ::UINT Line no);
yacco2 ::UINT who line no();

24 ABSTRACT SYMBOL CLASS FOR ALL ALPHABETS WLIBRARY §58

yacco2 ::KCHARP who file ();
yacco2 ::Parser ∗parser ();

yacco2 ::FN_DTORdtor ();

yacco2 ::USINT rhs no of parms ();
yacco2 ::KCHARP id ;

yacco2 ::FN_DTORdtor ;

yacco2 ::USINT enumerated id ;
bool auto delete ;
bool affected by abort ;
UCHAR enum id set partition no() const;
UCHAR enum id set member () const;
struct tok co ordinates {

yacco2 ::KCHARP who file ;
yacco2 ::UINT who line no ;
yacco2 ::UINT rc pos ;
yacco2 ::UINT line no ;
yacco2 ::USINT external file id ;
yacco2 ::USINT pos in line ;
Set entry set entry ;

};
struct rule info {

yacco2 ::Parser ∗parser ;
yacco2 ::USINT rhs no of parms ;

};
union {

tok co ordinates tok co ords ;
rule info rule info ;

};
};

59. Grammar abstract symbol implementation.
Why the 3 CAbs lr1 sym constructors? The 1st CAbs lr1 sym defines rules, the 2nd defines the
terminals without the GPS, while the 3rd can be used by the grammar writer in the syntax directed code
to create terminals having a GPS to its source file.

§60 WLIBRARY GRAMMAR ABSTRACT SYMBOL IMPLEMENTATION 25

60. CAbs lr1 sym constructor.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::CAbs lr1 sym ::CAbs lr1 sym(yacco2 ::KCHARP Id ,yacco2 ::FN_DTORDtor ,

yacco2 ::USINT Enum id ,yacco2 ::Parser ∗P ,bool Auto delete ,bool Affected by abort)
: id (Id), dtor (Dtor), enumerated id (Enum id), auto delete (Auto delete),

affected by abort (Affected by abort) {
rule info .parser = P ;
〈 create set entry for CAbs lr1 sym 50 〉;
}
yacco2 ::CAbs lr1 sym ::CAbs lr1 sym(yacco2 ::KCHARP Id ,yacco2 ::FN_DTORDtor ,

yacco2 ::USINT Enum id ,bool Auto delete ,bool Affected by abort)
: id (Id), dtor (Dtor), enumerated id (Enum id), auto delete (Auto delete),

affected by abort (Affected by abort) {
tok co ords .rc pos = 0;
tok co ords .line no = 0;
tok co ords .external file id = 0;
tok co ords .pos in line = 0;
tok co ords .who file = 0;
tok co ords .who line no = 0;
〈 create set entry for CAbs lr1 sym 50 〉;
}
yacco2 ::CAbs lr1 sym ::CAbs lr1 sym(yacco2 ::KCHARP Id ,yacco2 ::FN_DTORDtor ,

yacco2 ::USINT Enum id ,bool Auto delete ,bool Affected by abort ,yacco2 ::USINT
Ext file no ,yacco2 ::UINT Rc pos)

: id (Id), dtor (Dtor), enumerated id (Enum id), auto delete (Auto delete),
affected by abort (Affected by abort) {

tok co ords .rc pos = Rc pos ;
tok co ords .line no = 0;
tok co ords .external file id = Ext file no ;
tok co ords .pos in line = 0;
tok co ords .who file = 0;
tok co ords .who line no = 0;
〈 create set entry for CAbs lr1 sym 50 〉;
}

61. enum id set partition no and enum id set member .
A compressed set key.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::UCHAR yacco2 ::CAbs lr1 sym ::enum id set partition no() const
{

return tok co ords .set entry .partition ;
}
yacco2 ::UCHAR yacco2 ::CAbs lr1 sym ::enum id set member () const
{

return tok co ords .set entry .elements ;
}

26 RHS NO OF PARMS WLIBRARY §62

62. rhs no of parms . Number of elements contained in a rule’s right hand side subrule.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::USINT yacco2 ::CAbs lr1 sym ::rhs no of parms ()
{

return rule info .rhs no of parms ;
}

63. parser . Associated parser with the grammar being used.
A terminal symbol has no association with a parser apart from where it was constructed¿ Where as a rule
does require this reference that gets assigned at construction time. So be ware as the parser variable is
unionized!

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::Parser ∗yacco2 ::CAbs lr1 sym ::parser ()
{

return rule info .parser ;
}

64. id . Descriptive form of the symbol for tracing purposes.
For rules, this is optimized out when the grammar’s debug switch is set to off. You must regenerate the
grammar when you want to turn on the grammar’s debug facilty. Just setting the C++ code for debug is
not sufficient. Trust me.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::KCHARP yacco2 ::CAbs lr1 sym :: id () const
{

return id ;
}

65. enumerated id .
The iteration scheme for the terminal alphabet starts at 0 followed by the grammar’s rules. Subrules
enumeration start from 1. Their enumerates are mutually exclusive and are defined in the generated fsm
class of the grammar.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::USINT yacco2 ::CAbs lr1 sym ::enumerated id () const
{

return enumerated id ;
}

66. set enumerated id .

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::CAbs lr1 sym ::set enumerated id (yacco2 ::USINT Id)
{

enumerated id = Id ;
}

§67 WLIBRARY SET AFFECTED BY ABORT AND AFFECTED BY ABORT 27

67. set affected by abort and affected by abort .
These are the writer and reader of the grammar’s auto abort attribute ‘AB’ for the symbol.

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::CAbs lr1 sym ::set affected by abort (bool X)
{

affected by abort = X;
}
bool yacco2 ::CAbs lr1 sym ::affected by abort () const
{

return affected by abort ;
}

68. set auto delete and CAbs lr1 sym ::auto delete .
These are the writer and reader of the grammar’s auto delete attribute ‘AD’ for the symbol.

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::CAbs lr1 sym ::set auto delete (bool X)
{

auto delete = X;
}
bool yacco2 ::CAbs lr1 sym ::auto delete () const
{

return auto delete ;
}

69. dtor .
Destructor function defined by the grammar writer for the symbol. Why not use the class genetics? A
class is too expensive in its implementation. Your basic structure is sufficient with no virtual table overhead.
Within this context, the dtor is rarely needed and it’s upto Yacco2 to create when needed. See the destructor
directive of the grammar.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::FN_DTORyacco2 ::CAbs lr1 sym ::dtor ()
{

return dtor ;
}

28 SET RC , SET RC POS , AND RC POS WLIBRARY §70

70. set rc , set rc pos , and rc pos .
These are the writers and reader of the terminal’s co-ordinate. The only symbol that directly sets these
values are the raw character symbols. All other symbols are composites built from raw character terminals.
The co-ordinate parts can be individually set, or all parts of the co-ordinate can be copied from a previous
symbol’s co-ordinate. Normally their use comes from a parsing environment producing tokens built from a
grammar but this is not a hardfast rule.

The reason why the parser address is passed to CAbs lr1 sym ::set rc is due to eog . It is shared across all
token containers and all copied source files. This sharing behavior was taken to lower the new-delete overhead
to creating of the terminal. Consequently there is no definite co-ordinate associated with this terminal and
one must go to the previous token of the supplier to tack on the real co-ordinates + the number of previous
terminals tried for a co-ordinate. The supplier context comes from the parser .

The 2 GPS parameters allows parental histronics: Don’t know if this is received well by the user of O2

but it certainly helps to debug. This was added down the road and so the reason for the defaults in the
prototype as to not disturb existing grammars. If the default is taken then the GPS is not set as it could be
done elsewhere. set who created allows one to initially set or override previous settings.

Some marginal additives: parse stack co-ordinates for error tokens and “eog” association with from current
token supplier. Added the situation if no token symbol to find for the “eog” token (no data entered at the
command line), i force the command line co-ordinates instead of throwing up.

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::CAbs lr1 sym ::set rc(yacco2 ::CAbs lr1 sym &Rc ,yacco2 ::KCHARP

GPS_FILE,yacco2 ::UINT GPS_LINE)
{

if (GPS_FILE 6= 0) {
tok co ords .who file = GPS_FILE;
tok co ords .who line no = GPS_LINE;

}
if (Rc .tok co ords .external file id > 0) {

tok co ords .external file id = Rc .tok co ords .external file id ;
tok co ords .rc pos = Rc .tok co ords .rc pos ;
tok co ords .line no = Rc .tok co ords .line no ;
tok co ords .pos in line = Rc .tok co ords .pos in line ;
return;

}
return;
}

71. Does terminal have a legitimate co-ordinate?.
Do you see the moonwalk? This goes backwards through the supplier tokens looking for a source address.
Inside the supplier routine is the validation on the requested subscript.

〈does terminal have a legitimate co-ordinate? yes set it and exit. no keep trying 71 〉 ≡
if (pt~ tok co ords .rc pos 6= 0) goto set co ordinates ;
++bk cnt ;
−−prev pos ;
goto find legitimate terminal ;

§72 WLIBRARY DOES TERMINAL HAVE A LEGITIMATE CO-ORDINATE? 29

72.

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::CAbs lr1 sym ::set rc pos (yacco2 ::UINT Pos)
{
〈Validate Pos parameter 546 〉;
tok co ords .rc pos = Pos ;
}
yacco2 ::UINT yacco2 ::CAbs lr1 sym ::rc pos ()
{

return tok co ords .rc pos ;
}

73. set external file id and external file id .
These are the writer and reader of the grammar’s external file index used to reference the copied files
descriptive name.

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::CAbs lr1 sym ::set external file id (yacco2 ::UINT File no)
{
〈Validate File no parameter 548 〉;
tok co ords .external file id = File no ;
}
yacco2 ::UINT yacco2 ::CAbs lr1 sym ::external file id ()
{

return tok co ords .external file id ;
}

30 SET LINE NO, AND CHARACTER POSITION ROUTINES WLIBRARY §74

74. Set line no, and character position routines.
These are the writer and reader to parts of the co-ordinate.

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::CAbs lr1 sym ::set line no(yacco2 ::UINT Line no)
{
〈Validate Line no parameter 545 〉;
tok co ords .line no = Line no ;
}
yacco2 ::UINT yacco2 ::CAbs lr1 sym :: line no()
{

return tok co ords .line no ;
}
yacco2 ::UINT yacco2 ::CAbs lr1 sym ::pos in line ()
{

return tok co ords .pos in line ;
}
void yacco2 ::CAbs lr1 sym ::set pos in line (yacco2 ::UINT Pos in line)
{
〈Validate Pos in line parameter 547 〉;
tok co ords .pos in line = Pos in line ;
}
void yacco2 ::CAbs lr1 sym ::set line no and pos in line (yacco2 ::UINT Line no ,yacco2 ::UINT

Pos in line)
{
〈Validate Line no parameter 545 〉;
〈Validate Pos in line parameter 547 〉;
tok co ords .line no = Line no ;
tok co ords .pos in line = Pos in line ;
}
void yacco2 ::CAbs lr1 sym ::set line no and pos in line (yacco2 ::CAbs lr1 sym &Rc)
{

tok co ords .line no = Rc .tok co ords .line no ;
tok co ords .pos in line = Rc .tok co ords .pos in line ;
}

75. set who created , who line no , who file .
These are the writer and reader to parts of the co-ordinate giving the source that created the symbol.

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::CAbs lr1 sym ::set who created (yacco2 ::KCHARP File ,yacco2 ::UINT Line no)
{

tok co ords .who file = File ;
tok co ords .who line no = Line no ;
}
yacco2 ::UINT yacco2 ::CAbs lr1 sym ::who line no()
{

return tok co ords .who line no ;
}
yacco2 ::KCHARP yacco2 ::CAbs lr1 sym ::who file ()
{

return tok co ords .who file ;
}

§76 WLIBRARY TOKEN CONTAINER STRUCTURE, TEMPLATES, AND FUNCTIONS 31

76. Token container structure, templates, and functions.
The 2 specialized containers tok can < AST ∗> for tree walks and tok can < ifstream ∗> for raw character
fetching have been optimized to eliminate the “jit” fetching of token for speed reasons: elimination of read
mutex. See “Notes to myself” on discussion. This leaves the tok can < string > as unsafe. It is used
internally by the library to GPS tokens against their opened files to line / character position. Sooooo, Be
Ware the

〈 wtok_can.cpp 76 〉 ≡
〈 copyright notice 565 〉;
〈 iyacco2 26 〉;
〈 irc 27 〉;
〈 ilrk 28 〉;
using namespace NS yacco2 characters;

〈uns 23 〉;
〈 accrue tok can code 77 〉;

77.

〈 accrue tok can code 77 〉 ≡ /∗ accrued tok can code ∗/
See also sections 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, and 103.

This code is used in section 76.

78. Sour Apple on template definition.
Circa December 2005, Apple C++ gcc 4.0 compiler honks on preprocessing the Tok can template definition.
The template has not been instantiated but its prototype definition preprocessed into a holding source
macro for future code substitution and compiling — AKA instantiation. Unfortunately gcc 4.0 expects all
prototype variables declared before preprocessing the template prototype takes place. For example variables
LOCK_MUTEX, UNLOCK_MUTEX, PTR LR1 eog , and YACCO2_T__ in template Tok can below aggravates the
compiler and gave me a headache. All other C++ compilers tried like Intel C++ 9.0, HP C++ 6.x and 7.1
for VMS Alpha, and Microsoft’s Visual Studio c++ 7.0 and 2005 all work. Alas portability is extremely
trying. Am i being bruised by software savants? The work around is declare these items before the template
definition. See Notes tomyself to their response and correct position to my perceived problem.

〈Structure defs 18 〉 +≡
extern void LOCK_MUTEX(yacco2 ::MUTEX & Mu);
extern void UNLOCK_MUTEX(yacco2 ::MUTEX & Mu);
extern void LOCK_MUTEX_OF_CALLED_PARSER(yacco2 ::MUTEX & Mu ,yacco2 ::Parser &parser , const

char ∗Text);
extern void UNLOCK_MUTEX_OF_CALLED_PARSER(yacco2 ::MUTEX & Mu ,yacco2 ::Parser &parser , const

char ∗Text);

32 TOK CAN TEMPLATE WLIBRARY §79

79. Tok can template.
tok base forces regularity across the tok can containers. wtok can .cpp for tok can containers of ifstream,
string, and tree.

〈Structure defs 18 〉 +≡
struct tok base {

tok base(USINT RW)
: r w cnt (RW) { }
;

virtual yacco2 ::UINT size () = 0;
virtual yacco2 ::CAbs lr1 sym ∗operator[](yacco2 ::UINT Pos) = 0;
virtual void push back (yacco2 ::CAbs lr1 sym &Tok) = 0;
virtual void clear () = 0;
virtual bool empty () = 0;
USINT r w cnt ;
};
template〈typename Container 〉 class tok can : public tok base {
public:

typedef Containervalue type ;
typedef typename Container ::size type size type;
typedef typename Container ::difference type difference type;
typedef typename Container :: iterator iterator;
typedef typename Container ::const iterator const iterator;
typedef typename Container ::reverse iterator reverse iterator;
typedef typename Container ::const reverse iterator const reverse iterator;
typedef typename Container ::pointer pointer;
typedef typename Container ::const pointer const pointer;
typedef typename Container ::reference reference;
typedef typename Container ::const reference const reference;

tok can()
: tok base(1), pos (0) { }
;

∼tok can()
{ }
;

yacco2 ::CAbs lr1 sym ∗operator[](yacco2 ::UINT Pos)
{

if (Pos ≥ container .size ()) {
if (YACCO2_T__ 6= 0) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_T__::tok_can token eog: "

� PTR LR1 eog � " pos: " � Pos � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;
}
return PTR LR1 eog ;

}
CAbs lr1 sym ∗tok (0);

if (r w cnt > 1) {
〈 acquire token mu 391 〉tok = container [Pos];
〈 release token mu 392 〉

}

§79 WLIBRARY TOK CAN TEMPLATE 33

else {
tok = container [Pos];

}
if (YACCO2_T__ 6= 0) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_T__::tok_can token: " � tok ~ id
� " *: " � tok � " pos: " � Pos
� " enum: " � tok ~enumerated id � ’"’ � tok ~ id � ’"’ � FILE_LINE � std ::endl ;
yacco2 :: lrclog � "\t\t::GPS FILE: ";
EXTERNAL GPSing (tok)yacco2 :: lrclog � " GPS LINE: " � tok ~ tok co ords .line no �

" GPS CHR POS: " � tok ~ tok co ords .pos in line � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;

}
return tok ;

}
;

yacco2 ::UINT pos ()
{

return pos ;
}
;

yacco2 ::UINT size ()
{

return container .size ();
}
;

bool empty ()
{

return container .empty ();
}
;

void push back (yacco2 ::CAbs lr1 sym &Tok)
{

container .push back (&Tok);
}
;

void remove ()
{ }
;

void clear ()
{

container .clear ();
}
;

Container &container ()
{

return container ;
}
;

34 TOK CAN TEMPLATE WLIBRARY §79

iterator begin ()
{

return container .begin ();
}
;

iterator end ()
{

return container .end ();
}
;

private:
yacco2 ::UINT pos ;
bool have 1st rec ;
Container container ;
};

§80 WLIBRARY SPECIALIZED TOK CAN CONTAINERS: IFSTREAM AND STRING 35

80. Specialized tok can containers: ifstream and string.
They read character streams from external file or string contexts. The string container’s contents can be
added to dynamically (concatenated) using set string procedure while parsing is taking place. The caveat
is it must be before the end-of-string condition has been met. If a GPS token is passed to it at ctor creation
time, the errors reported will be relative to the GPSed file. It tries hard to keep these co-ordinates relative
to the spawning token who supplied the string: string new lines are not respected as this would throw off
the error reporting relative the external file. reuse string allows one to keep a global string token container
and to reuse it.

〈Structure defs 18 〉 +≡
typedef tok base token container type;
typedef tok can 〈 std ::vector < yacco2 ::CAbs lr1 sym ∗ >> GAGGLE;
typedef GAGGLE :: iterator GAGGLE ITER;
typedef GAGGLE TOKEN GAGGLE;
typedef GAGGLE ITER TOKEN GAGGLE ITER;
template〈 〉 class tok can〈std :: ifstream 〉 : public yacco2 ::tok base {
public:

tok can();
tok can(const char ∗File name);
∼tok can();
std ::string & file name ();

void set file name (const char ∗File name);
yacco2 ::CAbs lr1 sym ∗operator[](yacco2 ::UINT Pos);
yacco2 ::UINT pos ();
yacco2 ::UINT size ();
bool empty ();
void push back (yacco2 ::CAbs lr1 sym &Tok);
void remove ();
void clear ();
TOKEN GAGGLE &container ();
bool file ok ();
void open file ();
void close file ();

private:
std :: ifstream file ;

yacco2 ::UINT pos ;
bool have 1st rec ;

std :: ios :: int typeeof pos ;

bool file ok ;
UINT line no ;
UINT pos in line ;
TOKEN GAGGLE container ;

std ::string file name ;

yacco2 ::UINT file no ;
};
template〈 〉 class tok can〈std ::string 〉 : public yacco2 ::tok base {
public:

tok can();
tok can(const char ∗String ,CAbs lr1 sym ∗GPS = 0);
∼tok can();

void set string (const char ∗String);

36 SPECIALIZED TOK CAN CONTAINERS: IFSTREAM AND STRING WLIBRARY §80

void reuse string (const char ∗String ,CAbs lr1 sym ∗GPS = 0);
yacco2 ::CAbs lr1 sym ∗operator[](yacco2 ::UINT Pos);
yacco2 ::UINT pos ();
yacco2 ::UINT size ();
bool empty ();
void push back (yacco2 ::CAbs lr1 sym &Tok);
void remove ();
void clear ();
TOKEN GAGGLE &container ();

std ::string ∗ string used ();

void set gps (CAbs lr1 sym ∗Gps);
yacco2 ::CAbs lr1 sym ∗gps used ();

private:
std ::string string ;

yacco2 ::UINT pos ;
bool have 1st rec ;

std :: ios :: int typeeof pos ;

UINT line no ;
UINT pos in line ;
TOKEN GAGGLE container ;
CAbs lr1 sym ∗eof sym ;
yacco2 ::UINT file no ;
int real start pos in line ;
yacco2 ::CAbs lr1 sym ∗gps ;
};

§81 WLIBRARY TREE CONTAINER AND ITS RELATED PARAPHERNALIA 37

81. Tree container and its related paraphernalia.
There’s the functor for the tree walker that includes the stack, a user functor that executes when the node
is visited, a set filter mechanism to include or exclude node types, and the tree node itself.

Filters are just sets of Tes enumerated ids of T vocabulary. All T types lr, rc, error, and T are allowed.
A filter type of bypass or accept makes walking the trees easier in selecting T. A nil based filter implies all
Tes are accepted.

The tree walkers supported are pre and post fix, and various flavours of breadth walks. A forest walk
refines the scope of the tree to be walked even though the forest node can be linked to the tree.

Due to the nature of a binary tree, the infix tree walker is not supported. The tree structure is provided by
the AST definition which is just a tree node wrapper for the grammar’s vocabulary. Its content is abstracted
to CAbs lr1 sym as it has no psychic powers of the future grammar user. In tandom with the enumeration
value of the abstracted symbol, the casting operator brings its out of the closet so-to-speak. Dominance is
provided by the lt link while rt provides the equivalence link. To aid in walking the tree, the pr link
provides the backward link to its immediate caller. This link can be its older sibling, parent when its the
first child, to nil when the node is the root of the tree.

〈Structure defs 18 〉 +≡
struct AST;
struct ast base stack;
typedef std ::set < yacco2 ::INT > int set type ;
typedef int set type :: iterator int set iter type;
typedef std ::vector < yacco2 ::AST ∗ > ast vector type ;
typedef std ::vector〈yacco2 ::INT〉 ast accept node type;
typedef enum {

bypass node , accept node , stop walking
} functor result type;
typedef ast vector typeType AST ancestor list ;
template〈class T 〉 struct ast functor {

virtual functor result type operator()(TAst env) = 0;
};
typedef ast functor〈yacco2 ::ast base stack ∗〉 Type AST functor;
struct ast base stack {

typedef enum n action {
init , left , visit , right , eoc

} n action ;
struct s rec {

AST ∗node ;
n action act ;

};
ast base stack();
ast base stack(Type AST functor ∗Action ,yacco2 :: int set type ∗Filter = 0,bool

Accept opt = true);

s rec ∗stk rec(yacco2 ::INT I);
void pop();
void push (AST &Node ,ast base stack ::n action Action);
yacco2 ::INT cur stk index ();
s rec ∗cur stk rec();
yacco2 ::INT idx ; /∗ index ∗/
std ::vector〈s rec〉 stk ;
Type AST functor ∗action ;
s rec ∗cur stk rec ;
yacco2 :: int set type ∗filter ;

38 TREE CONTAINER AND ITS RELATED PARAPHERNALIA WLIBRARY §81

bool accept opt ;
};
struct ast stack {

ast stack(Type AST functor ∗Action ,yacco2 :: int set type ∗Filter = 0,bool Accept opt = true);

ast base stack base stk ;
virtual void exec() = 0;
virtual void advance () = 0;
};

§82 WLIBRARY TREE NODE DEFINITION AST 39

82. Tree node definition AST.
Note on linkages:

1) lt parent to son relationship: dominant order
2) rt older to younger relationship: equivalence order
3) pr points to previous older brother or parent

The “pr” relationship provides a backward link in the tree. It’s just a pointer to an older node in the tree: a
younger brother linking to its older brother or the 1st son linking to its parent. A dink node (double income
no kids) would have lt null: no kids. Within its surrounding, A dink node could still be a son or a forest.

〈Structure defs 18 〉 +≡
struct AST {

AST(yacco2 ::CAbs lr1 sym &Obj);
AST();
∼AST();

static AST ∗restructure 2trees into 1tree (AST &S1,AST &S2);
static void crt tree of 1son (AST &Parent ,AST &S1);
static void crt tree of 2sons (AST &Parent ,AST &S1,AST &S2);
static void crt tree of 3sons (AST &Parent ,AST &S1,AST &S2,AST &S3);
static void crt tree of 4sons (AST &Parent ,AST &S1,AST &S2,AST &S3,AST &S4);
static void crt tree of 5sons (AST &Parent ,AST &S1,AST &S2,AST &S3,AST &S4,AST

&S5);
static void crt tree of 6sons (AST &Parent ,AST &S1,AST &S2,AST &S3,AST &S4,AST

&S5,AST &S6);
static void crt tree of 7sons (AST &Parent ,AST &S1,AST &S2,AST &S3,AST &S4,AST

&S5,AST &S6,AST &S7);
static void crt tree of 8sons (AST &Parent ,AST &S1,AST &S2,AST &S3,AST &S4,AST

&S5,AST &S6,AST &S7,AST &S8);
static void crt tree of 9sons (AST &Parent ,AST &S1,AST &S2,AST &S3,AST &S4,AST

&S5,AST &S6,AST &S7,AST &S8,AST &S9);
static void join pts (AST &Parent ,AST &Sibling);
static void join sts (AST &Elder sibling ,AST &Younger sibling);
static void ast delete (AST &Node ,bool Due to abort = false);
static AST ∗find depth (AST &Node ,yacco2 ::INT Enum);
static AST ∗find breadth (AST &Node ,yacco2 ::INT Enum);
static yacco2 ::CAbs lr1 sym ∗content (AST &Node);
static AST ∗get 1st son (AST &Node);
static AST ∗get 2nd son (AST &Node);
static AST ∗get 3rd son (AST &Node);
static AST ∗get 4th son (AST &Node);
static AST ∗get 5th son (AST &Node);
static AST ∗get 6th son (AST &Node);
static AST ∗get 7th son (AST &Node);
static AST ∗get 8th son (AST &Node);
static AST ∗get 9th son (AST &Node);
static AST ∗get spec child (AST &Tree ,yacco2 ::INT Cnt);
static AST ∗get child at end (AST &Tree);
static AST ∗add child at end (AST &Tree ,AST &Child);
static AST ∗get younger sibling (AST &Child ,yacco2 ::INT Pos);
static AST ∗get older sibling (AST &Child ,yacco2 ::INT Pos);
static AST ∗get youngest sibling (AST &Child);
static AST ∗get parent (AST &Child);
static AST ∗common ancestor
(Type AST ancestor list & ListA,Type AST ancestor list & ListB);

40 TREE NODE DEFINITION AST WLIBRARY §82

static AST ∗brother (AST &Node);
static AST ∗previous (AST &Node);
static void zero 1st son (AST &Node);
static void zero 2nd son (AST &Node);
static void zero brother (AST &Node);
static void zero previous (AST &Node);
static void zero content (AST &Node);
static void set content (AST &Node ,yacco2 ::CAbs lr1 sym &Sym);
static void set content wdelete (AST &Node ,yacco2 ::CAbs lr1 sym &Sym);
static void set previous (AST &Node ,AST &Previous node);
static void wdelete (AST &Node ,bool Wdelete);
static bool wdelete (AST &Node);
static void replace node (AST &Old to ,AST &New to);
static void relink (AST &Previous ,AST &Old to ,AST &New to);
static void relink between (AST &Previous ,AST &Old to ,AST &New to);
static void relink after (AST &Previous ,AST &New to);
static void relink before (AST &Previous ,AST &New to);
static void add son to tree (AST &Parent ,AST &Son);
static AST ∗divorce node from tree (AST &Node);
static AST ∗clone tree (AST &Node to copy ,AST ∗Calling node ,ast base stack ::n action

Relation = ast base stack :: init);
AST ∗lt ;
AST ∗rt ;
AST ∗pr ; /∗ caller who links to it ∗/
yacco2 ::CAbs lr1 sym ∗obj ;
bool wdelete ;
};

§83 WLIBRARY TREE TOK CAN〈AST ∗〉 CONTAINER WITH ACCEPT / BYPASS FILTERS 41

83. Tree tok can〈AST ∗〉 container with accept / bypass filters .
The interesting part is use of the int set type filter and its companion Accept opt in the constructor of the
tree walker . The int set type filter just contains the Terminal enumerations to either accept or bypass. If
these parameters are defaulted, there is no int set type filter present so the complete tree is handed off for
consumption of each node’s content. Having Accept opt true means accept only the items in the set while
false means bypass the items found in the filter set when the tree is walked. This is a very powerful way to
flatten a branching structure.

Please note nodes visited holds the terminals accepted by the filter in the traversal order. It is an array of
AST ∗. To access a token’s tree node, u need the container address. If a grammar is receiving its terminals
by a walked tree, casting the container address to tok can〈yacco2 ::AST ∗〉 ∗ allows one to access the
container’s tree node vector: nodes visited (). The below code fetches the container’s address from a piece
of syntax directed code of a grammar’s rule:

tok can〈AST ∗〉 ∗can = (tok can〈AST ∗〉 ∗) parser ()~ token supplier ();
To fetch a specific tree node of a token, u can use the container’s ast function giving it the position within
the container: Remember its relative to 0. For example u want to fetch the tree node associated with the
1st token using the above container:

AST ∗first tok tree = can~ast (0);
The other note is a shifted token on the parse stack is not the current token. Why? The current token is
the lookahead token and the one u want is on parse stack! Here is a sample code snippet to get the shifted
token’s tree address using the above container with another way to fetch its tree:

AST ∗t = (∗can~nodes visited ())[parser ()~current token pos ()− 1];
Why use parser’s current token pos () instead of the container’s pos ()? Good question: they are equivalent
except when one is reusing the container to deliver tokens to another grammar. The recycled container’s
pos contains the residue from the previous reads: its last token position. Ugh but this is reality.
The sundry tree routines can now be used to walk or fetch the contents of the local tree node.

Caveat: EOG Handling.
Make sure u add an eog node to the end of the tree so that proper end-of-tree handling is done. U do this
by:

AST ∗eog t = new AST(∗yacco2 ::PTR LR1 eog);
then add the node to the end-of-the-tree using one of the tree linking routines

If it is not added, an eog token is returned but there is no associated tree node. So the last token read
is not the lookahead but the previous (shifted) token. If u are using an accept filter, make sure the eog
is included in the accept set so that eog gets its associated end-of-tree node. Please see “Tree containers,
functors, and walkers” later in this document for their descriptions.

Another way to access the container and its contents.
Set up a filter and “for loop” the container to fill it up while the body of the for loop can done specific
activity. This method can be done outside of the parsing activity or within “syntax directed code” of a
grammar. Just give the tree and rip thru it using the filter.

1: // file: /yacco2/diagrams+etc/tokcanaccess.txt

2: using namespace NS_yacco2_T_enum;

3: using namespace NS_yacco2_terminals;

4: using namespace yacco2;

5: INT_SET_type filter;

6: filter.insert(T_Enum::T_T_cweb_comment_);

7: tok_can_ast_functor walk_functr;

8: ast_prefix_1forest rule_walk(*tree_ptr,&walk_functr,&filter,ACCEPT_FILTER);

9: tok_can<AST*> comments_can(rule_walk);// container

10: for(int x(0);comments_can[x] != yacco2::PTR_LR1_eog__;++x){

42 TREE TOK CAN〈AST ∗〉 CONTAINER WITH ACCEPT / BYPASS FILTERS WLIBRARY §83

11: T_cweb_comment* k = (T_cweb_comment*)comments_can[x];

12: (*Wfile) << k->comment_data()->c_str() << endl;

13: }

14:

〈Structure defs 18 〉 +≡
template〈 〉 class tok can〈yacco2 ::AST ∗〉 : public yacco2 ::tok base {
public:

tok can(ast stack &Walker);
∼tok can();

yacco2 ::CAbs lr1 sym ∗operator[](yacco2 ::UINT Pos);
yacco2 ::UINT pos ();
yacco2 ::UINT size ();
bool empty ();
void push back (yacco2 ::AST &Node);
void push back (yacco2 ::CAbs lr1 sym &Node);
void remove ();
void clear ();
yacco2 ::ast stack &container ();
std ::vector〈yacco2 ::AST ∗〉 ∗nodes visited ();
yacco2 ::AST ∗ast (yacco2 ::UINT Pos);
yacco2 ::INT accept node level (yacco2 ::UINT Pos);

private:
volatile yacco2 ::UINT pos ;
bool have 1st rec ;
bool tree end reached ;
yacco2 ::ast vector type nodes visited ;
yacco2 ::ast accept node type accept node level ;
yacco2 ::ast stack &traverse ;
};

§84 WLIBRARY STRING TOK CAN〈STD ::STRING 〉 IMPLEMENTATION 43

84. String tok can〈std ::string 〉 implementation.

〈 accrue tok can code 77 〉 +≡
yacco2 ::tok can〈std ::string 〉 ::tok can()
: tok base(1), pos (0), have 1st rec (false), file no (MAX_USINT),

line no (START_LINE_NO), pos in line (START_CHAR_POS), string (std ::string ()), eof sym (0),
real start pos in line (START_CHAR_POS), eof pos (0), gps (0) { }

yacco2 ::tok can〈std ::string 〉 ::tok can(const char ∗String ,CAbs lr1 sym ∗GPS)
: tok base(1), pos (0), have 1st rec (false), file no (MAX_USINT),

line no (START_LINE_NO), pos in line (START_CHAR_POS), string (String), eof sym (0),
real start pos in line (START_CHAR_POS), eof pos (0), gps (GPS) {

if (GPS ≡ 0) return;
line no = GPS~ tok co ords .line no ;
pos in line = GPS~ tok co ords .pos in line ;
file no = GPS~ tok co ords .external file id ;
real start pos in line = pos in line ;
}
void yacco2 ::tok can〈std ::string 〉 ::set gps (CAbs lr1 sym ∗GPS)
{

gps = GPS;
if (GPS ≡ 0) return;
line no = GPS~ tok co ords .line no ;
pos in line = GPS~ tok co ords .pos in line ;
file no = GPS~ tok co ords .external file id ;
real start pos in line = pos in line ;
}
yacco2 ::CAbs lr1 sym ∗yacco2 ::tok can〈std ::string 〉 ::gps used ()
{

return gps ;
}
yacco2 ::tok can〈std ::string 〉 ::∼tok can()
{ }
bool yacco2 ::tok can〈std ::string 〉 ::empty ()
{

if (string .empty () ≡ true) return YES;
return NO;
}
void yacco2 ::tok can〈std ::string 〉 ::reuse string (const char ∗Str ,CAbs lr1 sym ∗GPS)
{

string .erase ();
string += Str ;
file no = MAX_USINT;
line no = START_LINE_NO;
pos in line = START_CHAR_POS;
eof sym = 0;
real start pos in line = START_CHAR_POS;
eof pos = 0;
if (GPS ≡ 0) return;
set gps (GPS);
}

44 TOK CAN < STRING , STD ::VECTOR > OPERATOR[] WLIBRARY §85

85. Tok can < string , std ::vector > operator[].
This is the heart of the container. Three things are of interest: the just-in-time character access, the 2
“eog” token symbols added to the end-of-file condition, and how to report errors inside the string relative
to the file that provided the string: its contents cannot increment new line with character alignment. Why?
When u report an error back to the original file containing the string, it is GPSed to it and not its contents.
The string’s line number stays the same while the line position increments towards the right without regard
to the new line character. This allows the container to be handled like its brethern within the grammar
context. Note: map char to raw char sym maintains the line:character segmentation as the string is being
read and so must be re-aligned afterwards. The file no reference to the outside source is hardwired using
the MAX USINT symbol when there is possibly no outside file referenced: eg, internal memory string for
the parsing. A bit of a kludge (ahum) as this condition goes against the 0..n declaration for external file
numbers. This is watched for when the external file out-of-bounds occurs: reported is “No external file”.

〈 accrue tok can code 77 〉 +≡
yacco2 ::CAbs lr1 sym ∗yacco2 ::tok can〈std ::string 〉 ::operator[](yacco2 ::UINT Pos)
{

CAbs lr1 sym ∗sym (0);

if (eof pos ≡ EOF) return eof sym ;
fetch char :

if (have 1st rec ≡ false) {
have 1st rec = true ;
pos = 0;

}
else {

if (Pos ≤ pos) {
return container [Pos];

}
++pos ;

}
if (r w cnt > 1) {〈 acquire token mu 391 〉}
for (; ;) { /∗ fetch token somewhere in char stream ∗/

char c;

if (pos ≥ string .size ()) { /∗ eof: add two lrk eog ∗/
eof pos = EOF;
++pos ; /∗ 2nd eog pos, same token used ∗/
sym = RC__.map char to raw char sym (EOF_CHAR_SUB,file no , pos ,&line no ,&pos in line);
eof sym = sym ;
container .push back (∗sym);
container .push back (∗sym);
return sym ;

}
c = string [pos];

convert char to unsigned value :
unsigned char uc = c;
UINT slno = line no ;

sym = RC__.map char to raw char sym (uc ,file no , pos ,&line no ,&pos in line);
if (gps 6= 0) { /∗ re-align against the proxy token ∗/

line no = slno ;
pos in line = real start pos in line + pos ;

}
container .push back (∗sym);
if (Pos ≡ pos) break;

§85 WLIBRARY TOK CAN < STRING , STD ::VECTOR > OPERATOR[] 45

++pos ;
continue;

}
;
if (r w cnt > 1) {〈 release token mu 392 〉}
return sym ;
}

86. Tok can < string >size.

〈 accrue tok can code 77 〉 +≡
yacco2 ::UINT yacco2 ::tok can〈std ::string 〉 ::size ()
{

return string .size ();
}

46 BALANCE OF SUNDRY ROUTINES WLIBRARY §87

87. Balance of sundry routines.

〈 accrue tok can code 77 〉 +≡
yacco2 ::UINT yacco2 ::tok can〈std ::string 〉 ::pos ()
{

return pos ;
}
void yacco2 ::tok can〈std ::string 〉 ::push back (yacco2 ::CAbs lr1 sym &Tok)
{

container .push back (Tok);
}
void yacco2 ::tok can〈std ::string 〉 ::clear ()
{

container .clear ();
pos = 0;
have 1st rec = false ;
file no = MAX_USINT;
line no = START_LINE_NO;
pos in line = START_CHAR_POS;
string .clear ();
eof sym = 0;
real start pos in line = START_CHAR_POS;
eof pos = 0;
gps = 0;
}
TOKEN GAGGLE &yacco2 ::tok can〈std ::string 〉 ::container ()
{

return container ;
}
void tok can〈std ::string 〉 ::remove ()
{ }
void yacco2 ::tok can〈std ::string 〉 ::set string (const char ∗String)
{

string += String ;
}
std ::string ∗ yacco2 ::tok can〈std ::string 〉 ::string used ()
{

return &string ;
}
;

§88 WLIBRARY EXTERNAL FILE TOK CAN〈STD ::IFSTREAM 〉 IMPLEMENTATION 47

88. External file tok can〈std :: ifstream 〉 implementation.
Removed the “jit” approach and now at open file time the complete input is placed into the container. See
“Notes to myself” on its discussion.

〈 accrue tok can code 77 〉 +≡
yacco2 ::tok can〈std :: ifstream 〉 ::tok can()
: tok base(1), pos (0), have 1st rec (false), eof pos (EOF), file ok (NO), line no (START_LINE_NO),

pos in line (START_CHAR_POS), file name (std ::string ()) { }
yacco2 ::tok can〈std :: ifstream 〉 ::tok can(const char ∗File name)
: tok base(1), pos (0), have 1st rec (false), eof pos (EOF), file ok (NO), line no (START_LINE_NO),

pos in line (START_CHAR_POS), file name (File name) {
open file ();
}
yacco2 ::tok can〈std :: ifstream 〉 ::∼tok can()
{

if (file ok ≡ YES) file .close ();
}
bool yacco2 ::tok can〈std :: ifstream 〉 ::empty ()
{

if (have 1st rec ≡ false) return YES;
return NO;
}

89. File ok .
By testing after the ctor has tried to open the file, one can do whatever is appropriate in a bad file situation.
Originally a bad file condition was thrown. Now it’s more gentle.

〈 accrue tok can code 77 〉 +≡
bool yacco2 ::tok can〈std :: ifstream 〉 ::file ok ()
{

return file ok ;
}

48 TOK CAN < IFSTREAM , STD ::VECTOR > OPERATOR[] WLIBRARY §90

90. Tok can < ifstream , std ::vector > operator[].
This is the heart of the container. Two things are of interest: the just-in-time character access, and the
2 “eog” token symbols added to the end-of-file condition. This allows the container to be handled like
its brethern within the grammar context. Note: map char to raw char sym maintains the line:character
segmentation as the file is being read.

〈 accrue tok can code 77 〉 +≡
yacco2 ::CAbs lr1 sym ∗yacco2 ::tok can〈std :: ifstream 〉 ::operator[](yacco2 ::UINT Pos)
{

if (file ok ≡ NO) {
char a[BUFFER_SIZE];
yacco2 ::KCHARP msg = "tok_can<ifstream>operator[] trying to access file that is b\

ad: %s, position %i ";

sprintf (a,msg ,file name .c str (),Pos);
Yacco2 faulty precondition (a, __FILE__, __LINE__);
exit (1);

}
CAbs lr1 sym ∗sym (0);

if (eof pos ≡ EOF ∧ Pos ≥ pos) {
return container [pos];

}
fetch char :

if (have 1st rec ≡ false) {
have 1st rec = true ;
pos = 0;

}
else {

if (Pos ≤ pos) {
return container [Pos];

}
++pos ;

}
if (r w cnt > 1) {〈 acquire token mu 391 〉}
for (; ;) { /∗ fetch token somewhere in char stream ∗/

char c;

file � c;
if ((file .good () ≡ false) ∨ (file .eof () ≡ true)) { /∗ eof: add two lrk eog ∗/

eof pos = EOF;
++pos ; /∗ 2nd eog pos, same token used ∗/
sym = RC__.map char to raw char sym (EOF_CHAR_SUB,file no , pos ,&line no ,&pos in line);
container .push back (∗sym);
container .push back (∗sym);
return sym ;

}
convert char to unsigned value :

unsigned char uc = c;

sym = RC__.map char to raw char sym (uc ,file no , pos ,&line no ,&pos in line);
container .push back (∗sym);
if (Pos ≡ pos) break;
++pos ;
continue;

§90 WLIBRARY TOK CAN < IFSTREAM , STD ::VECTOR > OPERATOR[] 49

}
;
if (r w cnt > 1) {〈 release token mu 392 〉}
return sym ;
}

91. Tok can < ifstream >size.
Due to the just-in-time attitude, the container’s size has no meaning. Its size indicates the number of symbols
currently in-process and not the total number of characters in the file stream. I guess I could try to use the
file system to figure out its size but I’m not sure if this is portable as in the case of line delimiters: DEC
versus ASCII. So, just fake it and allow the end-of-file situation deal with it. Use of the “maximum signed
integer” constant does the trick in faking it as a very big text file. Who in their mind would create 2 billion
characters?: ahhh wait for the XML crowd.

Now who in hell uses this test? My parser does in accessing the token containers by use of the constraint
facility testing for possible subscript overflow.

〈 accrue tok can code 77 〉 +≡
yacco2 ::UINT yacco2 ::tok can〈std :: ifstream 〉 ::size ()
{

return INT_MAX;
}

50 TOK CAN〈STD ::IFSTREAM 〉 ::OPEN FILE WLIBRARY §92

92. tok can〈std :: ifstream 〉 ::open file .
This routine allows one to delay the use of an external file by declaring the container without the file name.
Before its use, the file name is supplied by the set file name method and then the open file method called.
For example the container could be declared globally but one supplies the file to-be-read as in passing the
file name thru the program’s main parameter facility. Removed the “jit” attitude and now read all its input
into the container for speeeeed reasons — this is not a William Borough’s novel.

〈 accrue tok can code 77 〉 +≡
void yacco2 ::tok can〈std :: ifstream 〉 ::open file ()
{

CAbs lr1 sym ∗sym (0);

open file :
file .open (file name .c str (), std :: ios :: in);
if (file .is open ()) goto filename opened ;
else goto filename bad ;

filename opened :
{

file ok = YES;
++yacco2 ::FILE_CNT__;
have 1st rec = true ;
pos = 0;
if (yacco2 ::FILE_CNT__ ≡ 1) {

std ::string empty ;
yacco2 ::FILE_TBL__.push back (empty);

}
yacco2 ::STK_FILE_NOS__.push back (yacco2 ::FILE_CNT__);
file no = yacco2 ::STK_FILE_NOS__.back ();
yacco2 ::FILE_TBL__.push back (file name);
eof pos = 0;

set dont skip any chars :
file � std ::noskipws ;
for (; eof pos 6= EOF; ++pos) {

char c;

if (file .good () ≡ true) {
file � c;
}
if (file .eof () ≡ true) goto eoroad ;
if (file .fail () ≡ true) goto eoroad ;

convert char to unsigned value : unsigned char uc = c;

sym = RC__.map char to raw char sym (uc ,file no , pos ,&line no ,&pos in line);
container .push back (∗sym);

}
}

filename bad :
{

eof pos = EOF;
file ok = NO;
return;

}
eoroad :
{

eof pos = EOF;

§92 WLIBRARY TOK CAN〈STD ::IFSTREAM 〉 ::OPEN FILE 51

++pos ;
sym = RC__.map char to raw char sym (EOF_CHAR_SUB,file no , pos ,&line no ,&pos in line);
container .push back (∗sym); /∗ 2 eof added really 2 eogs ∗/
container .push back (∗sym);
return;

}
}

93. tok can〈std :: ifstream 〉 ::close file .
This routine allows one close a file prematurely or to reuse the token container for another round of parsing.

〈 accrue tok can code 77 〉 +≡
void yacco2 ::tok can〈std :: ifstream 〉 ::close file ()
{

if (file .is open ()) {
if (file ok ≡ YES) {

file .close ();
}

}
file ok = false ;
}

52 BALANCE OF SUNDRY ROUTINES WLIBRARY §94

94. Balance of sundry routines.

〈 accrue tok can code 77 〉 +≡
yacco2 ::UINT yacco2 ::tok can〈std :: ifstream 〉 ::pos ()
{

return pos ;
}
void yacco2 ::tok can〈std :: ifstream 〉 ::push back (yacco2 ::CAbs lr1 sym &Tok)
{

container .push back (Tok);
}
void yacco2 ::tok can〈std :: ifstream 〉 ::clear ()
{

container .clear ();
pos = 0;
have 1st rec = false ;
eof pos = EOF;
file ok = NO;
line no = START_LINE_NO;
pos in line = START_CHAR_POS;
file name .clear ();
}
TOKEN GAGGLE &yacco2 ::tok can〈std :: ifstream 〉 ::container ()
{

return container ;
}
void yacco2 ::tok can〈std :: ifstream 〉 ::remove ()
{ }
std ::string & yacco2 ::tok can〈std :: ifstream 〉 ::file name ()
{

return file name ;
}
void yacco2 ::tok can〈std :: ifstream 〉 ::set file name (const char ∗File name)
{

file name += File name ;
}

§95 WLIBRARY TREE TOKEN CONTAINER IMPLEMENTATION TOK CAN〈AST ∗〉 53

95. Tree token container implementation tok can〈AST ∗〉.
This is your tree container of tokens. A filter mechanism is passed to the template. It is just a set of terminal
enumerates with it companion indicator of include or exclude the terminals in the tree traversal within the
tree walker.

The traversal operator also keeps a subscript marker as to where its traversed. This allows one to in-
terrogate the container for a token without having to re-traverse the tree. Excuse the acronym but it is a
just-in-time delivery mechanism. If the subscript is within bounds of the container, it delivers the already
traversed tree’s token. Out-of-bounds will continue the tree traversal looking for the requested token-by-
number. If the token number is not continuous, the container gets filled up with the inbetween tokens
found in the traversal before returning the requested terminal. When the end-of-tree has been met, the
PTR LR1 eog terminal is returned. This is in keeping with the other containers.

Optimization: remove jit for all input filled in at ctor.
This jit optimization is removed due to self modifying of tree nodes. Without this the old container that
called the self modifying of a tree node contains the old T in its container. So in with the reader mutex and
its slow down and out with the speed for self modifying tree nodes. Please read “Notes to myself” of item
”Tree Modifying while walking them...” discussing the “how tos” of dealing with dynamic self-modifying
tree setting.

〈 accrue tok can code 77 〉 +≡
yacco2 ::tok can〈yacco2 ::AST ∗〉 ::tok can(yacco2 ::ast stack &Walker)
: tok base(1)
, pos (0)
, have 1st rec (false)
, tree end reached (false)
, nodes visited ()
, accept node level ()
, traverse (Walker) {

operator[](0); /∗ needed: ensures container has tried to get first T before its use ∗/
}
yacco2 ::tok can〈yacco2 ::AST ∗〉 ::∼tok can()
{ }
bool yacco2 ::tok can〈yacco2 ::AST ∗〉 ::empty ()
{

return nodes visited .empty ();
}
void yacco2 ::tok can〈yacco2 ::AST ∗〉 ::clear ()
{

nodes visited .clear ();
}

54 TREE CONTAINER DISPENSOR WLIBRARY §96

96. Tree container dispensor.
It delivers tokens by the numbers. At present, this number is relative to 0. Ugh!

If the tree node number is within the token container then return it. For token numbers outside the current
container, the tree is traversed putting the accepted tokens into the container until either the end-of-tree is
reached or the token requested is found. The container of tokens allows one to re-iterate many times over
the token stream. It also optimizes the token stream by one-pass-only on the tree. An end-of-tree condition
returns the PTR LR1 eog token back to the user. This is in the same spirit of the other token containers.
It allows grammars to be written without any knowledge as to its input token stream.

〈 accrue tok can code 77 〉 +≡
yacco2 ::CAbs lr1 sym ∗yacco2 ::tok can〈yacco2 ::AST ∗〉 ::operator[](yacco2 ::UINT Pos)
{

AST ∗t;
CAbs lr1 sym ∗tsym ;
AST ∗vnode ;
CAbs lr1 sym ∗sym ;
ast base stack ::s rec ∗srec ;

if (tree end reached ≡ true) {
if (Pos < pos) goto in bnds ;
if (YACCO2_T__ 6= 0) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_T__::tok_can token eog: "

� PTR LR1 eog � " pos: " � Pos � __FILE__ � __LINE__ � std ::endl ;
〈 release trace mu 390 〉;

}
sym = PTR LR1 eog ;
goto rtn fnd T ;

}
first time accessed :

if (have 1st rec ≡ false) {
have 1st rec = true ;
goto out bnds ;

}
determine where t is :

if (Pos ≤ pos) { /∗ already in container ∗/
goto in bnds ;

}
++pos ; /∗ next node ∗/
goto out bnds ;

in bnds :
〈 fetch and return token from container instead of tree 97 〉;

out bnds :
if (r w cnt > 1) {〈 acquire token mu 391 〉}

get tree rec :
{
〈 traverse tree 100 〉;
〈 end of traverse reached? yes rtn 101 〉;
〈put node in container 102 〉;
if (Pos ≡ pos) goto rtn fnd T ;
++pos ;
goto get tree rec ; /∗ keep filling container until Pos met ∗/

}

§96 WLIBRARY TREE CONTAINER DISPENSOR 55

rtn fnd T :
if (r w cnt > 1) {
〈 release token mu 392 〉;

}
return sym ;
}

97. Fetch and return token from container instead of tree.
Prefetch next T and place in container when the current request is on its boundry and parallel readers are
occuring.
Ip constraint: The sequential request always has the T inside its container.
Random request: Who’ll need it? If it happens, the container’s suitor count is checked and protected with
a mutex.

〈 fetch and return token from container instead of tree 97 〉 ≡
t = nodes visited [Pos];
tsym = AST ::content (∗t);
if (YACCO2_T__ 6= 0) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_T__::tok_can in−bnds already in container token: " � tsym~ id
� " *: " � tsym � " pos: " � Pos � " id: " � tsym~ id � " enum: " �

tsym~enumerated id � FILE_LINE � std ::endl ;
yacco2 :: lrclog � "\t\t::GPS FILE: ";
EXTERNAL GPSing (tsym)yacco2 :: lrclog � " GPS LINE: " � tsym~ tok co ords .line no �

" GPS CHR POS: " � tsym~ tok co ords .pos in line � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;
}
〈 lookahead T needed? no rtn fnd t 98 〉;

This code is used in section 96.

98. Lookahead T needed? no rtn fnd t.
Lookahead is only needed when parallel reads are happening. If there is only one reader, it is always safe
and can default to “jit” access.

〈 lookahead T needed? no rtn fnd t 98 〉 ≡
if (r w cnt ≡ 1) return tsym ; /∗ no parallel suitors ∗/
if (Pos < pos) return tsym ; /∗ not on the edge ∗/
〈 acquire token mu 391 〉
if (tree end reached ≡ true) { /∗ ure parallel phatom got here before u ∗/
}
else {

if (Pos ≡ pos) { /∗ still needed as the other suitor could have looked ahead ∗/
++pos ;
〈 traverse tree 100 〉;
〈 end of traverse reached for lookahead? no put T in container 99 〉;

}
}
〈 release token mu 392 〉return tsym ;

This code is used in section 97.

56 TREE CONTAINER DISPENSOR WLIBRARY §99

99. End of traverse reached for lookahead?.

〈 end of traverse reached for lookahead? no put T in container 99 〉 ≡
if (tree end reached 6= true) { /∗ test for other consumer’s action ∗/

srec = traverse .base stk .cur stk rec ;
if (srec ≡ 0) {

tree end reached = true ;
if (YACCO2_T__ 6= 0) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_T__::tok_can token eog: "

� PTR LR1 eog � " pos: " � pos � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;

}
}
else {
〈put node in container 102 〉;

}
}

This code is used in section 98.

100. Traverse tree.

〈 traverse tree 100 〉 ≡
traverse .exec();

This code is used in sections 96 and 98.

101. End of traverse reached?.

〈 end of traverse reached? yes rtn 101 〉 ≡
srec = traverse .base stk .cur stk rec ;
if (srec ≡ 0) {

tree end reached = true ;
if (YACCO2_T__ 6= 0) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_T__::tok_can token eog: "

� PTR LR1 eog � " pos: " � pos � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;

}
sym = PTR LR1 eog ; /∗ end-of-tree ∗/
goto rtn fnd T ;
}

This code is used in section 96.

§102 WLIBRARY TREE CONTAINER DISPENSOR 57

102. Put node in container.

〈put node in container 102 〉 ≡
vnode = traverse .base stk .cur stk rec ~node ;
sym = AST ::content (∗vnode);
accept node level .push back (traverse .base stk .idx);
nodes visited .push back (vnode);
if (YACCO2_T__ 6= 0) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_T__::tok_can token: " � sym~ id
� " *: " � sym � " pos: " � pos � " requested pos: " � Pos � " node*: " � vnode �

" node content*: " � AST ::content (∗vnode)� FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;
}

This code is used in sections 96 and 99.

58 BALANCE OF TREE CONTAINER ROUTINES WLIBRARY §103

103. Balance of tree container routines.

〈 accrue tok can code 77 〉 +≡
yacco2 ::UINT yacco2 ::tok can〈yacco2 ::AST ∗〉 ::pos ()
{

return pos ;
}
yacco2 ::UINT yacco2 ::tok can〈yacco2 ::AST ∗〉 ::size ()
{

if (tree end reached ≡ true) {
return nodes visited .size ();

}
return MAX_UINT;
}
void yacco2 ::tok can〈yacco2 ::AST ∗〉 ::push back (AST &Tok ast)
{

nodes visited .push back (&Tok ast);
++pos ;

}
void yacco2 ::tok can〈yacco2 ::AST ∗〉 :: /∗ defed due to template ∗/
push back (yacco2 ::CAbs lr1 sym &Node)
{ } /∗ but not meaningful in tree context ∗/
yacco2 ::ast stack &yacco2 ::tok can〈yacco2 ::AST ∗〉 ::container ()
{

return traverse ;
}
std ::vector〈AST ∗〉 ∗yacco2 ::tok can〈yacco2 ::AST ∗〉 ::nodes visited ()
{

return &nodes visited ;
}
void yacco2 ::tok can〈yacco2 ::AST ∗〉 ::remove ()
{

nodes visited .pop back ();
−−pos ;

}
yacco2 ::AST ∗yacco2 ::tok can〈yacco2 ::AST ∗〉 ::ast (yacco2 ::UINT Pos)
{

if (Pos > pos) return 0;
return nodes visited .operator[](Pos);
}
yacco2 ::INT yacco2 ::tok can〈yacco2 ::AST ∗〉 ::accept node level (yacco2 ::UINT Pos)
{

if ((accept node level .size ()− 1) < Pos) return No Token start pos ;
return accept node level .operator[](Pos);
}

§104 WLIBRARY STRUCTURE AND RULE RECYCLING OPTIMIZATION 59

104. Structure and Rule Recycling Optimization.
To improve performance due to the birth-run-delete cyle of grammar rules on the parse stack, the following
optimization is used: Stable of rule’s symbol when created for recycling purposes. 2 concerns must be at-
tended to:

1) the parse stack needs the Rule s reuse entry ptr of the current rule
2) due to recursion, the recycle table per rule is sequentially searched

Please see rules use cnt grammar for a thorough discussion on how the rulle count is calculated for recycling.

Initially an array per specific grammar rule was generated. It had speed but would have been kludgey
to handle overflow on the number of rules for reuse. Here is a note on the array [1] definition. The Sun
compiler doesn’t like the [] definition being open-ended. So I fake it. Each rule will be specifically defined
within its namespace. But, Yac2o2 is a general library of routines. So my search uses the entry count to
protect against a table overrun situation.

Take 2:
Though this approach is speedy when dealing with left recursion only, it did not have a saftey valve when the
count was wrong: eg right recursion or flawed algorithm on determining rule recursion count. So i changed it
to a stack/double list combo. The “in use” list acts like a stack but its lhs/rhs reduction pair leaves the lhs
as the top item placed in the “in use” queue before its rhs items are removed from the “in use” list. Why?
The lhs rule comes from the reduction when the rhs’s symbols are still sitting on the parse stack. That is,
lhs rule is created first, placed in the “in use” list before the rhs’s symbols are popped from the parse stack.
If the popped symbol is a rule it gets recycled and placed back into the “for use” stack for another round of
reuse.

〈Structure defs 18 〉 +≡
struct Per rule s reuse table;
struct reuse rule list;
struct reuse rule list {

reuse rule list()
: younger (0), older (0), reuse rule entry (0), per rule tbl ptr (0) { }
;

reuse rule list ∗younger ;
reuse rule list ∗older ;
Rule s reuse entry ∗reuse rule entry ;
Per rule s reuse table ∗per rule tbl ptr ;
};
struct Rule s reuse entry {

reuse rule list its linked list ;
CAbs lr1 sym ∗rule ; /∗ new rule symbol for recycling ∗/
Rule s reuse entry()
: rule (0) { }
;

∼Rule s reuse entry()
{

if (rule ≡ 0) return;
delete rule ;

}
;
};
struct Per rule s reuse table {

60 STRUCTURE AND RULE RECYCLING OPTIMIZATION WLIBRARY §104

reuse rule list ∗in use list ;
reuse rule list ∗for use list ;

Per rule s reuse table()
: in use list (0), for use list (0) { }
;
};
struct Fsm rules reuse table { /∗ grammar’s stable of rules ∗/

int no rules entries ;
Per rule s reuse table ∗per rule s table [1];
};

§105 WLIBRARY FINITE AUTOMATON TABLE DEFINITIONS AND THEIR FUNCTIONS 61

105. Finite automaton table definitions and their functions. These definitions support Yacco2’s
generated finite state automaton tables. A binary search is used on all tables: Shift tbl, Reduce tbl, and
State s thread tbl. Their structure contains the prefix giving the number of elements in the table, and
the first record in the array. The elements are a concatenation of ‘in ascending sequence’ sorted records for
the binary search.

106. State structure.
This represents the finite automaton state. The only wrinkles to your normal finite state definition are the
entries supporting parallelism and the 2 meta terminals for the ‘all shift’ and ‘invisible shift’ functions. These
extra shifts act like a normal shift requiring their own shift entries.

Parallelism is the |||grammatical expressions within the state calling threads. Each expression supplies
the thread and the returned terminal be it successful or an error terminal. An aborted thread returns
nothing. The expression itself requires 2 shifts: the |||followed by the winning terminal that the arbitrator
has selected. Why is there not 3 shifts to include the thread used? I originally thought of this but it has no
relevance to the expression parsed. The thread call is a pre-conditional condition to the T stream. If all the
threads have aborted, then the |||terminal must be removed from the parse stack before trying the standard
finite automaton’s operations. The list of threads associated with the state needing launching completes the
declaration of parallelism.

proc call shift has been added to deal with chained procedure calls. What the heck is that? It is a
dispatcher of procedure calls reacting to the returned T. This grammatical structure allows one to call a
thread, react on the returned T by calling a specific procedure. For example, this subrule |||“lhs” TH id
Rdispatch lhs . The thread “id” is a identifier / symbol table lookup for keywords on a character token
stream. The following Rdispatch lhs becomes the dispatcher of called procedures based on the returned
T “first set” is “lhs”. Rdispatch lhs subrule would be |t|“lhs-phrase” PROC TH lhs phrase receiving the
“lhs” start T. Its other subrules would be programmed to catch the errors. This “procedure call” sublety
requires the called procedure to use the stacked returned T “lhs” as its current T and not the current T
of the caller. Also it must set its own token position to 1 less the caller’s current token position. There
is an overlap on the input token stream whereby the characters used to create the “lhs” T are still in the
supplier’s token stream and not “lhs”.

The other subtelty is a non-chained procedure call when the calling parser has only 1 thread to call so call
it as a procedure and not as a thread to juice the optimization process.

questionable shift is used in questionable situations like error detection points within a grammar. See
notes to myself for an explanation.

〈Structure defs 18 〉 +≡
struct State {

yacco2 ::UINT state no ;
yacco2 ::Shift entry ∗parallel shift ; /∗ ||| ∗/
yacco2 ::Shift entry ∗all shift ; /∗ |+| ∗/
yacco2 ::Shift entry ∗inv shift ; /∗ |.| ∗/
yacco2 ::Shift entry ∗proc call shift ; /∗ |t| ∗/
yacco2 ::Shift tbl ∗shift tbl ptr ;
yacco2 ::Reduce tbl ∗reduce tbl ptr ;
yacco2 ::State s thread tbl ∗state s thread tbl ;

yacco2 ::Type pc fnct ptr proc call addr ; /∗ function for |t| ∗/
yacco2 ::Shift entry ∗questionable shift ; /∗ |?| ∗/
};

62 SHIFT TABLE LOOKUP WLIBRARY §107

107. Shift table lookup.
The Shift tbl is a binary array of Shift entry of the finite state. The shift operation goes through a
sequential list of ranked terminals trying always to shift first before trying to reduce. The ranking of
potential shifts are:

1) current terminal being parsed
2) questionable shift terminal |?|
3) invisible meta terminal |.|
4) all shift terminal |+|

Their presence in the state’s configuration dictates the shift operation. There are 4 individual search
attempts to see whether the shift operation should take place. The numbered points indicates their ranking
order: point 2 and 3 should be mutually exclusive.

The goto in the shift entry is your vanilla flavoured fsa ‘go to’ state. The actual state definition is
laced with extra information to support parallel and conditional parsing. |.|is a bailout mechanism from
ambiguous gramatical contexts. It can be used to describe an epsilon rule. How? Though there is a shift
happening, there is no consumption of the token stream. Its use depends on the palative tastes of the
grammar writer or the ingredients demanded by the grammar.

〈Structure defs 18 〉 +≡
struct Shift entry {

yacco2 ::USINT id ;
yacco2 ::State ∗goto ;
};
struct Shift tbl {

yacco2 ::USINT no entries ;
yacco2 ::Shift entry first entry [1];
};

108. Reduce table entry.
The Reduce entry gives the lookahead set number to be checked. The rhs id gives the subrule identity that
will collapse to its left-handside rule. Where is the binary compare function? It is the set compare function.
See Set handling .

〈Structure defs 18 〉 +≡
struct Reduce entry {

yacco2 ::Set tbl ∗la set ;
yacco2 ::USINT rhs id ;
};
struct Reduce tbl {

yacco2 ::USINT no entries ;
yacco2 ::Reduce entry first entry [1];
};

§109 WLIBRARY THREADING DEFINITIONS 63

109. Threading Definitions.
Lots of merit but if it’s not fast then this idea is side-lined or in football terms benched. To optimize the
dispatching of threads, a global approach is required. This is resolved by Yacco2’s linker. Why is a global
approach needed? Sequential first set evaluation per thread within the state’s configuation is just tooooo
slowww. To properly assess the first sets of all threads, the linker must read the “fsc” files generated per
thread by Yacco2. The linker can now apply the transience operator on the first sets where a thread can call
another thread in its first set: the start (closure) state of the grammar could contain a call to a thread.

Thought:
How many stacked focuses does one need with fad out to see the forest from the trees? Programming
demands this talent of Yoga reflection but how many times have u consciously observed oneself observing
oneself... In this case, the tree scope lost to the forest, as the local optimizations discussed in Notes tomyself
had reached their effectiveness and I still needed more improvement.
Thought no 2:
Why wasn’t this global approach thought of before now? Well I tried to get my threading ideas to work first.
Thoughts of efficiency were not my first priority. Now reality of slowness demands gettting it to work faster.
The speed approach is test the current token’s enumeration id against a global “thread list having T in their
first set” when paralellism is present within the finite automaton’s current state’s configuration. If there are
threads with this first set item, then go thru the state’s potential thread list looking to launch them. On
an aside, common prefix threads will showup together in their common terminals. There should not be too
many of these so the list should be short — normally one thread. To get speed, a thread id is required. It is
the enumeration of all the thread grammars. This enumeration is done within Yacco2’s Linker. As Yacco2
is local to the grammar being compiled, its local table must use indirection to get at this thread id. So u
will see pointers to items that only get resolved by the language linker. See 〈Global external variables from
yacco2’s linker 19 〉 for the global symbols referenced within this library but generated by Yacco2’s Linker.

Mutexes controlling the hoards:
1) yacco2 ::TOKEN_MU - token dispensor access
2) yacco2 ::TRACE_MU - used to log tracing
3) yacco2 ::TH_TBL_MU - access thread dispatch table
4) yacco2 ::SYM_TBL_MU - symbol table access

With my dual core AMD Sun work station, readonly access to the token dispensor requires a mutex TOKEN_MU

to prevent thread residues poluting other threads accessing “at the same time” their tokens. My tracings
re-affirmed my intuitions as to why it was not working in this configuration. Past portings onto Apple’s
OSx, VMS Alpha, and NT Windows all worked. In a single chip environment execution is normally se-
quential but in multi-chip environments parallel execution streams are dancing together on the same stage.
TOKEN_MU ensures that each fetch to the token supplier is atomicly completed before others requests are
serviced. Unfortunately this has a potential braking effect by throatling back to 1 only thread executing if
there are multiple simultaneously token read requests happening until i can explore who / what causes the
downstream polution. Currently my library is staticly declared and not declared as shared.??? Remember
as multiple threads are launched by a parser, each thread’s execution path is asynchronous in their token
fetches even though each launched competing thread starts at the same position within the token stream.
Please see “Notes to myself” on eliminating the “jit” token fetch.
TRACE_MU mutex ensures that the complete text traced is completely outputed. The atomicity is bracketed

by the acquire / release cycle of the TRACE_MU mutex. This prevents interleaving of parallel thread loggings
to occur. For example, i/o calls are fielded by the operating system; it is the operating system’s decision as
to who will run next.
SYM_TBL_MU is reserved for possible parallel symbol table access. TH_TBL_MU is the bouncer of the global

thread table that registers launched threads. These thoroughbreds keep their engines running with environ-
mental friendly octane while waiting for their next serve request that provides the needed pep to parallel
parsing. As each access to the table is read / write, TH_TBL_MU keeps this critical region in tip-top shape.

64 THREADING DEFINITIONS WLIBRARY §109

The following section discusses in detail how this table is used.

§110 WLIBRARY CRITICAL REGION DISCUSSION SURROUNDING PARALLEL THREAD TABLE 65

110. Critical region discussion surrounding Parallel thread table .
Parallel thread table raison d’être is speed. Depending on the parsed context, threads are created dynami-
cally. This stable of threads are reused on demand that eliminates the create-run-destroy cycle of a thread.
Now it’s create once, run as many times as needed, and exit when finished parsing. Nested thread calls like
recursion is supported: thread A calls thread B calls thread A. Each thread in the list keeps an availability
status: busy or idle. There are 2 parts to the global thread table:

1) Parallel thread table — the array of thread lists
2) TH_TBL_MU mutex — the guard dog controlling the crowds

0

1

2

no threads ids-1

Parallel thread table[thd#].thread list

thread list :
• list<worker thread blk↑>

• parser ↑ — grammar containing worker thread blk

• status — idle, working, or exiting

• run cnt — stats on how many times thread executed

• thd id — thread id number

The above figure depicts the thread table generated from O2 linker. The 2 contexts requiring reader /
writer access are:

1) grammar’s launching or requesting threads to run
2) launched thread setting its work status back to idle or exiting

As an optimization, threads receive an unique ordered id from O2 linker. This is just a lexigraphical or-
dering on their names allowing table access by subscript. The thread table is a single writer controlled by
mutex primitives 〈 acquire global thread table critical region 380 〉 and 〈 release global thread table critical
region 381 〉. These cweb sections are calls to the thread manager using the TH_TBL_MU mutex. To acquire
control a launching grammar uses the 〈 acquire global thread table critical region 380 〉 primitive. If someone
else has possession on the resource, the thread manager places the requestor into a hold queue until the
resource is freed. It is the thread manager that dispenses execution control.

Thread table possession:
Quick review:
A grammar’s finite automata can contain lists of threads for the running within each state’s context. To
juice the running, each thread has a first set of tokens that start its parse. Potential thread launch evaluation
uses the current token against these first sets to determine what threads should run.

So possession is 9/10th of whose law? Now launch or run those threads by calling the thread manager
— the “how” will be described later. New threads add their worker thread blk * to the thread table without
any care for critical region hygiene. The Parser object of the newly launched grammar does it from its
constructor . Cuz the launching grammar has possession of the thread table and the launched threads are
unique, there is no potential reader / writer destructive scribbling to the table. A thread’s work status is
maintained in the table depending on how they get run. “Just created” threads do a push back of their
worker thread blk * into the thread list while “already created” threads set their worker thread blk ’s status
to busy that is already registered in the thread table’s list. A grammar’s potential thread list does not
contain multiple requests of the same thread so that u’ll never get a parallel set of identical threads spoiling
the broth within the same launch list. Remember the table’s granularity is by thread id subscript: So there
is no conflict.

Note:
If the thread manager flips execution to a launched thread (single or multiple cpus don’t matter) and this
newly executed thread requires thread table access, it must call the 〈 acquire global thread table critical

66 CRITICAL REGION DISCUSSION SURROUNDING PARALLEL THREAD TABLE WLIBRARY §110

region 380 〉 that puts its request on hold until the resource is freed up. Eventually the original grammar re-
leases control of the thread table by 〈 release global thread table critical region 381 〉 that activates execution
of the requestor.

Sleeping beauty:
Finally the calling grammar places itself into a wait state (is it ripper van winkle?) to be wakened by one
of its called dwarfs. This is done by calling the 〈wait for event to arrive with no loop 394 〉 that releases
the grammar’s mutex, puts it on ice, and places its conditional variable into the thread manager’s event
wait queue. Freeing up of these “thread manager” variables allows its called threads to play with its calling
grammar’s critical region and to eventually wake it up. Remember, each called thread must go thru the ac-
quiring / releasing of the called thread’s mutex. U wouldn’t want the dwarfs to screwup ogre’s critcal region
and the grammar writer’s ire. Why the playing with the calling grammar’s critical region away? Its called
threads can report back their parse findings thru the “acceptance token” queue of the sleeping beauty. To
wake up the ogre, the last thread finished executing calls primitive 〈 signal thread to wake up and work 397 〉.
How is this determined? The calling grammar’s critical region has a launched thread count. Each called
thread decrements it when completed regardless of its parsing outcome. When it hits zero, this indicates
last thread to finish and so jostle the snoring beauty. The last duty of a running thread is 〈 acquire global
thread table critical region 380 〉, set its run status to idle ,〈 release global thread table critical region 381 〉,
and place itself into a wait state for another round of drinks: 〈wait for event to arrive with no loop 394 〉.

How does a called thread know its requestor?
Let’s review the 2 situations:

1) create a thread
2) call an already created thread

There are 2 doors of entry into a thread. “Creation of a thread” is at the mercy of the thread manager
to register the thread and prepare it for the calling. The only way information can be passed to the to-be
created thread is thru a parameter passed to the called thread procedure by the thread manager. The
calling grammar’s Parser object address is passed as a parameter to CREATE_THREAD who passes it to the
to-be-executed thread. Built within the thread code is the casting and extraction of the requestor’s Parser
object. Once the called thread is finished running, it puts itself into a wait state for its next marching order.

The 2nd port of entry.
U guessed it, the thread list contains the thread’s Parser object that has been freed of its mutex and con-
ditional variable put on ice. So the 2nd entry point is the 〈wait for event to arrive with no loop 394 〉. The
calling grammar calls SIGNAL_COND_VAR to wake up the dwarf while the called thread uses the 〈 signal thread
to wake up and work 397 〉 to wake up the ogre that really calls SIGNAL_COND_VAR. Within the critical region
of the “to be requested” thread is pp requesting parallelism that holds the calling grammar’s deposited
critical region address. Note: thru out a parse a thread can be activated by different suitors. Each deposit
by the requesting grammar leaves its tale for the dwarf.

Draining the thread swamp:
How does one get out of this infinite loop of wait for its marching order, do the parse, and wait again.
This is Sambo and the tigers twirl: tail chasing ain’t it? There is another marching order to exit-work. A
bit of a subtlety here needs explaining: how does one know if the thread manager has placed all the toe
tapping threads into a wait status within a single cpu environment? To let the swamp drain, a 〈pause for
x seconds 181 〉 takes place that could be not effective but i’m trying: better yet would be to have a pthread
procedure to do the act of bleeding... followed by a “stop work” order — it has other euphemisms. This
is how the thread breaks out of its tail spin. The global Parallel threads shutdown procedure initiates the
above and details the threads run stats and shutdown attempts. It is usually called from the “mainline”
code of the program.

§111 WLIBRARYDIAGRAMS, DO WE HAVE DIAGRAMS — EXAMPLES OF CRITICAL REGION ACTIVITY 67

111. Diagrams, do we have diagrams — examples of critical region activity.
Let a figure detail a 1000 words. In a single cpu environment, a process’s execution sequence is sequential.
To depict this using G as the process, A and B threads, and the critical region resources, i will use a box
within a box concept to simulate multi-dimensions. Why a box? In one of the following examples there are
3 outer space dimensions representing G, A, and B. This really is a triangle but the running comments and
activity vectors makes it easier to annotate using a box. An obelisk with its point removed represents all
the dimensions.

Going from the outer to the inner parts of the obelisk, the outer walls are the process / thread spaces.
Next, time rulers are the motes between outer and inner spaces. The court yard is the inner space (resource
space). It contains the critical regions’ resources, and execution queues — running and waiting to run.

Commented outer space events are registered aginst its time mark by vectors using an arrowhead to
indicate the activity’s direction into or out of the resource space. A double headed vector indicates the outer
space call to the inner space that returns execution back to the calling outer space.

To indicate ownership and duration of time, each resource uses a line similar to the math open / close
interval. The “running queue” also ties together the start/stop boundaries with a dashed vertical line to
show continuity. Other resources have the owner above their time line marker. A dotted vertical vectored
to the resource marks a request for ownership that is pending. Its converse uses a dashed line away from the
resource marking the acquisition from a pending a request.

Example of threads being run by O2.

0

0

0 0

1

1

1 1

2

2

2 2

3

3

3 3

4

4

4 4

5

5

5 5

6

6

6 6

7

7

7 7

8

8

8 8

9

9

9 9

10

10

10 10

11

11

11 11

12

12

12 12

13

13

13 13

14

14

14 14

15

15

15 15

16

16

16 16

17

17

17 17

18

18

18 18

19

19

19 19

20

20

20 20

21

21

21 21

22

22

22 22

23

23

23 23

24

24

24 24

25

25

25 25

Acquire g

Launch threads
Acquire x

Create A

Activated
Acquire a
Acquire x

Re-activated
Setup: thread results

Release x
Wokeup with x

Make idle
Release x

Re-activated
Wait on event
release gRe-activated

Acquire g
Deposit data in G

Release g
Signal G

Wait on event
release a Wokeup from event

Process data from A
Keep running until

launch of threads

Inner Space: Thread Manager

Running queue:

G
A

To Run queue:

G
A

Resources
g

x
a

G A G
G

A

— A Space — — G Space —

A single thread A that gets launched and reports back to its caller G . The resource “x” is the global
guard to the global thread table. Basic comments on the critical region components of G have been left
out due to space. As previously described, an active thread count is maintained along with the acceptance
token queue that the called threads deposit their results for G’s arbitration code assessment. Lines 18 and
23 comments these situations with the bracketed acquisition. Line 18 shows the called thread A reporting its

68 DIAGRAMS, DO WE HAVE DIAGRAMS — EXAMPLES OF CRITICAL REGION ACTIVITYWLIBRARY §111

results within G’s protected area. The signal variables of G and A have also been ommitted due to space. In
the above example, it would not have mattered whether the launched thread started executing immediately
with the calling grammar put on hold as the launching grammar G still has ownership on “x” that eventually
the A will require and so it would be put into a pending state until the “x” resource could be re-allocated.
In this illustration, G goes into a wait state to be signalled later by A. If the interweave of G’s execution
sequence was such that A was working and signaled G before G put itself into a wait-on-signal state, it is
the thread library that pends the signal for when G finally requests it.

A Deadlock Example:

0

0

0 0

1

1

1 1

2

2

2 2

3

3

3 3

4

4

4 4

5

5

5 5

6

6

6 6

7

7

7 7

8

8

8 8

9

9

9 9

10

10

10 10

11

11

11 11

12

12

12 12

13

13

13 13

14

14

14 14

15

15

15 15

16

16

16 16

Activated

Acquire a

Acquire x

Release x

Re-activated

Acquire b

Acquire g

Create A

Re-activated

Create B

Re-activated

Wait on signal, rel. g

Deadlock

acti
vated

acquire
b

acquire
a

Inner Space: Thread Manager

Running queue:

G

A

B

To Run queue:

G

A

B

Resources

g

x

a

b

G

A

A

B

——– B Space ——–

– A Space – – G Space –

Some comments:
Deadlock is a graph of cyclicity. In the example, resource “x” is an intermediary used by the thread manager
to relinquish execution control held by A when it releases “x”. Process G then continues by creating thread B
with its Acquire events on “b” and attempts on “a”. Eventually thread A attempts its acquiring of “b”. By
sequencing the Acquire requests — Acquire(a) by A, Acquire(b) by B, Acquire(a) by B, and Acquire(b) by
A, a cyclicity check could be done per Acquire to determine whether deadlock is met. The third Acquire(a)
by B has the potential deadlock cyclic condition established. Because A is still running, it is not a conclusive
deadlock as thread A could Release(a) to free up the cycle created by B. Only when thread A asks for “b”
does it become a solid deadlock regardless of process G being able to run.

The simplest run death is G requesting a wait-on-signal when there are no other threads running that
could wake it up — Sleeping beauty with no Prince to do resusitation.

§112 WLIBRARY THREAD ENTRY 69

112. Thread entry.
Just your basic attributes describing a thread. Each thread block is generated by the Linker. Remember,
the thread ids are in lexigraphical order: upper / lower case are different. Only the Linker has access to
all the threads to produce this order. Each thread entry block will have the Linker’s manufactured thread
name which will be referenced by the state’s thread table and the global stable of threads. The thread entry
will be identified by the following rule:

concatenate the letter “I” to the thread’s name
For example, “TH eol ” is the end-of-line detector thread. Its variable name would be “ITH eol ” where the
TH eol value is taken from the grammar’s “parallel-thread-function” component.

The reason for the thread array record having an array of Thread entry ∗ is due to the thread entry
name. It is referenced by the State s thread tbl and can be referenced by the grammar writer when
using the spawn thread manually procedure. The thread entry names are generated by Yacco2’s Linker that
is outside of Yacco2’s library jurisdiction but used by it. This generation is specific per language being
generated.

〈Structure defs 18 〉 +≡
struct Thread entry {

yacco2 ::KCHARP thread fnct name ;

yacco2 ::Type pp fnct ptr thread fnct ptr ;

yacco2 ::USINT thd id ;

yacco2 ::Type pc fnct ptr proc thread fnct ptr ;
};

113. Thread stable.

〈Structure defs 18 〉 +≡
struct thread array record {

yacco2 ::USINT no entries ;
yacco2 ::Thread entry ∗first entry [1];
};

114. State’s thread table.
The thread entries are in sorted order. How? Though the list of potential threads order within the grammar
are as programmed by the grammar writer, their names will be sorted lexigraphically. Hence their order in
the table are relatively sorted.

The thread entry variable and its contents are generated by Yacco2’s Linker.

〈Structure defs 18 〉 +≡
struct State s thread tbl {

yacco2 ::USINT no entries ;

yacco2 ::Type pp fnct ptr ar fnct ptr ;
yacco2 ::ULINT(∗thd id bit map);

yacco2 ::Thread entry ∗first entry [1];
};

70 THREADS HAVING TERMINAL IN FIRST SET WLIBRARY §115

115. Threads having terminal in first set.
Well here’s the turbo charger of threads. It is generated by Yacco2’s Linker. As the number of terminals
defined is unknown to this general library, a spoofing technique is used.

Have a pointer to a structure that defines the running grammar’s environment that contains another
indirection to the local information. I use T as a generic symbol representing the individual terminals within
the grammar’s Terminal vocabulary. These 2 structures are:

1) terminal array pointing to the threads with T in the grammar’s first set
2) the thread id list having T in their first set

This spoofing technique is:

〈Structure defs 18 〉 +≡
struct thd ids having T {

yacco2 ::ULINT first thd id [1];
};
struct T array having thd ids {

yacco2 ::USINT no of T ;
yacco2 ::thd ids having T ∗first entry [1];
};

§116 WLIBRARY FINITE STATE MACHINE DEFINITION 71

116. Finite state machine definition.

117. CAbs fsm .
It provides the basis for all grammar ‘fsm’ definitions. Yacco2 generates a specific ‘fsm’ per grammar derived
from CAbs fsm . The first 5 parameters are the grammar attributes extracted from the ‘fsm’ construct of
the grammar. Parameters Gened date thru to Start state are specifics from the compiling of the grammar.
For-your-information, the date and time as to when the grammar was compiled is passed by Gened date .

Start state parameter is the object address. Start state is the “S” in your formal finite automaton
definition.

〈Structure defs 18 〉 +≡
class CAbs fsm {
public:

virtual void op() = 0;
virtual bool failed () = 0;
yacco2 ::KCHARP id ();
yacco2 ::KCHARP version ();
yacco2 ::KCHARP date ();
bool debug ();
yacco2 ::KCHARP comments ();
yacco2 ::KCHARP gened date ();
yacco2 ::State ∗start state ();
virtual ∼CAbs fsm();
virtual void reduce rhs of rule
(yacco2 ::UINT Sub rule no ,yacco2 ::Rule s reuse entry ∗∗Recycled rule) = 0;
yacco2 ::Parser ∗parser ();
void parser (yacco2 ::Parser &A);
void find a recycled rule (Per rule s reuse table ∗Reuse rule table ,Rule s reuse entry

∗∗Reuse rule entry);
void recycle rule (Rule s reuse entry ∗Rule to recycle);

protected:
CAbs fsm(yacco2 ::KCHARP Id
,yacco2 ::KCHARP Version
,yacco2 ::KCHARP Date
,bool Debug
,yacco2 ::KCHARP Comments
,yacco2 ::KCHARP Gened date
,yacco2 ::State &Start state
);

public:
yacco2 ::KCHARP id ;
yacco2 ::KCHARP version ;
yacco2 ::KCHARP date ;
bool debug ;
yacco2 ::KCHARP comments ;
yacco2 ::KCHARP gened date ;
yacco2 ::State ∗start state ;
yacco2 ::Parser ∗parser ;
};

72 TRAPPING OF PREMATURE PARSING FAILURES — FAILED DIRECTIVE WLIBRARY §118

118. Trapping of Premature Parsing Failures — failed directive.
The “failed” directive within the “fsm” construct allows one to deal with premature aborts within a gram-
mar. It makes it reeeeeeeal easy to trap errors instead of specifically trying to program within the grammar
each potential abort position per T shift. It’s a “catch-all” last chance to provide an error response back from
a threaded grammar to their calling grammars, or to place an error within the error queue of a monolithic
grammar. A failed example:

1: fsm

2: (fsm-id "reset_rewrite_opt.lex",fsm-filename reset_rewrite_opt

3: ,fsm-namespace NS_reset_rewrite_opt

4: ,fsm-class Creset_rewrite_opt {

5: user-prefix-declaration

6: #include "integer_no.h"

7: ***

8: /@

9: Trap the failed option and return a bad option.

10: This covers errors like the premature prefix -e where it should

11: be -err. i could have been less specific to trap

12: non first set options (-z) by defaulting to this

13: facility but i’m teaching myself...

14: As this thread is executed according to its first set ‘‘-’’,

15: any failed attempt is a bad option.

16: Please note the use of the |RSVP_FSM| macro.

17: Its context is different than the normal Rule’s

18: use of |RSVP| macro.

19: @/

20: failed

21: CAbs_lr1_sym* s = new LR1_err_bad_rsx_rms_opt;

22: s->set_rc(*parser()->current_token(),*parser()

23: ,"reset_rewrite_opt.lex",__LINE__);

24: RSVP_FSM(s);

25: return true;

26: ***

27: }

28: ,fsm-version "1.1",fsm-date "18 Oct. 2003",fsm-debug "true"

29: ,fsm-comments "individual rsx/rms options")

30: parallel-parser

31: (

32: parallel-thread-function

33: TH_reset_rewrite_opt

34: ***

35: parallel-la-boundary

36: "/" + "’"

37: ***

38:)

39:

40:

§119 WLIBRARY FINITE STATE MACHINE IMPLEMENTATION 73

119. Finite state machine implementation.

120. CAbs fsm and ∼CAbs fsm.
Constructor and destructor of the finite state class.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::CAbs fsm ::CAbs fsm
(yacco2 ::KCHARP Id
,yacco2 ::KCHARP Version
,yacco2 ::KCHARP Date
,bool Debug
,yacco2 ::KCHARP Comments
,yacco2 ::KCHARP Gened date
,yacco2 ::State &Start state)
: id (Id), version (Version), date (Date), gened date (Gened date), debug (Debug),

comments (Comments), start state (&Start state), parser (0) { }
yacco2 ::CAbs fsm ::∼CAbs fsm()
{ }

74 FSM IMPLEMENTATION WLIBRARY §121

121. Fsm implementation.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::State ∗yacco2 ::CAbs fsm ::start state ()
{

return start state ;
}
yacco2 ::Parser ∗yacco2 ::CAbs fsm ::parser ()
{

return parser ;
}
void yacco2 ::CAbs fsm ::parser (yacco2 ::Parser &A)
{

parser = &A;
}
yacco2 ::KCHARP yacco2 ::CAbs fsm ::gened date ()
{

return gened date ;
}
yacco2 ::KCHARP yacco2 ::CAbs fsm :: id ()
{

return id ;
}
yacco2 ::KCHARP yacco2 ::CAbs fsm ::version ()
{

return version ;
}
yacco2 ::KCHARP yacco2 ::CAbs fsm ::date ()
{

return date ;
}
bool yacco2 ::CAbs fsm ::debug ()
{

return debug ;
}
yacco2 ::KCHARP yacco2 ::CAbs fsm ::comments ()
{

return comments ;
}

§122 WLIBRARY FIND A RECYCLED RULE AND RECYCLE RULE 75

122. find a recycled rule and recycle rule .
Each fsm is virtual and the concrete grammar’s fsm gets gened up with its specific reduce rhs of rule . It
is here that the fetching of recycled rules are done. The popping of the parse stack by cleanup or a reduce
operation recycles the rules. For the love of speed and environment, Recycle baby recycle!

〈 accrue yacco2 code 33 〉 +≡
void CAbs fsm ::find a recycled rule (Per rule s reuse table ∗Reuse rule table ,Rule s reuse entry

∗∗Reuse rule entry)
{

reuse rule list ∗rrl (0);

if (Reuse rule table~ for use list 6= 0) {
rrl = Reuse rule table~ for use list ;
(∗Reuse rule entry) = rrl~reuse rule entry ;
Reuse rule table~ for use list = rrl~older ;

}
else {

(∗Reuse rule entry) = new Rule s reuse entry();
rrl = &(∗Reuse rule entry)~ its linked list ;
rrl~reuse rule entry = (∗Reuse rule entry);
rrl~per rule tbl ptr = Reuse rule table ;

}
fnd rrl : rrl~older = 0;

rrl~younger = 0;
if (Reuse rule table~ in use list 6= 0) {

Reuse rule table~ in use list ~younger = rrl ;
rrl~older = Reuse rule table~ in use list ;
Reuse rule table~ in use list = rrl ;

}
else {

Reuse rule table~ in use list = rrl ;
}
}
void CAbs fsm ::recycle rule (Rule s reuse entry ∗Rule to recycle)
{

Per rule s reuse table ∗reuse tbl = Rule to recycle~ its linked list .per rule tbl ptr ;
reuse rule list ∗iul = reuse tbl~ in use list ;
reuse rule list ∗ful = reuse tbl~ for use list ;
reuse rule list ∗rrl = &Rule to recycle~ its linked list ;
reuse rule list ∗older rrl = rrl~older ;
reuse rule list ∗younger rrl = rrl~younger ;
/∗ break bonds from “in use” and reattach to “for use” ∗/

rrl~younger = 0;
rrl~older = reuse tbl~ for use list ;
reuse tbl~ for use list = rrl ;
if (rrl ≡ iul) { /∗ removal was end of iu list ∗/

reuse tbl~ in use list = older rrl ;
if (older rrl 6= 0) {

older rrl~younger = 0;
}
return;

}
if (older rrl ≡ 0) { /∗ rechain the iu list ∗/

76 FIND A RECYCLED RULE AND RECYCLE RULE WLIBRARY §122

younger rrl~older = 0;
return;

}
younger rrl~older = older rrl ;
older rrl~younger = younger rrl ;
}

§123 WLIBRARY PARSE STACK ENVIRONMENT 77

123. Parse stack environment.

0

1

2

max stk items

parse stack[].parse record

parse record:

• symbol↑
• state↑
• aborted boolean valued
• Rule s reuse entry↑

• recycled rule↑
• used on stack — boolean valued

Some general comments on the parse stack environment:
Firstly it’s just an array of parse record whereby the determinist push-down automaton straddles 2 array
records: the first record contains the state address and its stacked symbol and the second record contains
the goto state that it vectors to. To improve parsing speed, the rule’s “birth-run-delete” cyle has been
replaced by recycling of the rule: “birth once run forever” until the parser is shutdown. To do this a
Rule s reuse entry is kept per required number of recurse / use count per rule. This is determined by
analysing the grammar and counting the rhs of each rule for the rule’s use patterns. See structure .w of
O2library explaining this.

Each grammar locally contains its “rules’s reuse” table. The reduce rhs of rule procedure reads the recyled
rules’s table and returns the dupple containing the rule and the address within the recycle table containing
the Rule s reuse entry. Both components are pushed onto the parse stack frame. When the parse stack
frame is popped due to a reduce of the rhs of a rule or due to an abort, each stack frame being popped is
inspected for its symbol context: Rule or Terminal, or possibly nothing. If the symbol context is of Rule,
the Rule s reuse entry’s “in use” indicator is reset for recycling.

Another subtlety is that of “how to reset the rule’s object”?.
In c++ terms, as the rule’s class only has ctor and possibly a dtor that are implicitly called by the generated
code, “how do u reset the object for reuse as this is not a copy situation?”. Not to blame c++, this situation
was not thought of until now by me. This requires an inspection of the grammar rule’s definition for a
grammar’s “constructor” directive that usually does specific initializations at time of rule creation. If it
does not exist, then there is nothing to be done unless the grammar writer has defaulted to the compiler’s
initialization code for the class’s locally defined variables — as they say in French désolé. For me this un-
spoken initialization is not good as it is implicit and i prefer being forthright to my coding intentions. Given
this, a “reuse type” ctor must be defined within the rule’s class containing the constructor directive’s code
if required and called inside the preliminaries of reduce rhs of rule procedure for the specific rule.

78 PARSE RECORD WLIBRARY §124

124. Parse record.
Cparse record defines the record of the parse stack. Due to my way of cweb source code ordering, type
definitions come before structure definitions. In this case,the structure definition is outputted as a type
definition instead of as a structure.

“abort ” adjusted to “void*” from “bool” as my optimization on stack frame of individual structures being
multiples got slack bytes generated when porting to a HP Aplha. So make sure all are of same size. Put
back to bool.

〈Type defs 16 〉 +≡
struct Cparse record {

void set aborted (bool X);
bool aborted () const;
yacco2 ::CAbs lr1 sym ∗symbol ();
void set symbol (yacco2 ::CAbs lr1 sym ∗Symbol);
yacco2 ::State ∗state ();
void set state (yacco2 ::State ∗State no);
void set rule s reuse entry (yacco2 ::Rule s reuse entry ∗Rule s reuse);
yacco2 ::Rule s reuse entry ∗rule s reuse entry ();
yacco2 ::CAbs lr1 sym ∗symbol ;
yacco2 ::State ∗state ;
bool aborted ;
yacco2 ::Rule s reuse entry ∗rule s reuse entry ptr ;
};

125. Lr parse stack structure.
Why the home grown stack — SPEED. Templates are toooo slow with to many generalities.

〈Type defs 16 〉 +≡
struct lr stk {

lr stk();

void lr stk init (yacco2 ::State &S1);
void push state (yacco2 ::State &S1);
void push symbol (yacco2 ::CAbs lr1 sym &Sym);
bool empty ();
void pop();
void clean up();
Cparse record ∗sf by sub(yacco2 ::UINT Sub);
Cparse record ∗sf by top(yacco2 ::UINT No);
Cparse record lr stk [C_MAX_LR_STK_ITEMS];
yacco2 ::UINT top sub ;
Cparse record ∗top ;
Cparse record ∗first sf ;
State ∗first state ;
};

§126 WLIBRARY PARSE STACK IMPLEMENTATION 79

126. Parse stack implementation.

〈 accrue yacco2 code 33 〉 +≡
lr stk :: lr stk()
{

top sub = 1;
first sf = &lr stk [1];
top = first sf ;
first state = 0;
top ~state = 0;
top ~symbol = 0;
top ~aborted = 0;
top ~rule s reuse entry ptr = 0;
}
void lr stk :: lr stk init (yacco2 ::State &S1)
{

top sub = 1;
first sf = &lr stk [1];
top = first sf ;
first state = &S1;
top ~state = first state ;
top ~symbol = 0;
top ~aborted = 0;
top ~rule s reuse entry ptr = 0;
}
bool lr stk ::empty ()
{

if (top sub < 1) return true ;
return false ;
}
void lr stk ::push symbol (yacco2 ::CAbs lr1 sym &Sym)
{

top ~symbol = &Sym ;
}
void lr stk ::pop()
{
−−top sub ;
−−top ;

}
void lr stk ::clean up()
{

top sub = 1;
first sf = &lr stk [1];
top = first sf ;
top ~symbol = 0;
top ~aborted = 0;
top ~state = first state ;
top ~rule s reuse entry ptr = 0;
}

80 PARSE STACK IMPLEMENTATION WLIBRARY §127

127. lr stk ::clean up(). Speed demon.

〈 lr stk ::clean up() 127 〉 ≡
top sub = 1;
top = first sf ;
top ~symbol = 0;
top ~aborted = 0;
top ~state = first state ;
top ~rule s reuse entry ptr = 0;

128. lr stk ::empty (). Speed demon.

〈 lr stk :: lr stk ::empty () 128 〉 ≡
if (top sub < 1) return true ;
return false ;

129. lr stk ::pop(). Speed demon.

〈 lr stk ::pop() 129 〉 ≡
−−top sub ;
−−top ;

130. Parse stack implementation.

〈 accrue yacco2 code 33 〉 +≡
Cparse record ∗lr stk ::sf by sub(yacco2 ::UINT Sub)
{

if ((Sub < 1) ∨ (Sub > MAX_LR_STK_ITEMS)) {
char a[BUFFER_SIZE];
yacco2 ::KCHARP msg = "lr_stk − sf_by_sub invalid sub: %i not in range 1..%i";

sprintf (a,msg ,Sub , MAX_LR_STK_ITEMS);
Yacco2 faulty precondition (a, __FILE__, __LINE__);
exit (1);

}
return &lr stk [Sub];
}
Cparse record ∗lr stk ::sf by top(yacco2 ::UINT No)
{

int s = top sub −No ;

if (s < 1) {
char a[BUFFER_SIZE];
yacco2 ::KCHARP msg = "lr_stk − sf_by_top underflow top sub: %i, requested sub: %i\

 < 1";

sprintf (a,msg , top sub ,No);
Yacco2 faulty precondition (a, __FILE__, __LINE__);
exit (1);

}
return &lr stk [s];
}

§131 WLIBRARY PARSE STACK IMPLEMENTATION 81

131. Parse stack implementation.

〈 accrue yacco2 code 33 〉 +≡
void lr stk ::push state (yacco2 ::State &S1)
{

if (top sub ≥ MAX_LR_STK_ITEMS) {
char a[BUFFER_SIZE];
yacco2 ::KCHARP msg = "lr_stk − push overflow stack max: %i";

sprintf (a,msg , MAX_LR_STK_ITEMS);
Yacco2 faulty precondition (a, __FILE__, __LINE__);
exit (1);

}
++top ;
++top sub ;
top ~state = &S1;
top ~symbol = 0;
top ~aborted = 0;
top ~rule s reuse entry ptr = 0;
}

132. lr stk ::push state — Speed demon.

〈 lr stk ::push state 132 〉 ≡
if (parse stack .top sub ≥ MAX_LR_STK_ITEMS) {

char a[BUFFER_SIZE];
yacco2 ::KCHARP msg = "lr_stk − push overflow stack max: %i";

sprintf (a,msg , MAX_LR_STK_ITEMS);
Yacco2 faulty precondition (a, __FILE__, __LINE__);
exit (1);
}
++parse stack .top ;
++parse stack .top sub ;
parse stack .top ~state = Goto state ;
parse stack .top ~symbol = 0;
parse stack .top ~aborted = 0;
parse stack .top ~rule s reuse entry ptr = 0;

This code is used in section 349.

133. set aborted and aborted implementation.
The set aborted tags the parse stack record. It is used in conjunction with the symbol’s affected by abort
attribute. That is, the parallel parse aborted and it is cleaning up the partial effects of the parse: the symbol
indirectly dictates the what’s to be done.

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Cparse record ::set aborted (bool X)
{

aborted = X;
}
bool yacco2 ::Cparse record ::aborted () const
{

if (aborted ≡ 0) return false ;
return true ;
}

82 SET RULE S REUSE ENTR AND RULE S REUSE ENTRY IMPLEMENTATION WLIBRARY §134

134. set rule s reuse entr and rule s reuse entry implementation.
Used in the optimization of a rule’s recycled symbol. It is the rule’s subscript into the fsm’s rules reuse table .

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Cparse record ::set rule s reuse entry (yacco2 ::Rule s reuse entry ∗Rule s reuse)
{

rule s reuse entry ptr = Rule s reuse ;
}
yacco2 ::Rule s reuse entry ∗yacco2 ::Cparse record ::rule s reuse entry ()
{

return rule s reuse entry ptr ;
}

135. set state and state implementation.

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Cparse record ::set state (yacco2 ::State ∗State ptr)
{

state = State ptr ;
}
yacco2 ::State ∗yacco2 ::Cparse record ::state ()
{

return state ;
}

136. set symbol and symbol implementation.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::CAbs lr1 sym ∗yacco2 ::Cparse record ::symbol ()
{

return symbol ;
}
void yacco2 ::Cparse record ::set symbol (yacco2 ::CAbs lr1 sym ∗Symbol)
{

symbol = Symbol ;
}

§137 WLIBRARY THREAD SUPPORT LIBRARY: NATIVE THREAD WRAPPER FUNCTIONS 83

137. Thread support library: native thread wrapper functions.
Supports both Microsoft’s NT platform thread implementation and Pthreads. Pthreads has been tested on
HP’s VMS operating system, Apple’s OS X platform, Ubuntu, and Sun Solaris 10 AMD workstation. See
“Pthreads Programming” by Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrel. Easy read and
well presented 2nd edition 1998.

There is only one thread type: grammar requesting parallelism — ‘pp’ is its acromyn for parallel parse.
From a parallel parsing perspective, the parsing pushdown automaton detects parallelism by the presence
of the thread list within the current parse state’s configuration. It now handles the all the details from
launching of the threads instead of the old way that used a middleman called the control monitor “cm” who
attended to all details related to parallel parsing and waited for the completion of the threads, and passed
the results to the arbitrator functor for its ruling, and then cleaned up the accept queue.¿

To communicate between threads, a message protocol was developed in tandem with critical regions: I
now call it an event protocol. Per thread, possession of its critical region is controlled by a mutex — mu for
short. To implement messaging a conditional variable (cv) is used having a companion variable indicating
whether a event is received or not that is under mu control.

The event (message) protocol was developed to remove any reliance on the operating system. I was caught
by Microsoft’s message queue system with its quirks, limitations, and down right tantrums. These comments
are circa 1997 and probably don’t hold today... but the system dependency still does so here’s my take on
parsing events. Simple and not too challenging intellectually.

To reduce the size of the emitted cpp file, the thread implementation is outputted to wthread .cpp file. It’s
definitions etc are concatenated to the yacco2 . h file which is used by every implementation.

The following diagrams illustrates the critical region structure per thread, and the message flows acting
as events between the threads.

Critical regions:

Message flow:

138. Set up the required include files.

〈 Include files 14 〉 +≡
#if THREAD_LIBRARY_TO_USE__ ≡ 1
#include <windows.h>

#include <process.h>

#elif THREAD_LIBRARY_TO_USE__ ≡ 0
#include <pthread.h>

#endif

84 SET UP THE REQUIRED INCLUDE FILES WLIBRARY §139

139. Basic types supporting thread development.

〈Type defs 16 〉 +≡
typedef void ∗LPVOID;

#if THREAD_LIBRARY_TO_USE__ ≡ 1
#define _YACCO2_CALL_TYPE /∗ stdcall ∗/

typedef HANDLEMUTEX;
typedef unsigned int THREAD NO;
typedef HANDLE THREAD;
typedef HANDLE COND VAR;
typedef uintptr tTHR;
typedef int THR result;
typedef THR(_YACCO2_CALL_TYPE ∗ Type pp fnct ptr)(yacco2 ::Parser ∗PP requestor);
typedef THR result(_YACCO2_CALL_TYPE ∗ Type pc fnct ptr)(yacco2 ::Parser ∗PP requestor);
typedef THR(−−stdcall /∗ YACCO2 CALL TYPE ∗/
∗ Type pp fnct ptr voidp)(yacco2 ::LPVOID PP requestor);

#elif THREAD_LIBRARY_TO_USE__ ≡ 0
#define _YACCO2_CALL_TYPE

typedef pthread mutex tMUTEX;
typedef pthread t THREAD NO;
typedef pthread cond t COND VAR;
typedef void ∗LPVOID;
typedef LPVOID THR;
typedef int THR result;
typedef pthread t THREAD;
typedef THR(∗Type pp fnct ptr)(yacco2 ::Parser ∗PP requestor);
typedef THR(∗Type pp fnct ptr voidp)(yacco2 ::LPVOID PP requestor);
typedef THR result(∗Type pc fnct ptr)(yacco2 ::Parser ∗PP requestor);

#endif
typedef std ::vector〈yacco2 ::Thread entry ∗〉 yacco2 threads to run type;
typedef yacco2 threads to run type :: iterator yacco2 threads to run iter type;

140. Thread’s External wrapper routines.
Access to the real thread control runtime library uses wrapper routines to aid in porting to another thread
library.

〈External rtns and variables 22 〉 +≡
extern void CREATE_MUTEX(yacco2 ::MUTEX & Mu);
extern void LOCK_MUTEX(yacco2 ::MUTEX & Mu);
extern void UNLOCK_MUTEX(yacco2 ::MUTEX & Mu);
extern void LOCK_MUTEX_OF_CALLED_PARSER(yacco2 ::MUTEX & Mu ,yacco2 ::Parser &parser , const

char ∗Text);
extern void UNLOCK_MUTEX_OF_CALLED_PARSER(yacco2 ::MUTEX & Mu ,yacco2 ::Parser &parser , const

char ∗Text);
extern void DESTROY_MUTEX(yacco2 ::MUTEX & Mu);
extern void CREATE_COND_VAR(yacco2 ::COND VAR &Cv);
extern void COND_WAIT(yacco2 ::COND VAR &Cv ,yacco2 ::MUTEX & Mu ,yacco2 ::Parser

&parser);
extern void SIGNAL_COND_VAR(yacco2 ::Parser &To thread ,yacco2 ::Parser &parser);
extern void DESTROY_COND_VAR(yacco2 ::COND VAR &Cv);
extern yacco2 ::THR result
CREATE_THREAD(yacco2 ::Type pp fnct ptr Thread ,yacco2 ::Parser &Parser requesting parallelism);
extern THREAD NO THREAD_SELF();

§141 WLIBRARY THREAD LIBRARY IMPLEMENTATION 85

141. Thread library implementation.
The wrapper functions shields the native library routines from Yacco2’s callings. I call this a little middling
sir...

Please note, there is no exit or destroy thread wrapper routines. This is done automaticly when the thread
returns to the operating system. For the duration of the parse, the thread stays within a work loop until
it receives an “exit” message and its work status has been changed to THREAD_TO_EXIT by the requesting
shutdown process. See Parallel threads shutdown routine. The exit message just interrupts the thread to
start executing whose work loop condition has been broken. Basic hygiene takes place by the exiting thread
and then it exits to the operating system with an appropriate return code.

142. Microsoft’s NT thread implementation.

〈 accrue thread code 142 〉 ≡
#if THREAD_LIBRARY_TO_USE__ ≡ 1

See also sections 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165,
166, 167, 168, 174, 175, 177, 178, 179, 180, 185, and 212.

This code is used in section 169.

143. Create mutex — CREATE_MUTEX.
Appropriate defaults:

1) security: default
2) initial owner: OFF = no, ON = yes
3) named mutex: default 0 is no

〈 accrue thread code 142 〉 +≡
extern void yacco2 ::CREATE_MUTEX(yacco2 ::MUTEX & Mu)
{

Mu = CreateMutex (0, OFF, 0);
}

144. Lock mutex — LOCK_MUTEX.

〈 accrue thread code 142 〉 +≡
extern void yacco2 ::LOCK_MUTEX(yacco2 ::MUTEX & Mu)
{

WaitForSingleObject (Mu , INFINITE);
}

145. Lock mutex — LOCK_MUTEX_OF_CALLED_PARSER.

〈 accrue thread code 142 〉 +≡
extern void yacco2 ::LOCK_MUTEX_OF_CALLED_PARSER(yacco2 ::MUTEX & Mu ,yacco2 ::Parser

&parser , const char ∗Text)
{
〈Trace trying to acquire grammar’s mutex 606 〉;
WaitForSingleObject (Mu , INFINITE);
〈Trace acquired grammar’s mutex 607 〉;
}

146. Unlock mutex — UNLOCK_MUTEX.

〈 accrue thread code 142 〉 +≡
extern void yacco2 ::UNLOCK_MUTEX(yacco2 ::MUTEX & Mu)
{

ReleaseMutex (Mu);
}

86 UNLOCK MUTEX — UNLOCK_MUTEX_OF_CALLED_PARSER WLIBRARY §147

147. Unlock mutex — UNLOCK_MUTEX_OF_CALLED_PARSER.

〈 accrue thread code 142 〉 +≡
extern void yacco2 ::UNLOCK_MUTEX_OF_CALLED_PARSER(yacco2 ::MUTEX & Mu ,yacco2 ::Parser

&parser , const char ∗Text)
{
〈Trace trying to release grammar’s mutex 608 〉;
ReleaseMutex (Mu);
〈Trace released grammar’s mutex 609 〉;
}

148. Destroy mutex — DESTROY_MUTEX.

〈 accrue thread code 142 〉 +≡
extern void yacco2 ::DESTROY_MUTEX(yacco2 ::MUTEX & Mu)
{

CloseHandle (Mu);
}

149. Create conditional variable — CREATE_COND_VAR.
Default settings:

1) security: default 0
2) initial cnt: 0 so that it can wait for a signal
3) max cnt: 1 so that it’s 1:1
4) make unnamed variable: 0

〈 accrue thread code 142 〉 +≡
extern void yacco2 ::CREATE_COND_VAR(yacco2 ::COND VAR &Cv)
{

COND VAR xx = CreateSemaphore (0, 0, 1, 0); /∗ 0: wait state ∗/
Cv = xx ;
}

150. Conditional wait — COND_WAIT.
Default settings:

unlock mutex
wait on cv
lock mu

〈 accrue thread code 142 〉 +≡
extern void yacco2 ::COND_WAIT(yacco2 ::COND VAR &Cv ,yacco2 ::MUTEX & Mu ,yacco2 ::Parser

&parser)
{
〈 trace COND_WAIT entered 648 〉;
UNLOCK_MUTEX_OF_CALLED_PARSER(Mu , parser , " of self by COND_WAIT()");
WaitForSingleObject (Cv , INFINITE);
LOCK_MUTEX_OF_CALLED_PARSER(Mu , parser , " of self from wakened COND_WAIT()");
〈 trace COND_WAIT exit 649 〉;
}

§151 WLIBRARY SIGNAL CONDITIONAL VARIABLE — SIGNAL_COND_VAR 87

151. Signal conditional variable — SIGNAL_COND_VAR.
Default settings:

1) cond. var ptr
2) release count: make 1
3) previous cnt: 0 means don’t use previous cnt: so make 1:1

〈 accrue thread code 142 〉 +≡
extern void yacco2 ::SIGNAL_COND_VAR(yacco2 ::Parser &To thread ,yacco2 ::Parser &parser)
{
〈 trace SIGNAL_COND_VAR before call 650 〉;
ReleaseSemaphore (To thread .cv , 1, 0);
〈 trace SIGNAL_COND_VAR after call 651 〉;
}

152. Destroy conditional variable — DESTROY_COND_VAR.

〈 accrue thread code 142 〉 +≡
extern void yacco2 ::DESTROY_COND_VAR(yacco2 ::COND VAR &Cv)
{

CloseHandle (Cv);
}

153. Create thread — CREATE_THREAD.
Default settings:

1) security: default 0
2) stack size: default 0
3) function addr
4) Parm list addr
5) initflag default 0: start executing right away
6) thread id addr

When the thread is created, within the defining code body of the thread is a canned include filewpp core .h.
Its code sets all the variables related to thread activation: caller’s parse context and launched number of
threads. pp requesting parallelism is the calling parser and so is from thread . The no competing pp ths
is set from the calling parser’s no requested ths to run . no requested ths to run is a readonly variable
used to optimize mutex access / release of the calling parser’s critical region. If the value is 1, there is no
need to use the mutex.

〈 accrue thread code 142 〉 +≡
extern yacco2 ::THR result yacco2 ::CREATE_THREAD(yacco2 ::Type pp fnct ptr Thread ,

yacco2 ::Parser &Parser requesting parallelism)
{

yacco2 ::THREAD NO thread no ;

〈 trace CREATE_THREAD before call 652 〉;
THR result = beginthreadex (0, 0, (Type pp fnct ptr voidp)Thread ,&Parser requesting parallelism , 0,

&thread no);

〈 trace CREATE_THREAD after call 653 〉;
return result ;
}

88 THREAD ID — THREAD_SELF WLIBRARY §154

154. Thread id — THREAD_SELF.

〈 accrue thread code 142 〉 +≡
extern yacco2 ::THREAD NO yacco2 ::THREAD_SELF()
{

return GetCurrentThreadId ();
}

155. Pthreads implementation.

〈 accrue thread code 142 〉 +≡
#elif THREAD_LIBRARY_TO_USE__ ≡ 0

156. Create Mutex — CREATE_MUTEX.

When the thread is created, within the defining code body of the thread is a canned include file wpp core .h.
Its code sets all the variables related to thread activation: caller’s parse context and launched number of
threads. pp requesting parallelism is the calling parser and so is from thread . The no competing pp ths
is set from the calling parser’s no requested ths to run . no requested ths to run is a readonly variable
used to optimize mutex access / release of the calling parser’s critical region. If the value is 1, there is no
need to use the mutex.

〈 accrue thread code 142 〉 +≡
extern void yacco2 ::CREATE_MUTEX(yacco2 ::MUTEX & Mu)
{

int result = pthread mutex init (&Mu , 0);
}

157. Lock mutex — LOCK_MUTEX.

〈 accrue thread code 142 〉 +≡
extern void yacco2 ::LOCK_MUTEX(yacco2 ::MUTEX & Mu)
{

int result = pthread mutex lock (&Mu);
}

158. Lock mutex — LOCK_MUTEX_OF_CALLED_PARSER.

〈 accrue thread code 142 〉 +≡
extern void yacco2 ::LOCK_MUTEX_OF_CALLED_PARSER(yacco2 ::MUTEX & Mu ,yacco2 ::Parser

&parser , const char ∗Text)
{
〈Trace trying to acquire grammar’s mutex 606 〉;
int result = pthread mutex lock (&Mu);

〈Trace acquired grammar’s mutex 607 〉;
}

159. Unlock mutex — UNLOCK_MUTEX.

〈 accrue thread code 142 〉 +≡
extern void yacco2 ::UNLOCK_MUTEX(yacco2 ::MUTEX & Mu)
{

int result = pthread mutex unlock (&Mu);
}

§160 WLIBRARY UNLOCK MUTEX — UNLOCK_MUTEX_OF_CALLED_PARSER 89

160. Unlock mutex — UNLOCK_MUTEX_OF_CALLED_PARSER.

〈 accrue thread code 142 〉 +≡
extern void yacco2 ::UNLOCK_MUTEX_OF_CALLED_PARSER(yacco2 ::MUTEX & Mu ,yacco2 ::Parser

&parser , const char ∗Text)
{
〈Trace trying to release grammar’s mutex 608 〉;
int result = pthread mutex unlock (&Mu);

〈Trace released grammar’s mutex 609 〉;
}

161. Destroy mutex — DESTROY_MUTEX.

〈 accrue thread code 142 〉 +≡
extern void yacco2 ::DESTROY_MUTEX(yacco2 ::MUTEX & Mu)
{

int result = pthread mutex destroy (&Mu);
}

162. Create conditional variable — CREATE_COND_VAR.

〈 accrue thread code 142 〉 +≡
extern void yacco2 ::CREATE_COND_VAR(yacco2 ::COND VAR &Cv)
{

pthread cond init (&Cv , 0);
}

163. Conditional wait — COND_WAIT.

〈 accrue thread code 142 〉 +≡
extern void yacco2 ::COND_WAIT(yacco2 ::COND VAR &Cv ,yacco2 ::MUTEX & Mu ,yacco2 ::Parser

&parser)
{
〈 trace COND_WAIT entered 648 〉;
if (yacco2 ::YACCO2_MU_GRAMMAR__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � parser .thread no � "::" � parser .fsm tbl ~ id � "::" �

" before release mutex by pthread_cond_wait()" � __FILE__ � __LINE__ � std ::endl ;
〈 release trace mu 390 〉;

}
pthread cond wait (&Cv ,&Mu);
〈 trace COND_WAIT exit 649 〉;
}

164. Signal conditional variable — SIGNAL_COND_VAR.

〈 accrue thread code 142 〉 +≡
extern void yacco2 ::SIGNAL_COND_VAR(yacco2 ::Parser &To thread ,yacco2 ::Parser &parser)
{
〈 trace SIGNAL_COND_VAR before call 650 〉;
pthread cond signal (&To thread .cv);
〈 trace SIGNAL_COND_VAR after call 651 〉;
}

90 DESTROY CONDITIONAL VARIABLE — DESTROY_COND_VAR WLIBRARY §165

165. Destroy conditional variable — DESTROY_COND_VAR.

〈 accrue thread code 142 〉 +≡
extern void yacco2 ::DESTROY_COND_VAR(yacco2 ::COND VAR &Cv)
{

pthread cond destroy (&Cv);
}

166. Create thread — CREATE_THREAD. Experimenting with thread attributes by use of pthread attr t
object and its methods: pthread attr setstacksize . If u want the default, pass null in the 2nd argument in
pthread create . This experiment is caused by VMS’s tantrums when porting pasxlator translator to the
Alpha platform. Circa 2002 – 2003, this worked under VMS 7.2 and their older C++ compiler 6.5.

〈 accrue thread code 142 〉 +≡
extern yacco2 ::THR result
yacco2 ::CREATE_THREAD
(yacco2 ::Type pp fnct ptr Thread ,yacco2 ::Parser &Parser requesting parallelism)
{
〈 trace CREATE_THREAD before call 652 〉;
yacco2 ::THREAD NO thread no ;

pthread attr t alpha attr ;
pthread attr init (&alpha attr);

#ifdef VMS__

pthread attr setstacksize (&alpha attr , VMS_PTHREAD_STACK_SIZE__);
#endif

THR result result = pthread create (&thread no ,&alpha attr , (Type pp fnct ptr voidp)Thread ,
&Parser requesting parallelism);

pthread detach (thread no);
〈 trace CREATE_THREAD after call 653 〉;
return result ;
}

167. Thread id — THREAD_SELF.

〈 accrue thread code 142 〉 +≡
extern yacco2 ::THREAD NO yacco2 ::THREAD_SELF()
{

return pthread self ();
}

168. Close off the wrapper conditional code.

〈 accrue thread code 142 〉 +≡
#endif

§169 WLIBRARY YACCO2’S INTERNAL THREAD IMPLEMENTATION 91

169. Yacco2’s internal thread implementation.

〈 wthread.cpp 169 〉 ≡
〈 copyright notice 565 〉;
〈 iyacco2 26 〉;
〈 accrue thread code 142 〉;

170. Thread control runtime environment.
Thread control record for the thread pool table. This is used by Yacco2’s global runtime table of spawned
threads. This is a one-to-many relationship as the same thread can be running within a nested call chain.
Very basic in its thread worker status : working, waiting for work, and I’m out of here.

〈Type defs 16 〉 +≡
struct worker thread blk;
typedef std :: list < yacco2 ::worker thread blk ∗ > Parallel thread list type ;
typedef Parallel thread list type :: iterator Parallel thread list iterator type;
typedef std ::vector〈yacco2 ::Parallel thread list type〉 Parallel thread tbl type;
typedef Parallel thread tbl type :: iterator Parallel thread tbl iterator type;
struct called proc entry {

bool proc call in use ;
};
typedef called proc entry Parallel thread proc call table type;

171. worker thread blk structure.
grammar s parser is the grammar’s parser. status takes one of 3 states:

1) THREAD_WAITING_FOR_WORK
2) THREAD_WORKING
3) THREAD_TO_EXIT

Of import:
When the thread gets created, worker thread blk will enter the thread into the global thread table list.
The table is a vector of precalculated thread numbers generated from Yacco2’s linker. The launching grammar
has mutual access to Parallel thread table . So the created thread can just deposit its worker thread blk
address into the list.

〈Structure defs 18 〉 +≡
struct worker thread blk {

worker thread blk(); /∗ monolithic grammar ∗/
worker thread blk(yacco2 ::Parser ∗Grammar s parser ,yacco2 ::Parser ∗Calling parser);

yacco2 ::Parser ∗grammar s parser ;
int status ;
int run cnt ;
int thd id ;
void set waiting for work ();
};

172. Global Parallel thread table declaration of use.
Maintains a list of launched threads with their availability. For efficiency, it is an array subscripted by the
thread’s id number. Why the list? This is a 1:m situation. Due to nested thread calls, a thread could be
busy so another copy of the threads needs creation.

〈Global variables 21 〉 +≡
extern Parallel thread tbl type Parallel thread table ;
extern Parallel thread proc call table type Parallel thread proc call table [MAX_NO_THDS];

92 GLOBAL ROUTINES DECLARATION OF USE WLIBRARY §173

173. Global routines declaration of use.

〈External rtns and variables 22 〉 +≡
extern void Parallel threads shutdown (yacco2 ::Parser &PP);
extern yacco2 ::THR _YACCO2_CALL_TYPEAR for manual thread spawning (yacco2 ::Parser
∗Caller pp);

extern yacco2 ::Type pp fnct ptr PTR AR for manual thread spawning ;

174. Global Parallel thread table definition.

〈 accrue thread code 142 〉 +≡
yacco2 ::Parallel thread tbl type yacco2 ::Parallel thread table (MAX_NO_THDS);
yacco2 ::Parallel thread proc call table type yacco2 ::Parallel thread proc call table [MAX_NO_THDS];

175. Global Proxy arbitrator.
Used for manual parallelism. This is manually launched by the grammar writer’s code within a grammar.

〈 accrue thread code 142 〉 +≡
extern yacco2 ::THR_YACCO2_CALL_TYPE

yacco2 ::AR for manual thread spawning (yacco2 ::Parser ∗Caller pp)
{

std ::string ar name ("AR_yacco2");
〈 iar begin 30 〉;
〈No arbitration code present 176 〉;
〈 iar end 31 〉;
}

176. No arbitration code present.
This condition exists when the accept queue has more than 1 accept token in the queue. What token should
be accepted while the others are quitely put to heaven? Within Yacco2, it checks when the configuration
state has more than 1 thread being launched, and there is no grammar writer code to select the winning
token, before the throw code is emitted. Determining how the select code is present is currently crude. It
checks to see that the pp accept queue variable is present in the syntax directed code string: not present
then emit the conditional wrapping of the throw condition.

〈No arbitration code present 176 〉 ≡
if (Caller pp~ th accepting cnt > 1) {

char a[BUFFER_SIZE];
yacco2 ::KCHARP msg = "no arbitration code present in %s − accept token queue has \

%i > 1 tokens to arbitrate on";

sprintf (a,msg , ar name .c str (),Caller pp~ th accepting cnt);
Yacco2 faulty precondition (a, __FILE__, __LINE__);
exit (1);
}

This code is used in section 175.

§177 WLIBRARY WORKER THREAD BLK INITIALIZATION: MONOLITHIC GRAMMAR 93

177. worker thread blk initialization: monolithic grammar.
Part of its duties is to create the mutexs controling Yacco2’s tables: symbol and thread list. To serialize
traced output, a mutex is used to throatle back simultaneous multi-threads tracing into a single queue of
buffer flush-out. STL does not control this. It is at the mercy of how threads are executed and how the
operating system tic-tacs the clock and their output. Due to this whimsy of clock soundings, you can receive
from different threads interspersed mixed snippets of traced code on the same line outputted. This is why
all atomic traces are bracketed by the acquire / release of the trace mutex.

The mutex creation is done by the birth of a grammar object: each grammar contains a Parser component
containing a worker thread blk. So there is no need for a special startup routine to use Yacco2’s library.

〈 accrue thread code 142 〉 +≡
yacco2 ::worker thread blk ::worker thread blk() /∗ monolithic grammar ∗/
: grammar s parser (0), status (0), run cnt (1), thd id (0) {

static bool init gbl (OFF);

if (init gbl ≡ OFF) {
init gbl = ON;
CREATE_MUTEX(yacco2 ::TH_TBL_MU);
CREATE_MUTEX(yacco2 ::TRACE_MU);
CREATE_MUTEX(yacco2 ::TOKEN_MU);
CREATE_MUTEX(yacco2 ::SYM_TBL_MU);

}
}

178. worker thread blk initialization: threaded grammar.
See HPAlpha .CPLUSPLUS/“this’’object mis − address describing bug. It provides the reason for the
change from i.push back (this) to i.push back (&Grammar s parser~ th blk). 〈 acquire global thread table
critical region 380 〉 and 〈 release global thread table critical region 381 〉 are not used in this context as the
grammar requesting the threads to run has already acquired it!

〈 accrue thread code 142 〉 +≡
yacco2 ::worker thread blk ::worker thread blk(yacco2 ::Parser ∗Grammar s parser ,

yacco2 ::Parser ∗Calling parser) /∗ parallel grammar ∗/
: grammar s parser (Grammar s parser), status (THREAD_WAITING_FOR_WORK), run cnt (1),

thd id (grammar s parser ~ thread entry ~ thd id) {
status = THREAD_WORKING;

Parallel thread list type &i = Parallel thread table [grammar s parser ~ thread entry ~ thd id];

i.push back (this);
〈Trace MSG thread being created 618 〉;
}

179. set waiting for work .
It is the running thread who sets its own work status. Both 〈 acquire global thread table critical region 380 〉
and 〈 release global thread table critical region 381 〉 are used by the running thread in their local procedures
parallel parse successful or parallel parse unsuccessful .

〈 accrue thread code 142 〉 +≡
void yacco2 ::worker thread blk ::set waiting for work ()
{
〈Trace MSG thread idle before setting waiting for work 616 〉;
status = THREAD_WAITING_FOR_WORK;
〈Trace MSG thread idle after setting waiting for work 617 〉;
}

94 GLOBAL SHUTDOWN OF THREADS WLIBRARY §180

180. Global shutdown of threads.
Goes through the list of threads. Before doing 2 passes on the table, the routine pauses for x seconds to let
the swamp drain: due to a single processor environment, there could still be threads outstanding in their
winddown to-wait-for-work sequence. It then goes thru the thread list for threads waiting-for-work, these
threads are given their pink notice.

The last pause is to allow the draining of the threads’ output: flush those buffers. The 2nd pass thru
the table is a sanity check. Any threads still outstanding are listed to Yacco2’s output file lrclog . This
notification allows the compiler writer to check out why.

〈 accrue thread code 142 〉 +≡
extern void yacco2 ::Parallel threads shutdown (yacco2 ::Parser &PP)
{
〈 acquire global thread table critical region 380 〉;
int no thds to shutdown (0);
int no ths exited (0);

〈pause for x seconds 181 〉; /∗ let the other threads go into a wait state ∗/
〈Threads in table to potentially shutdown 182 〉;
〈 look for threads to shutdown 183 〉;
〈pause for x seconds 181 〉; /∗ allow the threads to close down ∗/
〈 release global thread table critical region 381 〉;
DESTROY_MUTEX(yacco2 ::TH_TBL_MU);
DESTROY_MUTEX(yacco2 ::TRACE_MU);
DESTROY_MUTEX(yacco2 ::TOKEN_MU);
DESTROY_MUTEX(yacco2 ::SYM_TBL_MU);
}

181. Pause for x seconds.

〈pause for x seconds 181 〉 ≡
#if THREAD_LIBRARY_TO_USE__ ≡ 1

Sleep(1000);
#elif THREAD_LIBRARY_TO_USE__ ≡ 0

sleep(1); /∗ from guy steele c ref bk, in seconds. ∗/
#endif

This code is cited in section 110.

This code is used in section 180.

§182 WLIBRARY THREADS IN TABLE TO POTENTIALLY SHUTDOWN 95

182. Threads in table to potentially shutdown.

〈Threads in table to potentially shutdown 182 〉 ≡
Parallel thread tbl iterator type k = Parallel thread table .begin ();
Parallel thread tbl iterator type ke = Parallel thread table .end ();

for (; k 6= ke ; ++k) {
Parallel thread list iterator type m = k~begin ();
Parallel thread list iterator type me = k~end ();

for (; m 6= me ; ++m) {
++no thds to shutdown ;

}
}
yacco2 :: lrclog � "Number of threads in table to shutdown: " � no thds to shutdown �

__FILE__ � __LINE__ � std ::endl ;
k = Parallel thread table .begin ();
for (; k 6= ke ; ++k) {

Parallel thread list iterator type m = k~begin ();
Parallel thread list iterator type me = k~end ();

for (; m 6= me ; ++m) {
worker thread blk ∗tb = ∗m;

〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "worker task in table tb*: " � tb � " thread id: " �

tb~grammar s parser ~ thread no � "::" � tb~grammar s parser ~ thread name () �
" run cnt: " � tb~run cnt ;

switch (tb~status) {
case THREAD_WAITING_FOR_WORK:
{

yacco2 :: lrclog � " waiting for work";
break;
}

case THREAD_WORKING:
{

yacco2 :: lrclog � " working";
break;
}

case THREAD_TO_EXIT:
{

yacco2 :: lrclog � " thread to exit";
break;
}

default:
{

yacco2 :: lrclog � " ??? thread status: " � tb~status ;
break;
}

}
yacco2 :: lrclog � __FILE__ � __LINE__ � std ::endl ;
〈 release trace mu 390 〉;

}
}

This code is used in section 180.

96 LOOK FOR THREADS TO SHUTDOWN WLIBRARY §183

183. Look for threads to shutdown.

〈 look for threads to shutdown 183 〉 ≡
Parallel thread tbl iterator type i = Parallel thread table .begin ();
Parallel thread tbl iterator type ie = Parallel thread table .end ();

for (; i 6= ie ; ++i) {
Parallel thread list iterator type j = i~begin ();
Parallel thread list iterator type je = i~end ();

for (; j 6= je ; ++j) {
worker thread blk ∗tb = ∗j;
if (tb~status ≡ THREAD_WAITING_FOR_WORK) {
〈 acquire trace mu 389 〉;
++no ths exited ;
yacco2 :: lrclog � "worker task to exit: " � tb~grammar s parser ~ thread no � "::" �

tb~grammar s parser ~ thread name () � " tb* " � tb � __FILE__ � __LINE__ �
std ::endl ;

〈 release trace mu 390 〉;
LOCK_MUTEX_OF_CALLED_PARSER(tb~grammar s parser ~mu , ∗tb~grammar s parser ,

" of called thread");
tb~status = THREAD_TO_EXIT;
PP.post event to requesting grammar (∗tb~grammar s parser ,Shutdown , PP);

}
else {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "worker task not shutting down: " � tb~grammar s parser ~ thread no �

"::" � tb~grammar s parser ~ thread name () � " tb* " � tb � " status: " �
tb~status � __FILE__ � __LINE__ � std ::endl ;

〈 release trace mu 390 〉;
}

}
i~clear ();
}
Parallel thread table .clear ();
yacco2 :: lrclog � "Number of threads in table exiting: " � no ths exited �

" number of threads not shutting down: " � no thds to shutdown − no ths exited �
__FILE__ � __LINE__ � std ::endl ;

This code is used in section 180.

§184 WLIBRARY CACCEPT PARSE STRUCTURE — ACCEPT RESULT FROM THREADS 97

184. Caccept parse Structure — Accept result from threads.
Ahh, the smell of ??? Go tell it to cm. Jess the reality show syndrome. This message gets put into the
accept queue of the requesting pp. This is a potential winner requiring the arbitrator to decide. Lets hope
the judge is not of TVQ ‘star acadamie’ tabloids variety.

Changed the accept queue from a mapped sturcture of keyed by the accept terminal’s enumeration id to
one of sequential list of local Caccept parse . As non-determinism is small: potentially 2 or 3 occassionally Tes
in the queue, i felt the sequential attitude appropriate instead of a mapped structure. The big improvement
is to remove malloced Caccept parse and use the copy into the local Caccept parse of the accept queue.

〈Structure defs 18 〉 +≡
struct Caccept parse {

Caccept parse(yacco2 ::Parser &Th reporting success
,yacco2 ::CAbs lr1 sym &Accept token
,yacco2 ::UINT Accept token pos
,yacco2 ::CAbs lr1 sym &La token
,yacco2 ::UINT La token pos);
Caccept parse();

void initialize it ();
void fill it (Caccept parse &Accept parse);
void fill it (yacco2 ::Parser &Th reporting success
,yacco2 ::CAbs lr1 sym &Accept token
,yacco2 ::UINT Accept token pos
,yacco2 ::CAbs lr1 sym &La token
,yacco2 ::UINT La token pos);

∼Caccept parse();

yacco2 ::Parser ∗th reporting success ;
yacco2 ::CAbs lr1 sym ∗accept token ;
yacco2 ::UINT accept token pos ;
yacco2 ::CAbs lr1 sym ∗la token ;
yacco2 ::UINT la token pos ;
};

98 CACCEPT PARSE AND ∼CACCEPT PARSE IMPLEMENTATION WLIBRARY §185

185. Caccept parse and ∼Caccept parse implementation.

〈 accrue thread code 142 〉 +≡
yacco2 ::Caccept parse ::
Caccept parse
(yacco2 ::Parser &Th reporting success
,yacco2 ::CAbs lr1 sym &Accept token
,yacco2 ::UINT Accept token pos
,yacco2 ::CAbs lr1 sym &La token
,yacco2 ::UINT La token pos)
{

th reporting success = &Th reporting success ;
accept token = &Accept token ;
accept token pos = Accept token pos ;
la token = &La token ;
la token pos = La token pos ;
}
yacco2 ::Caccept parse ::
Caccept parse()
{

th reporting success = 0;
accept token = 0;
accept token pos = 0;
la token = 0;
la token pos = 0;
}
void yacco2 ::Caccept parse :: initialize it ()
{

th reporting success = 0;
accept token = 0;
accept token pos = 0;
la token = 0;
la token pos = 0;
}
void yacco2 ::Caccept parse ::fill it (Caccept parse &Accept parse)
{

th reporting success = Accept parse .th reporting success ;
accept token = Accept parse .accept token ;
accept token pos = Accept parse .accept token pos ;
la token = Accept parse .la token ;
la token pos = Accept parse .la token pos ;
}
void yacco2 ::Caccept parse ::fill it
(yacco2 ::Parser &Th reporting success
,yacco2 ::CAbs lr1 sym &Accept token
,yacco2 ::UINT Accept token pos
,yacco2 ::CAbs lr1 sym &La token
,yacco2 ::UINT La token pos)
{

th reporting success = &Th reporting success ;
accept token = &Accept token ;

§185 WLIBRARY CACCEPT PARSE AND ∼CACCEPT PARSE IMPLEMENTATION 99

accept token pos = Accept token pos ;
la token = &La token ;
la token pos = La token pos ;
}
yacco2 ::Caccept parse ::∼Caccept parse()
{ }

100 THREAD CODE FOR ARBITRATOR, AND PARALLEL PARSE WLIBRARY §186

186. Thread code for arbitrator, and parallel parse.
The emitted files become the include files for the emitted threads and each finite automton’s arbitrator. For
the parallel parse thead, this is the core code loops that make it tick. The arbitrator code is the two pieces
of bread that sandwich the grammar writer’s selection code supplied from the arbitrator − code construct.
The produced files are:

1) wpp core .cpp — parallel parser include code for generated pp threads
2) war begin code .h — arbitrator’s start code
3) war end code .h — arbitrator’s end code

187. Arbitrator code generator — begin and end files: war xxx code .h.
The emitted code is the pp accept queue ’s iteration to walk thru the potential tokens for consideration
produced by the parallel threads inserted into the requesting grammar’s accept queue. It is structured into
2 parts:

1) the startup variables to iterate thru the accept queue
2) the ending code of the iteration

Sandwiched between these 2 pieces of code is the arbitration logic supplied by the grammar writer that
gets emitted for that specific state’s configuration. Normally there is no code as the parallel request is
deterministic with at most only one token returned by one of the launched threads.

188. Arbitrator begin code.
This is injected into the emitted arbitrators produced by Yacco2. The grammar writer’s code follows this
code. It is the discrimatory code used to select the winning accept terminal within the accept queue.

Arbitration is needed when there are competing parallel parses that return their accept terminals. A single
entry only is checked first and returned before going into the arbitrated code selection. A sanity check is
done on the accept queue whereby the accepted thread count must equal the number of accepted tokens
placed into the queue.

The Caller pp variable is the passed Parser pointer argument to the arbitration routine. It is the parser’s
context that includes the its critcal region supporting threading and the accept queue. Arbitration routine(s)
generated out of the grammar have the following naming convention:

AR_ concatenated with the rule name
An example of a routine is:

yacco2::THR _YACCO2_CALL_TYPE NS pass3 ::AR Rtok (yacco2::Parser* Caller pp);
The _YACCO2_CALL_TYPE is an internal definition specific to Microsoft call types. It is defined as stdcall
whereas in the other supported platforms it’s value is empty.

〈 war_begin_code.h 188 〉 ≡
〈 copyright notice 565 〉;
〈pp accept queue war begin code 189 〉;

189. 〈pp accept queue war begin code 189 〉 ≡
〈uns 23 〉;
int i = 1;
int ie = Caller pp~ th accepting cnt ;

〈Trace AR trace the starting of arbitration 625 〉;
This code is used in section 188.

§190 WLIBRARY EXAMPLE OF ARBITRATED GRAMMAR CODE 101

190. Example of arbitrated grammar code.
The accept queue is sequentially searched in arbitrating on the enumerated id of the potential accepting Tes.
The following example only gets executed when there are 2 or more accepting terminals in the queue. In
this example, there are 2 independent parallelisms going on:

keyword versus identifier
floating point versus integer

They never intersect!
1: ,parallel-control-monitor{

2: arbitrator-code

3: // arbitration

4: // between

5: // x y winner

6: // identifier keyword keyword

7: // fp no integer fp no

8: //

9: using namespace NS_pas_T_enum;

10: {

11: for(i=1;i<=ie;++i){

12: if(To_judge->pp_accept_queue__[i].accept_token__->enumerated_id__

13: == NS_pas_T_enum::T_Enum::T_T_keyword_){

14: goto arbitrated_parameter;

15: }

16: }

17: for(i=1;i<=ie;++i){

18: if(To_judge->pp_accept_queue__[i].accept_token__->enumerated_id__

19: == NS_pas_T_enum::T_Enum::T_T_fp_pt_no_){

20: goto arbitrated_parameter;

21: }

22: }

23: }

24: ***

25: }

26:

Lines 11 and 12 above show 3 things:
1) i is the subscript to accept parse array’s current contents
2) Caller pp (Parser*) points to the critical region of the grammar
3) pp accept queue contains the parallel results from the threads

The decision code only gets executed if there are 2 or more terminals placed into the accept queue for
arbitration. This case is very rare but the above example illustrates dealing with non-determinism from 2
or more successful parallel parses. How can this come about?: Subset - superset — common prefixes. The
example gives 2 examples of this that are tested for. The integer recognizes the whole number while the
floating point continues with the fraction. One can argue that the grammar strategy was not very refined as
the lookahead on the integer should not accept “.”. You’re right but this example is instructive and it was
drawn from a real translator that was put together quickly. The moral is: u can be inefficient but effective
with non-determinism.

Note, the items placed into the accept queue can contain error terminals forwarded to the calling grammar
to do its own abort sequence.

102 ARBITRATOR END CODE WLIBRARY §191

191. Arbitrator end code.
Closes the iteration thru the accept queue. Originally i optimized injection code in case the grammar writer
missed selecting the accepted T. This code was dependent on whether the specific state had multiple threads
to launch. Now for clarity i have included a stopper procedure before the arbitrated parameter label whereby
it spews the gory details for the grammar writer’s logic correction: Competing threads within the grammar
have their names displayed while a thread with a “NULL” name is not a competing thread but allows one
to be specific to an accepting token returned by one of the named threads.

Where is the accept queue drained of its contents? As potential terminals for arbitration are birthed
from malloc (new), their sending to heaven should be epiphaned by “delete”. This is done by the generic
Parser code just after the call to the “Arbitrator”. This is a code-bloat diet: Putting this in each generated
arbitrator routine across all grammars would have been fat people community like the works of Spanish
sculptor/painter Botero.

〈 war_end_code.h 191 〉 ≡
〈 copyright notice 565 〉;
〈pp accept queue war end code 192 〉;

192. 〈pp accept queue war end code 192 〉 ≡
Caller pp~abort no selected accept parse in arbitrator ();

arbitrated parameter :
Caller pp~arbitrated token = &Caller pp~pp accept queue [i];
Caller pp~pp accept queue idx = i;
〈Trace AR stopped arbitrating 629 〉;
return (THR) 1;

This code is used in section 191.

§193 WLIBRARY PARALLEL THREAD CODE: INJECTION CODE FOR EMITTED PP WPP CORE .H 103

193. Parallel thread code: injection code for emitted pp wpp core .h.
This is the injector code for the manufactured parallel thread. Drawn from the just created file wpp core .h.
If it has been launched as a thread, “waiting-for-work” has been removed from the run loop and placed in
the responding parallel parse successful and parallel parse unsuccessful procedures. This is an optimization:
Ahhh the dragon trace of threading...

Even better is the check as to calling it as a thread or as a procedure. This depends on the number of
threads to launch. If there is only one thread to run, this is called as a procedure instead of a thread. Do u
see the friskiness in Yacco2? Well no, as threads now dominate.

Please see “Notes to myself” on running diatribe regarding optimization.

〈 wpp_core.h 193 〉 ≡
〈 copyright notice 565 〉;
〈uns 23 〉;
〈 create communication variables 200 〉;
〈 create parser related variables and set them 202 〉;
〈 set parameter passed to pp as a message 201 〉;
do {
〈 establish initial parser’s token setting 199 〉;
〈Trace pp start info 637 〉;
〈 let’s parallel parse. do u? 198 〉;
〈Trace stop of parallel parse message 639 〉;
〈 clean up parse stack but leave as ready to parse again 197 〉;
〈house clean the parser and local communication variables 196 〉;
〈Trace parallel thread waiting-to-do-work 642 〉;
〈pp wait for work or shutdown message 195 〉;
〈Trace pp received go start working message 643 〉;
} while (pp parser .th blk .status 6= THREAD_TO_EXIT);

finished working :
〈winddown duties of pp 194 〉;
〈Trace pp finished working 644 〉;
UNLOCK_MUTEX_OF_CALLED_PARSER(pp parser .mu , pp parser , " of called thread");
return (THR) 1;

194. Winddown duties of pp.

〈winddown duties of pp 194 〉 ≡
pp parser .clear parse stack ();

This code is used in section 193.

195. Pp wait for work or shutdown message.

〈pp wait for work or shutdown message 195 〉 ≡
pp parser .wait for event ();

This code is used in section 193.

196. House clean the parser and local communication variables.
Their procedure calls replaced for speed.

〈house clean the parser and local communication variables 196 〉 ≡
pp parser .use all shift = ON;
pp parser .abort parse = OFF;
pp parser .stop parse = OFF;
pp parser .has questionable shift occured = OFF;

This code is used in section 193.

104 PARALLEL THREAD CODE: INJECTION CODE FOR EMITTED PP WPP CORE .H WLIBRARY §197

197. Clean up parse stack but leave as ready to parse again. The following points are done:
1) clean up trace activity: normally done when parse object destroyed
2) leave first record on stack for efficiency
3) make sure first stack symbol on stack checked for delete attribute

〈 clean up parse stack but leave as ready to parse again 197 〉 ≡
pp parser .remove from stack (pp parser .parse stack .top sub − 1);

CAbs lr1 sym ∗sym = pp parser .top stack record ()~symbol ;

if (sym 6= 0) {
if (sym~auto delete ≡ ON) {
〈Trace pp’s last symbol on stack set as autodelete 640 〉;
delete sym ;

}
pp parser .top stack record ()~set symbol (0); /∗ keeping a clean stack ∗/
}
pp parser .parse stack .lr stk init (∗pp parser .fsm tbl ~start state);

This code is used in section 193.

198. Let’s parallel parse. do u?.

〈 let’s parallel parse. do u? 198 〉 ≡
pp parser .parallel parse ();

This code is cited in section 272.

This code is used in section 193.

§199 WLIBRARY PARALLEL THREAD CODE: INJECTION CODE FOR EMITTED PP WPP CORE .H 105

199. Establish initial parser’s token setting. When the thread is established and waiting to be wakenned,
the calling grammar sets the following variables within the critical region of the called thread: from thread ,
pp requesting parallelism , and no competing pp ths .

〈 establish initial parser’s token setting 199 〉 ≡
pp parser .override current token (∗pp parser .pp requesting parallelism ~current token (),

pp parser .pp requesting parallelism ~current token pos);
pp parser .set start token (∗pp parser .pp requesting parallelism ~current token ());
pp parser .set start token pos (pp parser .pp requesting parallelism ~current token pos);
pp parser .top stack record ()~set symbol (pp parser .current token ());
pp parser .token supplier = pp parser .pp requesting parallelism ~ token supplier ;
pp parser .token producer = pp parser .pp requesting parallelism ~ token producer ;
pp parser .error queue = pp parser .pp requesting parallelism ~error queue ;
pp parser .recycle bin = pp parser .pp requesting parallelism ~recycle bin ;
pp parser .sym lookup functor = pp parser .pp requesting parallelism ~sym lookup functor ;
pp parser .supplier r w cnt = pp parser .pp requesting parallelism ~supplier r w cnt ;
if (pp parser .th blk .grammar s parser 6= &pp parser) {

char a[BUFFER_SIZE];
yacco2 ::KCHARP msg = "parser’s thd blk’s pp addr != itself thd: %i::%s";

sprintf (a,msg , pp parser .thread no , pp parser .thread name ());
Yacco2 faulty precondition (a, __FILE__, __LINE__);
exit (1);
}
if (pp parser .th blk .grammar s parser ~pp requesting parallelism 6=

pp parser .pp requesting parallelism) {
char a[BUFFER_SIZE];
yacco2 ::KCHARP msg = "caller’s pp addr not = in called parser’s thd blk ptr, and \

its parser thd: %i::%s";

sprintf (a,msg , pp parser .thread no , pp parser .thread name ());
Yacco2 faulty precondition (a, __FILE__, __LINE__);
exit (1);
}

This code is used in section 193.

200. Create communication variables.

〈 create communication variables 200 〉 ≡
char ma [SMALL_BUFFER_4K];
const char ∗pp start = "YACCO2_MSG__::%i::%s start parsing\n";
const char ∗pp stop = "YACCO2_MSG__::%i::%s stop parsing\n";

〈uns 23 〉;
This code is used in section 193.

201. Set parameter passed to pp as a message.

〈 set parameter passed to pp as a message 201 〉 ≡
pp parser .pp requesting parallelism = Caller pp ;
pp parser .from thread = Caller pp ;
pp parser .no competing pp ths = Caller pp~no requested ths to run ;

This code is used in section 193.

106 PARALLEL THREAD CODE: INJECTION CODE FOR EMITTED PP WPP CORE .H WLIBRARY §202

202. Create parser related variables and set them.

〈 create parser related variables and set them 202 〉 ≡
Parser pp parser (ssPARSE TABLE , pp thread entry ,Caller pp);

This code is used in section 193.

203. Procedure call: injection code for emitted pp wproc pp core .h.
This is the injector code for the manufactured called procedure instead of a thread. Even better is the check
as to calling it as a thread or as a procedure. This depends on the number of threads to launch. If there is
only one thread to run, this is called as a procedure instead of a thread. Do u see the friskiness in Yacco2?
Well no, as threads now dominate.

Added improvements:
A |t| contruct has been added to do chained procedure calls: the 1st thread’s returned T becomes the
chained T for the next (chained) procedure call. I overloaded this symbol to support 2 contexts: Olinker

2 and
chained parsing calls. Why the overload? I only have 8 symbols reserved for the LRk symbol class and one
context does not interfer with the other so i’m a bit lazy to possibly remove eof and double duty eog symbol
where the file processing container templates us eof . Some parsing adjustments must be added to link the
chained T with the chained procedure call as the the chained procedure must reference the shifted T of the
calling parser as its start T and not the current T of the calling parser. proc call funct has been added to
the State’s definition to support the chained call.

〈 wproc_pp_core.h 203 〉 ≡
〈 copyright notice 565 〉;
〈uns 23 〉;
〈 create procedure communication variables 209 〉;
〈 set procedure parameter passed to pp as a message 210 〉;
〈 establish procedure initial parser’s token setting 208 〉;
〈Trace procedure pp start info 638 〉;
〈 let’s procedure parallel parse. do u? 207 〉;
〈 clean up procedure parse stack but leave as ready to parse again 206 〉;
〈house clean procedure the parser and local communication variables 205 〉;

finished working :
〈winddown duties of procedure pp 204 〉;
〈Trace procedure pp finished working 645 〉;
return rslt ;

204. Winddown duties of procedure pp.

〈winddown duties of procedure pp 204 〉 ≡
proc parser~clear parse stack ();

This code is used in section 203.

205. House clean procedure the parser and local communication variables.

〈house clean procedure the parser and local communication variables 205 〉 ≡
proc parser~set use all shift on ();
proc parser~set abort parse (OFF);
proc parser~set stop parse (OFF);
proc parser~has questionable shift occured = OFF;

This code is used in section 203.

§206 WLIBRARY PROCEDURE CALL: INJECTION CODE FOR EMITTED PP WPROC PP CORE .H 107

206. Clean up procedure parse stack but leave as ready to parse again. The following points are done:
1) clean up trace activity: normally done when parse object destroyed
2) leave first record on stack for efficiency
3) make sure first stack symbol on stack checked for delete attribute

〈 clean up procedure parse stack but leave as ready to parse again 206 〉 ≡
proc parser~remove from stack (proc parser~parse stack .top sub − 1);

CAbs lr1 sym ∗sym = proc parser~ top stack record ()~symbol ;

if (sym 6= 0) {
if (sym~auto delete ≡ ON) {
〈Trace procedure pp’s last symbol on stack set as autodelete 641 〉;
delete sym ;

}
proc parser~ top stack record ()~set symbol (0); /∗ keeping a clean stack ∗/
}
proc parser~parse stack .lr stk init (∗proc parser~ fsm tbl ~start state);

This code is used in section 203.

207. Let’s procedure parallel parse. do u?.

〈 let’s procedure parallel parse. do u? 207 〉 ≡
THR result rslt = proc parser~parallel parse ();

This code is used in section 203.

208. Establish procedure parser’s initial token setting. When the thread is established and waiting to be
wakenned, the calling grammar sets the following variables within the critical region of the called thread:
from thread , pp requesting parallelism , and no competing pp ths .

Distinguish between chained procedure call and just a plain old thread call optimized by a procedure call.
The chained T is the Caller parser’s previous “go to” state. Its current token position is the tail character
of the stacked T as the caller parser’s current token context is the lookahead token and position returned
from the called thread.

〈 establish procedure initial parser’s token setting 208 〉 ≡
if (Caller pp~ top stack record ()~state ~proc call addr ≡ 0) { /∗ regular proc call ∗/

proc parser~override current token (∗Caller pp~current token (),Caller pp~current token pos);
proc parser~set start token (∗Caller pp~current token ());
proc parser~set start token pos (Caller pp~current token pos);
proc parser~ top stack record ()~set symbol (proc parser~current token ());
}
else { /∗ chained proc call ∗/

Cparse record ∗pr = /∗ curr stk pos is rel. 1 but access is rel to 0 UGH! ∗/
Caller pp~get stack record (Caller pp~current stack pos ()− 2);
int new pos = Caller pp~current token pos − 1;

proc parser~override current token (∗pr~symbol ,new pos);
proc parser~set start token (∗pr~symbol); /∗ chained T ∗/
proc parser~set start token pos (new pos);
}
proc parser~ token supplier = Caller pp~ token supplier ;
proc parser~ token producer = Caller pp~ token producer ;
proc parser~error queue = Caller pp~error queue ;
proc parser~recycle bin = Caller pp~recycle bin ;
proc parser~sym lookup functor = Caller pp~sym lookup functor ;

This code is used in section 203.

108 PROCEDURE CALL: INJECTION CODE FOR EMITTED PP WPROC PP CORE .H WLIBRARY §209

209. Create procedure communication variables.

〈 create procedure communication variables 209 〉 ≡
char ma [SMALL_BUFFER_4K];
const char ∗pp start = "YACCO2_MSG__::PROC::%i::%s start parsing\n";
const char ∗pp stop = "YACCO2_MSG__::PROC::%i::%s stop parsing\n";

〈uns 23 〉;
This code is used in section 203.

210. Set procedure parameter passed to pp as a message.

〈 set procedure parameter passed to pp as a message 210 〉 ≡
proc parser~pp requesting parallelism = Caller pp ;
proc parser~ launched as procedure = true ;
proc parser~ from thread = Caller pp ;
proc parser~no competing pp ths = Caller pp~no requested ths to run ;

This code is used in section 203.

§211 WLIBRARY DETERMINE THREADS TO LAUNCH BY THEIR FIRST SETS 109

211. Determine threads to launch by their first sets.
As an optimization before launching the thread, the thread’s first set is checked to see if the start token, or
the meta terminals |+| and |.| are present. Why are the meta terminals checked? |+| is the ‘all shift’
terminal used as a wild terminal facilty; it handles all terminals so even though the start token is not found in
the first set, the wild token faclity indicates its presence. I do not check to see if the finite state automaton’s
“all shift” facility is on. Its presence in the first set is sufficient: testing the grammar’s finite automaton to
see if this facility is turned off is enough paranoia.

What about |.| the invisible shift meta terminal? In this case it denotes an epsilon rule within the start
state configuration of the grammar so you better launch the thread as you do not know what’s happening
past that point when the token stream is being consumned. Yacco2’s linker goes through this transient chain
of first sets: internal discovery of what’s after the |.| be it internal or external first sets from called threads.
I should rely on the first set but as a precaution, I err to try it and if it doesn’t work so what. It’s a bit of
overhead but at least it’s better then not trying out the thread and having an irrate grammar writer to deal
with. This type of grammatical situation is very rare but still needs checking.

This is a major optimization! The “pp” grammar checks in its parallel table list for the eligible threads
that have the current terminal in their first set. If found, the parallel entry for those threads are added to the
potential thread list. Only then does the parallel parse launch the threads. By absorbing the optimization
into the “pp” thread it eliminates false thread starts. Now it’s zippy-do-da. Do u hear the sirens? Hey u
putting jell in y’re hair?: Not zippy or whatever adjective or adverb expressed.

Take ...

〈External rtns and variables 22 〉 +≡
extern void find threads by first set (yacco2 ::USINT Current T id ,

yacco2 ::yacco2 threads to run type &Th list ,yacco2 ::State s thread tbl &P tbl);

212. find threads by first set .
Work the global optimization of first sets and Terminals: See Yacco2’s Linker. State’s thread list against
the T’s thread list.

〈 accrue thread code 142 〉 +≡
extern void yacco2 ::find threads by first set (yacco2 ::USINT Current T id ,

yacco2 ::yacco2 threads to run type &Th list ,yacco2 ::State s thread tbl &P tbl)
{

yacco2 ::thread array record ∗thds = (yacco2 ::thread array record ∗) yacco2 ::THDS_STABLE__;

〈determine if there is a bit map gened for state. no do it 213 〉;
〈define and set work variables of Terminal having threads 216 〉;
〈define and set state’s dynamic work variables 214 〉;
〈 search T’s thd ids against State’s thd id list. fnd add to-run thread list 217 〉;
}

110 DETERMINE IF THERE IS A BIT MAP GENED FOR STATE WLIBRARY §213

213. Determine if there is a bit map gened for state. no do it.
As the grammar’s state configuration is gened locally and has no knowledge about the global number
of threads, its configuration has an indirection towards the thread entry having a pre-agreed to naming
convention of the letter “I” concatenated with the thread name without its namespace. For example ITH eol
would be the global thread entry object for the “eol” grammar.

To make the thread launching efficient, a thread id bit map is used and searched. Cuz the state has just a
list of Thread entry pointers, this must be converted into the global bit map configuration. This is done
per parallelism request. To offset each hit, the state’s configuration contains a pointer for this dynamicly
composed environment. As threads are more efficient than procedure calls, this is a one time inefficiency per
state being gened on the fly. Now why again are threads more efficient? Cuz of objects and their rights of
passage: Too much start-run-cleanup.

〈determine if there is a bit map gened for state. no do it 213 〉 ≡
static int no of gbl thds (0);
static int no bit mapped words (0);
static bool one time (false);

if (one time ≡ false) {
one time = true ;
no of gbl thds = thds~no entries ;

div t x = div (no of gbl thds , BITS_PER_WORD);

if (x.rem 6= 0) ++x.quot ;
no bit mapped words = x.quot ;
}
if (P tbl .thd id bit map ≡ 0) {
〈define and set work variables of state threading table 215 〉;
yacco2 ::ULINT(∗maps) = (yacco2 ::ULINT(∗))yacco2 ::BIT_MAPS_FOR_SALE__;
P tbl .thd id bit map = (yacco2 ::ULINT(∗)) & maps [yacco2 ::BIT_MAP_IDX__];
yacco2 ::BIT_MAP_IDX__ += no bit mapped words ;
if (yacco2 ::BIT_MAP_IDX__ > yacco2 ::TOTAL_NO_BIT_WORDS__) {

char a[BUFFER_SIZE];
yacco2 ::KCHARP msg = "Err no more bit maps: %i; adjust TOTAL_NO_BIT_WORDS in Link\

er";

sprintf (a,msg ,yacco2 ::BIT_MAP_IDX__);
Yacco2 faulty precondition (a, __FILE__, __LINE__);
exit (1);

}
div t dd ;

for (; S no thd entries > 0; −−S no thd entries , ++S cur thread entry ptr) {
yacco2 ::USINT S thd id = (∗S cur thread entry ptr)~ thd id ;

dd = div (S thd id , BITS_PER_WORD);

ULINT bit pos value = 1� dd .rem ;

P tbl .thd id bit map [dd .quot] |= bit pos value ;
}
}

This code is cited in section 722.

This code is used in section 212.

§214 WLIBRARY DETERMINE IF THERE IS A BIT MAP GENED FOR STATE 111

214. Define and set state’s dynamic work variables.

〈define and set state’s dynamic work variables 214 〉 ≡
yacco2 ::ULINT S cur thd id map = P tbl .thd id bit map [0];

This code is used in section 212.

215. Define and set work variables of state threading table.

〈define and set work variables of state threading table 215 〉 ≡
yacco2 ::Thread entry ∗∗S cur thread entry ptr = (yacco2 ::Thread entry ∗∗) &P tbl .first entry ;
yacco2 ::USINT S no thd entries = P tbl .no entries ;

This code is used in section 213.

216. Define and set work variables of Terminal having threads.

〈define and set work variables of Terminal having threads 216 〉 ≡
yacco2 ::thd ids having T ∗T cur thd id having T ptr ;
yacco2 ::ULINT T cur thd id map ;
T array having thd ids ∗t array having thd ids = (T array having thd ids ∗)

yacco2 ::T_ARRAY_HAVING_THD_IDS__;

T cur thd id having T ptr = t array having thd ids~first entry [Current T id];
T cur thd id map = T cur thd id having T ptr~first thd id [0];

This code is used in section 212.

217. Search T’s thread ids against the State’s thread entry list. fnd add to thread list. This is a linear
search of segments. It is worked like a merge between two variable length lists of points. Its cost is linear
bounded depending where the state’s thread ids are relative to T’s thread ids: before, within, or after. This
linear bound can be 1 to the number of items in the largest list.

Both meta terminals |+| and |.| first sets get generated in Yacco2’s linker. It is much more efficient to
go thru a State and T list once. The expense is to explode the |+| meta terminal into all the terminals.
This should be a rare occurance to have a thread’s first set contain this meta terminal.

Bit maps are used: lets hear it for compression and possibly speed. To extract more speed, the inline
assembler directive is used when developed on a Microsoft environment for the Intel 486 chipset. Without
it, the bit map strategy is slower than the linear list. For the moment 〈 extract thread ids from map and
add their thread entry to thread list 218 〉 is the portable piece of code until I improve the runtime strategy.

〈 search T’s thd ids against State’s thd id list. fnd add to-run thread list 217 〉 ≡
int base idx for thd id calc(0);
int cur bit word idx (0);

do {
yacco2 ::ULINT bit map = T cur thd id map & S cur thd id map ;

if (bit map 6= 0) {
base idx for thd id calc = cur bit word idx ∗ BITS_PER_WORD;
〈 extract thread ids from map and add their thread entry to thread list 218 〉;

}
++cur bit word idx ;
T cur thd id map = T cur thd id having T ptr~first thd id [cur bit word idx];
S cur thd id map = P tbl .thd id bit map [cur bit word idx];
} while (cur bit word idx < no bit mapped words);

This code is used in section 212.

112 DETERMINE IF THERE IS A BIT MAP GENED FOR STATE WLIBRARY §218

218. Extract thread ids from map and add their thread entry to thread list. Now the fun begins. What
threads are to be run. The bits must be tested individually and their bit position converted into the their
bit map vector co-ordinates: quotient * 32 + bit position.

For example, word 0, bit position 0 is thread id 0. Word 1 bit position 0 is thread id 32.

〈 extract thread ids from map and add their thread entry to thread list 218 〉 ≡
yacco2 ::ULINT bit (1);

for (int bit pos = 0; bit pos ≤ BITS_PER_WORD_REL_0; ++bit pos) {
if (bit map & bit) {
〈 add thread entry whose first set contains the current token 219 〉;

}
bit �= 1; /∗ next bit: rt to left order; insignificant to significant order ∗/
}

This code is cited in section 217.

This code is used in section 217.

219. Add thread entry whose first set contains the current token.

〈 add thread entry whose first set contains the current token 219 〉 ≡
yacco2 ::USINT thd id = base idx for thd id calc + bit pos ;

Th list .push back (thds~first entry [thd id]);

This code is used in section 218.

220. Ms Intel 486 Assembler extract thread ids from map and add their thread entry to thread list.

〈Ms Intel 486 assembler extract ids from map and add their thread entry to thread list 220 〉 ≡
yacco2 ::Thread entry ∗(∗pte)[] = &thds~first entry ;
yacco2 ::Thread entry ∗te ;

asm
{

pushad
mov ebx , pte ; /∗ addr of thread stable[] of thread entries ∗/
mov esi , bit map ; /∗ copy of bit map ∗/
mov edi , base idx for thd id calc ;

scn bits : bsf eax , esi ; /∗ aex: idx of bit, esi: copied map to search ∗/
jz end of scan ; /∗ map completely scanned ∗/
btr esi , eax ; /∗ clear the fnd bit in map esi: the bit map, eax: the fnd bit pos to turn off ∗/
add eax , edi ; /∗ calced thd id ∗/
mov edx , [ebx][eax ∗ 4]; /∗ fetch addr of thread entry ∗/
mov te , edx ; /∗ store the thread entry address ∗/
}
Th list .push back (te);

asm
{

jmpscn bits ; /∗ go scan more bits ∗/
}

end of scan :
asm
{

popad ; /∗ clean up the dodos ∗/
}

§221 WLIBRARY PARSER DEFINITIONS — PUSHDOWN AUTOMATON 113

221. Parser Definitions — Pushdown Automaton. Just what you’ve been taught at university
with its associated components:

parse stack
finite automaton tables

It supports 2 parsing paradigms: hohum and parallel.
The extras added to the pushdown automaton are the abort and stop parsing instructions, and the turning

on and off of the wild shift facility. All 3 of these activities are controlled by the grammar writer’s syntax
directed code. They all get reset back to their initial settings when the thread completes parsing.

The abort parse is an abrupt way of killing the parse. It justs stops it. No result returned to the calling
grammar. The stop parse is more refined in that one normally adds a terminal to the accept queue of the
calling grammar before shutting down. If used, the all shift facilty needs to be turned off within some running
context or else the terminal stream being parsed will overrun. This is protected against in the PDA but...

222. The parser structure.

〈Structure defs 18 〉 +≡
struct Parser { enum parse result {

erred , accepted , reduced , paralleled ,no thds to run
};
〈parser’s internal variables 223 〉Parser(yacco2 ::CAbs fsm &Fsm tbl
,yacco2 ::token container type ∗Token supplier
,yacco2 ::token container type ∗Token producer
,yacco2 ::UINT Token supplier key pos = Token start pos
,yacco2 ::token container type ∗Error queue = 0
,yacco2 ::token container type ∗Recycle bin = 0
,yacco2 :: tble lkup type ∗ Sym lookup functor = 0
,bool Use all shift = ON);
Parser (yacco2 ::CAbs fsm &Fsm tbl , yacco2 ::Thread entry &Thread entry , yacco2 ::Parser

∗Calling parser) ; /∗ parallel parser ∗/
Parser(yacco2 ::CAbs fsm &Fsm tbl ,yacco2 ::Parser ∗Calling parser);
/∗ parallel parser: procedure called ∗/

∼Parser();

〈PDA’s defs 226 〉〈Parser’s containers defs 227 〉〈Parser’s token defs 229 〉〈Parse’s stack
defs 228 〉〈Parse’s all shift, stop, and abort defs 225 〉

yacco2 ::CAbs fsm ∗fsm tbl ();
void fsm tbl (yacco2 ::CAbs fsm ∗Fsm tbl);

yacco2 :: tble lkup type ∗ sym lookup functor ();

Parser ::parse result parallel parse successful ();
Parser ::parse result parallel parse unsuccessful ();
Parser ::parse result proc call parse successful ();
Parser ::parse result proc call parse unsuccessful ();
bool spawn thread manually (yacco2 ::USINT Thread id);

〈Parallel parsing support definitions 224 〉} ;

114 PARSER’S INTERNAL VARIABLES WLIBRARY §223

223. Parser’s internal variables.

〈parser’s internal variables 223 〉 ≡
yacco2 ::CAbs fsm ∗fsm tbl ;
yacco2 ::KCHARP thread name ;
yacco2 ::Thread entry ∗thread entry ;
yacco2 ::token container type ∗token supplier ;
yacco2 ::token container type ∗token producer ;
yacco2 ::token container type ∗recycle bin ;
yacco2 ::token container type ∗error queue ;
yacco2 :: lr stk parse stack ;
yacco2 ::CAbs lr1 sym ∗current token ;
yacco2 ::UINT current token pos ;
yacco2 ::CAbs lr1 sym ∗start token ;
yacco2 ::UINT start token pos ;

yacco2 :: tble lkup type ∗ sym lookup functor ;

bool abort parse ;
bool stop parse ;
bool use all shift ;
bool has questionable shift occured ;
yacco2 ::Parser ∗from thread ;
yacco2 ::THREAD NO thread no ;
yacco2 ::COND VAR cv ;

yacco2 ::MUTEXmu ;

int cv cond ;
yacco2 ::worker thread blk th blk ;

yacco2 ::pp accept queue typepp accept queue ;

int pp accept queue idx ;
yacco2 ::INT th active cnt ;
yacco2 ::INT th accepting cnt ;
yacco2 ::Parser ∗pp requesting parallelism ;
yacco2 ::INT msg id ;
yacco2 ::Caccept parse ∗arbitrated token ;
yacco2 ::Caccept parse pp rsvp ;
int no competing pp ths ;
int no requested ths to run ;
yacco2 ::yacco2 threads to run type th lst ;
bool launched as procedure ;
USINT supplier r w cnt ;

This code is used in section 222.

§224 WLIBRARY PARALLEL PARSING SUPPORT DEFINITIONS 115

224. Parallel parsing support definitions.

〈Parallel parsing support definitions 224 〉 ≡
yacco2 ::Parser ∗from thread ();
yacco2 ::KCHARP thread name ();
yacco2 ::Thread entry ∗thread entry ();
void post event to requesting grammar
(yacco2 ::Parser &To thread
,yacco2 ::INT Message id
,yacco2 ::Parser &From thread);
void wait for event ();
bool start threads (); /∗ how thread or procedure ∗/
THR result start procedure call (yacco2 ::State &S);
void put T into accept queue (yacco2 ::Caccept parse &Parm);
void clean up();
void call arbitrator (yacco2 ::Type pp fnct ptr The judge);
bool have all threads reported back ();
void abort accept queue irregularites (yacco2 ::Caccept parse &Calling parm);
void abort no selected accept parse in arbitrator ();

This code is used in section 222.

225. Parse’s all shift, stop, and abort defs.

〈Parse’s all shift, stop, and abort defs 225 〉 ≡
void set use all shift on ();
void set use all shift off ();
bool use all shift ();
bool abort parse ();
void set abort parse (bool Abort);
bool stop parse ();
void set stop parse (bool Stop);

This code is used in section 222.

116 PDA’S DEFS WLIBRARY §226

226. PDA’s defs.

〈PDA’s defs 226 〉 ≡
parse result parse ();
void shift (yacco2 ::Shift entry &SE);
void invisible shift (yacco2 ::Shift entry &SE);
void questionable shift (yacco2 ::Shift entry &SE);
void all shift (yacco2 ::Shift entry &SE);
void parallel shift (yacco2 ::CAbs lr1 sym &Accept terminal);
void proc call shift (yacco2 ::CAbs lr1 sym &Accept terminal);
parse result reduce (yacco2 ::Reduce entry &RE);
parse result parallel parse ();
parse result proc call parse ();
parse result start parallel parsing (yacco2 ::State &S);
THR result chained proc call parsing (yacco2 ::State &S);
parse result start manually parallel parsing (yacco2 ::USINT Thread id);
yacco2 ::Shift entry ∗find cur T shift entry ();
yacco2 ::Shift entry ∗find R or paralleled T shift entry (yacco2 ::USINT Enum id);
yacco2 ::Reduce entry ∗find questionable sym in reduce lookahead ();
yacco2 ::Reduce entry ∗find reduce entry ();
yacco2 ::Reduce entry ∗find parallel reduce entry ();
yacco2 ::Reduce entry ∗find proc call reduce entry ();

This code is used in section 222.

227. Parser’s containers defs.

〈Parser’s containers defs 227 〉 ≡
yacco2 ::token container type ∗token supplier ();
void set token supplier (yacco2 ::token container type &Token supplier);
yacco2 ::token container type ∗token producer ();
void set token producer (yacco2 ::token container type &Token producer);
yacco2 ::token container type ∗recycle bin ();
void set recycle bin (yacco2 ::token container type &Recycle bin);
void set error queue (yacco2 ::token container type &Error queue);
yacco2 ::token container type ∗error queue ();
void add token to supplier (yacco2 ::CAbs lr1 sym &Token);
void add token to producer (yacco2 ::CAbs lr1 sym &Token);
void add token to recycle bin (yacco2 ::CAbs lr1 sym &Token);
void add token to error queue (yacco2 ::CAbs lr1 sym &Token);

This code is used in section 222.

§228 WLIBRARY PARSE’S STACK DEFS 117

228. Parse’s stack defs.

〈Parse’s stack defs 228 〉 ≡
void cleanup stack due to abort ();
yacco2 :: lr stk ∗parse stack ();
yacco2 ::INT no items on stack ();
yacco2 ::Cparse record ∗get stack record (yacco2 ::INT Pos); /∗ rel 0 ∗/
yacco2 ::Cparse record ∗top stack record ();
void remove from stack (yacco2 ::INT No to remove);
void add to stack (yacco2 ::State &State no);
yacco2 ::INT current stack pos ();
void clear parse stack ();
yacco2 ::CAbs lr1 sym ∗get spec stack token (yacco2 ::UINT Pos); /∗ rel 0 ∗/

This code is used in section 222.

229. Parser’s token defs.

〈Parser’s token defs 229 〉 ≡
void get shift s next token ();
yacco2 ::CAbs lr1 sym ∗get next token ();
yacco2 ::CAbs lr1 sym ∗get spec token (yacco2 ::UINT Pos);
yacco2 ::CAbs lr1 sym ∗current token ();
yacco2 ::CAbs lr1 sym ∗start token ();
void set start token (yacco2 ::CAbs lr1 sym &Start tok);
yacco2 ::UINT start token pos ();
void set start token pos (yacco2 ::UINT Pos);
void reset current token (yacco2 ::UINT Pos);
void override current token (yacco2 ::CAbs lr1 sym &Current token ,yacco2 ::UINT Pos);
void override current token pos (yacco2 ::UINT Pos);
yacco2 ::UINT current token pos ();

This code is cited in section 708.

This code is used in section 222.

118 PARSER REGULAR PARSER WLIBRARY §230

230. Parser Regular parser.
Runs a monolithic grammar: not a threaded grammar. i/o token containers are required whereas the
threaded parser receives this information via a parameter at first thread startup or as a message within the
calling parser. Not much is required in start up but to establish the runtime parse stack and fetch the first
terminal for processing if it is available. How can it not be available? Well I support the empty language:
moot but hugging theory.

Notice that the items imported are references instead of pointers. I’m trying it again. I hope that it works
within the threaded environment. It didn’t with cica Microsoft Visual studio 6 C++ compiler. Pointers were
consistent.

cv (0) and mu (0) are removed from the initializer list due to linux honking.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::Parser ::Parser
(yacco2 ::CAbs fsm &Fsm tbl
,yacco2 ::token container type ∗Token supplier
,yacco2 ::token container type ∗Token producer
,yacco2 ::UINT Token supplier key pos
,yacco2 ::token container type ∗Error queue
,yacco2 ::token container type ∗Recycle bin
,yacco2 :: tble lkup type ∗ Sym lookup functor
,bool Use all shift)
: fsm tbl (&Fsm tbl)
, thread name (Fsm tbl .id)
, thread entry (0)
, token supplier (Token supplier)
, token producer (Token producer)
, error queue (Error queue)
, recycle bin (Recycle bin)
, current token (0)
, current token pos (Token supplier key pos)
, start token (0)
, start token pos (Token supplier key pos)
, sym lookup functor (Sym lookup functor)
, abort parse (OFF)
, stop parse (OFF)
, use all shift (Use all shift)
, has questionable shift occured (OFF)
, from thread (0)
, thread no (THREAD_SELF())
, cv cond (WAIT_FOR_EVENT)
, th blk ()
, pp accept queue idx (0)
, pp accept queue ()
, th active cnt (0)
, th accepting cnt (0)
, pp requesting parallelism (0)
, msg id (0)
, arbitrated token (0)
, no competing pp ths (0)
, no requested ths to run (0)
, th lst ()
, launched as procedure (false)
, supplier r w cnt (1)

§230 WLIBRARY PARSER REGULAR PARSER 119

{
CREATE_COND_VAR(cv);
CREATE_MUTEX(mu);
LOCK_MUTEX_OF_CALLED_PARSER(mu , ∗this, " of self");
parse stack .lr stk init (∗Fsm tbl .start state);
for (int x = 0; x < pp accept queue size ; ++x) {

pp accept queue [x].initialize it ();
}
if (token supplier 6= 0) {

supplier r w cnt = token supplier ~r w cnt ;
}
fsm tbl ~parser (∗this);
Fsm tbl .parser (∗this);
if (Token supplier 6= 0) {

current token = get spec token (current token pos);
}
else {

current token = yacco2 ::PTR LR1 eog ;
}
start token = current token ;
〈 check for empty language. yes, just exit 231 〉;
parse stack .lr stk init (∗fsm tbl ~start state);
if (YACCO2_T__ 6= 0) {

if (current token ≡ 0) return; /∗ no tokens ∗/
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_T__::" � thread no � "::" � thread name () � "::" �

" enum: " � current token ~enumerated id � ’ ’ � ’"’ � current token ~ id � ’"’ �
" pos: " � current token pos � FILE_LINE � std ::endl ;

yacco2 :: lrclog � "\t\t::GPS FILE: ";
EXTERNAL GPSing (current token)yacco2 :: lrclog � " GPS LINE: " �

current token ~ tok co ords .line no � " GPS CHR POS: " �
current token ~ tok co ords .pos in line � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}
}

231. Check for empty language.

〈 check for empty language. yes, just exit 231 〉 ≡
if (current token ≡ 0) return;

This code is used in section 230.

120 PARSER PARALLEL PARSER WLIBRARY §232

232. Parser Parallel parser.
The parse containers are all global. One can set up some of these containers for local requirements within
the threaded grammar. Threaded grammar use this constructor. Elsewhere the threaded code is developed
exposing its deployment. The calling grammar’s parse object provides all the gory details to parse with its
current token, token position, and token dispensor.

At initial startup, the token co-ordinates — dispensor, token, and position set — will be set within the
Parser. The parse thread awakened by a message will have in its critical region the requestor’s parallel
parser address. Within the request for work loop, the messaged parser will extract from the calling parser
its token assemble — dispensor, token, and position set

The error, recycle containers are optional. All these containers are taken from the monolithic parser that
started the rave. Use of recursion to create a new i/o token containers is permissible. It’s up to the designer.
Lets hear it for openness! Don’t be too cheery boy due to the following: cv (0) and mu (0) are removed
from the initializer list due to linux honking.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::Parser ::Parser (yacco2 ::CAbs fsm &Fsm tbl
, yacco2 ::Thread entry &Thread entry , yacco2 ::Parser ∗Calling parser)

: fsm tbl (&Fsm tbl)
, thread name (Thread entry.thread fnct name)
, thread entry (&Thread entry)
, token supplier (0)
, token producer (0)
, current token (0)
, current token pos (0)
, start token (0)
, start token pos (0)
, recycle bin (0)
, sym lookup functor (0)
, abort parse (OFF)
, stop parse (OFF)
, use all shift (YES)
, has questionable shift occured (OFF)
, from thread (0)
, thread no (THREAD_SELF())
, cv cond (EVENT_RECEIVED)
, th blk (this,Calling parser)
, pp accept queue ()
, pp accept queue idx (0)
, th active cnt (0)
, th accepting cnt (0)
, pp requesting parallelism (0)
,msg id (0)
, arbitrated token (0)
,no competing pp ths (0)
,no requested ths to run (0)
, th lst ()
, launched as procedure (false)
, supplier r w cnt (0)
{
CREATE_COND_VAR(cv);
CREATE_MUTEX(mu);
LOCK_MUTEX_OF_CALLED_PARSER(mu , ∗this, " of self");
fsm tbl ~parser (∗this);

§232 WLIBRARY PARSER PARALLEL PARSER 121

Fsm tbl .parser (∗this);
parse stack .lr stk init (∗fsm tbl ~start state); /∗ no token yet ∗/
for (int x = 0; x < pp accept queue size ; ++x) {

pp accept queue [x].initialize it ();
}

}

122 PARSER PROCEDURE CALL: PARALLEL PARSER WLIBRARY §233

233. Parser Procedure call: Parallel parser.
Same as the parallel thread parser except for the registry of the thread into the Parallel thread table and
setting how its called.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::Parser ::Parser(yacco2 ::CAbs fsm &Fsm tbl
,yacco2 ::Parser ∗Calling parser)
: fsm tbl (&Fsm tbl)
, thread name (Fsm tbl .id)
, thread entry (0)
, token supplier (0)
, token producer (0)
, current token (0)
, current token pos (0)
, start token (0)
, start token pos (0)
, recycle bin (0)
, sym lookup functor (0)
, abort parse (OFF)
, stop parse (OFF)
, use all shift (YES)
, has questionable shift occured (OFF)
, from thread (0)
, thread no (THREAD_SELF())
, cv cond (EVENT_RECEIVED)
, th blk ()
, pp accept queue ()
, pp accept queue idx (0)
, th active cnt (0)
, th accepting cnt (0)
, pp requesting parallelism (0)
, msg id (0)
, arbitrated token (0)
, no competing pp ths (0)
, no requested ths to run (0)
, th lst ()
, launched as procedure (true)
, supplier r w cnt (0)
{
CREATE_COND_VAR(cv);
CREATE_MUTEX(mu);
LOCK_MUTEX_OF_CALLED_PARSER(mu , ∗this, " of self");
fsm tbl ~parser (∗this);
Fsm tbl .parser (∗this);
parse stack .lr stk init (∗fsm tbl ~start state); /∗ no token yet ∗/
for (int x = 0; x < pp accept queue size ; ++x) {

pp accept queue [x].initialize it ();
}
}

§234 WLIBRARY ∼PARSER 123

234. ∼Parser.
General house keeping by popping the stack. Popping allows the firing off of the start rule and automatic
garbage collection.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::Parser ::∼Parser()
{

clear parse stack ();
DESTROY_COND_VAR(cv);
DESTROY_MUTEX(mu);
}

124 PARSER — PDA’S IMPLEMENTATION WLIBRARY §235

235. Parser — PDA’s implementation.

236. Shift.

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::shift (yacco2 ::Shift entry &SE)
{
〈Reserve and get current stack record 352 〉;
〈 set parse stack symbol to current token 242 〉;
yacco2 ::State ∗Goto state = SE.goto ;

〈 add to stack 349 〉;
〈Trace TH the parse stack configuration 581 〉;
get next token ();
}

237. Find shift entry.

〈find shift entry 237 〉 ≡
yacco2 ::Shift entry ∗se (0);

if (pr~state ~shift tbl ptr 6= 0) se = find cur T shift entry ();

This code is used in sections 251 and 271.

238. Invisible shift. Its symbol |.|.

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser :: invisible shift (yacco2 ::Shift entry &SE)
{
〈Reserve and get current stack record 352 〉;
〈 set parse stack symbol to invisible shift operator 239 〉;
yacco2 ::State ∗Goto state = SE.goto ;

〈 add to stack 349 〉;
〈Trace TH the parse stack configuration 581 〉;
}

239. Set parse stack symbol to invisible shift operator.

〈 set parse stack symbol to invisible shift operator 239 〉 ≡
pr~symbol = NS yacco2 k symbols ::PTR LR1 invisible shift operator ;

This code is used in section 238.

240. Questionable shift. Its symbol is |?|. Note, as it is used for error situations though it acts like
a wild token as in |+|, it does not advance to the next token in the parse stream! It must be explicitly done
by the grammar writer. I haven’t head wrestled “error processing / correction” yet.

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::questionable shift (yacco2 ::Shift entry &SE)
{

has questionable shift occured = ON;
〈Reserve and get current stack record 352 〉;
〈 set parse stack symbol to current token 242 〉;
yacco2 ::State ∗Goto state = SE.goto ;

〈 add to stack 349 〉;
〈Trace TH the parse stack configuration 581 〉;
}

§241 WLIBRARY ALL SHIFT 125

241. All shift.
The current terminal and not |+| is placed onto the parse stack. The fsm’s ‘go to’ state is the vectored |+|

symbol.

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::all shift (yacco2 ::Shift entry &SE)
{
〈Reserve and get current stack record 352 〉;
〈 set parse stack symbol to current token 242 〉;
yacco2 ::State ∗Goto state = SE.goto ;

〈 add to stack 349 〉;
〈Trace TH the parse stack configuration 581 〉;
get next token ();
}

242. Set parse stack symbol to current token.

〈 set parse stack symbol to current token 242 〉 ≡
pr~symbol = current token ; /∗ state’s shift symbol ∗/

This code is used in sections 236, 240, and 241.

243. Reduce. The reduce.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::Parser ::parse result yacco2 ::Parser ::reduce (yacco2 ::Reduce entry &RE)
{
〈 execute subrule with it directives and create rule 244 〉;
〈pop rule’s rhs subrule from parse stack 246 〉;
〈put rule onto parse stack 247 〉;
〈find rule’s shift entry in fsm 248 〉;
〈Validate if rule shift symbol in fsm table 559 〉;
〈put goto state onto parse stack, and return accepted or reduced result 245 〉;
}

244. Execute the subrule, its directives, and create the rule.
Inside the rule’s constructor is the lhs − constructor directive code. The top of the stack address is passed
to reduce rhs of rule to efficiently calculate the subrule’s parameters as its just an array of Cparse record.
This is a tricky-dicky, now no politics, cuz I’m really fetching the first component of the stack record which
is its grammatical symbol. See notes on the real story. Added a rule recycling program to speed up parser
due to new hit on birth-run-delete cycle. See Recycled rule struct discussion.

〈 execute subrule with it directives and create rule 244 〉 ≡
Rule s reuse entry ∗rule rec1 (0);
Rule s reuse entry ∗∗rule rec = &rule rec1 ;

fsm tbl ~reduce rhs of rule (RE.rhs id , rule rec);

This code is used in section 243.

126 EXECUTE THE SUBRULE, ITS DIRECTIVES, AND CREATE THE RULE WLIBRARY §245

245.

〈put goto state onto parse stack, and return accepted or reduced result 245 〉 ≡
yacco2 ::State ∗Goto state = se~goto ;

〈 add to stack 349 〉;
〈Trace TH the parse stack configuration 581 〉;
if (se~goto ~state no ≡ 1)

return Parser ::accepted ;
return Parser ::reduced ;

This code is used in section 243.

246.

〈pop rule’s rhs subrule from parse stack 246 〉 ≡
remove from stack ((∗rule rec)~rule ~rule info .rhs no of parms);

This code is used in section 243.

247.

〈put rule onto parse stack 247 〉 ≡
parse stack .top ~set symbol ((∗rule rec)~rule); /∗ stack state’s rule shift symbol ∗/
parse stack .top ~set rule s reuse entry (∗rule rec);

This code is used in section 243.

248.

〈find rule’s shift entry in fsm 248 〉 ≡
Shift entry ∗se (0);

if (parse stack .top ~state ~shift tbl ptr 6= 0)
se = find R or paralleled T shift entry ((∗rule rec)~rule ~enumerated id);

This code is used in section 243.

§249 WLIBRARY REGULAR PARSE 127

249. Regular parse.
This parse comes from a non-threaded grammar executed from a process. One can use recursion to start
many parse streams. In fact, processing of include files is done this way with an appropriate nested file count
limit to prevent overruns.

Added failed call to monolithic grammar as it becomes a global way to handle an aborted parse. For
example, a general error message could be put into the error queue by the monolithic grammar. This
becomes a cheap way to deal with invalid token sequences. At least it pin points where it occured by a
general error message. The proper refinement is to go to each grammar and program the catching of the
error by use of the |.| terminal or the |+| terminal within the subrule. How refined do u want to go or be
or not to go? that is the ?

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::Parser ::parse result yacco2 ::Parser ::parse ()
{
〈 check for empty language. yes, exit as accepted 250 〉;
〈fire off fsm’s op directive 252 〉;
parse result result ;

read token stream :
{
〈process tokens 251 〉;

}
parse successful :

return Parser ::accepted ;
parse unsuccessful :

fsm tbl ~ failed (); /∗ ?sdc from grammar writer for the error queue ∗/
〈Trace TH straight parse error 590 〉;
cleanup stack due to abort ();
return Parser ::erred ;
}

250. Check for empty language.

〈 check for empty language. yes, exit as accepted 250 〉 ≡
if (current token ≡ 0) return Parser ::accepted ;

This code is used in section 249.

128 REGULAR PARSE WLIBRARY §251

251. Process tokens.

〈process tokens 251 〉 ≡
〈Reserve and get current stack record 352 〉;
if (stop parse ≡ ON) {

cleanup stack due to abort (); /∗ quasi controlled abort ∗/
goto parse successful ;
}
if (abort parse ≡ ON) goto parse unsuccessful ;

State ∗cur state = pr~state ;

〈dispatch to parallel, or proc call, or straight parsing 254 〉;
parallel parsing :
〈 try parallel parse. no threads-to-run go straight 255 〉;
〈 is parallel parsing successful? If so reduce the |||phrase 256 〉;
〈parallel parsing unsuccessful. So, set up + go to straight parsing 258 〉;

proc call parsing :
{
〈 try proc call parse. no threads-to-run go straight 259 〉;
〈 is proc call parsing successful? If so reduce the |t|phrase 260 〉;
〈proc call parsing unsuccessful. So, set up + go to straight parsing 262 〉;
}

straight parsing :
〈find shift entry 237 〉;
〈 try various shift types. if executed go to process next token in token stream 253 〉;
〈find reduce entry 263 〉;
〈 try reduce 264 〉;
goto parse unsuccessful ;

This code is used in section 249.

252. Fire off fsm’s op directive.
This is the fsm’s directive that gets run when the parser starts up. As a parallel parser is within a run loop,
each time it starts running this directive gets called. It is a directive that allows the grammar writer to
preset or pre-evaluate approprite events. For example, it is used in the Pascal translator to pre-evaluate by
symbol table lookup the passed identifier token. If it is morphed, the new token is then used in the parse.
Good stuff.

〈fire off fsm’s op directive 252 〉 ≡
fsm tbl ~op();

This code is used in sections 249 and 269.

§253 WLIBRARY REGULAR PARSE 129

253. Try various shift types.
The parser favours a shift before a reduce operation. There are 4 types of shifts. The regular shift found in
the token stream and 3 meta terminal shifts — |?| questionable, |.| invisible, and |+| all of which are not
found in the token stream. The rank of shifts is conditionally checked for their presence within the current
parse state with their test order being regular, followed by questionable, invisible, and all shift. The all shift
is controlled by the parser’s ‘all shift’ facility. If this facility was not present, the parse would always overrun
the token stream. The turning on and off is controlled by the syntax directed code of the parsing grammar.
Comment:
See bug’s comment.

〈 try various shift types. if executed go to process next token in token stream 253 〉 ≡
if (se 6= 0) {

shift (∗se);
goto read token stream ;
}
if (cur state~questionable shift 6= 0) {

/∗ guard against perpetual machine using |?|and last token “eog” ∗/
if (has questionable shift occured ≡ ON) { /∗ previous state action ∗/
〈 Invalid |?|instead of |+|use 543 〉;

}
questionable shift (∗cur state~questionable shift);
goto read token stream ;
}
if (cur state~ inv shift) {

invisible shift (∗cur state~ inv shift);
goto read token stream ;
}
if (use all shift ≡ ON) {

if (cur state~all shift ≡ 0) { }
else { /∗ guard against overrun of token dispensor using |+| ∗/

if (current token ~enumerated id ≡ LR1 Eog)
{

use all shift = OFF; /∗ turn off the all shift operator ∗/
all shift (∗cur state~all shift);

}
else {

all shift (∗cur state~all shift);
goto read token stream ;

}
}
}

This code is cited in section 738.

This code is used in sections 251 and 271.

254. Dispatch to parallel, proc call, or straight parsing.

〈dispatch to parallel, or proc call, or straight parsing 254 〉 ≡
〈Validate any token for parsing 544 〉;
if (cur state~parallel shift 6= 0) goto parallel parsing ;
if (cur state~proc call shift 6= 0) goto proc call parsing ;
else goto straight parsing ;

This code is used in sections 251 and 271.

130 REGULAR PARSE WLIBRARY §255

255. Try parallel parse.
It checks whether there are threads to be run by their first set. If not, the no thds to run result is returned
so go do some straight parsing.

〈 try parallel parse. no threads-to-run go straight 255 〉 ≡
result = start parallel parsing (∗cur state);
if (result ≡ no thds to run) goto straight parsing ;

This code is used in sections 251 and 271.

256. Is parallel parsing successful?. If so reduce the |||phrase. The wrinkle is whether a chained
procedure call is present. This extends the subrule expression until after the chained procedure call and then
it is reduced.

〈 is parallel parsing successful? If so reduce the |||phrase 256 〉 ≡
if (result ≡ paralleled) {

if (parse stack .top ~state ~proc call shift 6= 0) {
cur state = parse stack .top ~state ;
goto proc call parsing ; /∗ chained proc call so reduce later ∗/

}
〈find parallel reduce entry 257 〉;
〈Validate reduce entry 560 〉;
〈Get current stack record 353 〉;
〈 try reduce 264 〉;
}

This code is used in sections 251 and 271.

257. find parallel reduce entry.

〈find parallel reduce entry 257 〉 ≡
Reduce entry ∗re (0);

if (parse stack .top ~state ~reduce tbl ptr 6= 0) re = find parallel reduce entry ();

This code is used in section 256.

258. Parallel parsing unsuccessful.
So, set up + go to straight parsing.

〈parallel parsing unsuccessful. So, set up + go to straight parsing 258 〉 ≡
〈Trace TH failed parallel try straight parse 588 〉;
〈Get current stack record 353 〉;
goto straight parsing ;

This code is used in sections 251 and 271.

§259 WLIBRARY REGULAR PARSE 131

259. Try proc call parse.
It checks whether there is a proc call entry in state. If not, the no thds to run result is returned so go do
some straight parsing.

〈 try proc call parse. no threads-to-run go straight 259 〉 ≡
THR result rslt = chained proc call parsing (∗cur state); /∗ result = rslt ; ∗/
switch (rslt) {
case erred : goto straight parsing ;
case no thds to run : goto straight parsing ;
default:
{

result = paralleled ;
break;

}
}

This code is used in sections 251 and 271.

260. Is proc call parsing successful?. If so reduce the |t|phrase.

〈 is proc call parsing successful? If so reduce the |t|phrase 260 〉 ≡
if (result ≡ paralleled) {
〈find proc call reduce entry 261 〉;
〈Validate reduce entry 560 〉;
〈Get current stack record 353 〉;
〈 try reduce 264 〉;
}

This code is used in sections 251 and 271.

261. find proc call reduce entry.

〈find proc call reduce entry 261 〉 ≡
Reduce entry ∗re (0);

if (parse stack .top ~state ~reduce tbl ptr 6= 0) re = find proc call reduce entry ();

This code is used in section 260.

262. Proc call parsing unsuccessful.
So, set up + go to straight parsing.

〈proc call parsing unsuccessful. So, set up + go to straight parsing 262 〉 ≡
〈Trace TH failed proc call try straight parse 589 〉;
〈Get current stack record 353 〉;
goto straight parsing ;

This code is used in sections 251 and 271.

263. find reduce entry.

〈find reduce entry 263 〉 ≡
Reduce entry ∗re (0);

if (parse stack .top ~state ~reduce tbl ptr 6= 0) re = find reduce entry ();

This code is used in sections 251 and 271.

132 REGULAR PARSE WLIBRARY §264

264. Try reduce.
The stop parse is checked after the reduce syntax directed code has been run. Provides a little more flexibility
to the grammar writer’s actions.

〈 try reduce 264 〉 ≡
if (re 6= 0) {

result = reduce (∗re);
if (stop parse ≡ ON) {

cleanup stack due to abort (); /∗ quasi controlled abort ∗/
goto parse successful ;

}
if (abort parse ≡ ON) goto parse unsuccessful ;
if (result ≡ Parser ::reduced) goto read token stream ;
if (result ≡ Parser ::accepted) goto parse successful ;
}

This code is cited in section 719.

This code is used in sections 251, 256, 260, and 271.

265. Parallel shift.
A parallel shift has the following stack configuration:

|||, followed by |+|, |?|, or newly minted terminal
It places the parallel terminal onto the parse stack even though it is not part of the input token stream. I
felt that it should faithfully follow the grammatical expression.

This is the tailend of the parallel parse that shifts the arbitrated symbol onto the parse stack. Please note
the conditional 2nd attempt on the |+|. If it is present in the current state configuration, then the shift is
successful. The only subtlety is in the arbitration code. What happens if there are many returned terminals?
There has to be a choice made or the first item in the accept queue gets returned. Should this be a run-
time-error if the arbitration code does not select the many to one situation? As parallelism is quasi-random
in execution order so are the terminal placements in the accept queue. Where a single processor seems to
work, a multi-processor can lead to different results per execution. The grammar should honk with a mildly
acidic warning. It does now — see note.

Note: Support for |?|— questionable shift operator.
This is like the meta |+|terminal but it allows the grammar write to state that the returned T is an error.
In the pecking order of shift presence, the returned T is tested first for its presence within the state. If it is
not found then the meta shift terminals are tested in the following order: |?|, |+|.

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::parallel shift (yacco2 ::CAbs lr1 sym &Accept terminal)
{
〈Reserve and get current stack record 352 〉;
Shift entry ∗se (0);

if (pr~state ~shift tbl ptr 6= 0)
se = find R or paralleled T shift entry (Accept terminal .enumerated id);

if (se 6= 0) goto set stack to symbol being shifted ;
se = pr~state ~questionable shift ;
if (se 6= 0) goto set stack to symbol being shifted ;
se = pr~state ~all shift ;
if (se 6= 0) goto set stack to symbol being shifted ;
〈Error shift symbol not fnd in fsm table 558 〉;

set stack to symbol being shifted :
〈 shift parallel’s returned symbol and goto state 266 〉;
}

§266 WLIBRARY PARALLEL SHIFT 133

266. Shift parallel’s returned symbol and goto state.

〈 shift parallel’s returned symbol and goto state 266 〉 ≡
pr~symbol = &Accept terminal ; /∗ state’s |||shift symbol ∗/
yacco2 ::State ∗Goto state = se~goto ;

〈 add to stack 349 〉; /∗ ¡Trace TH the parse stack configuration¿; ∗/
This code is used in section 265.

267. Proc call shift.
A proc call shift has the following stack configuration:

|t|, |+|or |?|or newly minted terminal
It places the proc call terminal onto the parse stack even though it is not part of the input token stream. I
felt that it should faithfully follow the grammatical expression.

This is the tailend of the proc call parse that shifts the arbitrated symbol onto the parse stack. Please note
the conditional 2nd attempt on the |+|or |?|to catch the eye as an error. If it is present in the current state
configuration, then the shift is successful. The only subtlety is in the arbitration code. What happens if
there are many returned terminals? There has to be a choice made or the first item in the accept queue gets
returned. Should this be a run-time-error if the arbitration code does not select the many to one situation?
As parallelism is quasi-random in execution order so are the terminal placements in the accept queue. Where
a single processor seems to work, a multi-processor can lead to different results per execution. The grammar
should honk with a mildly acidic warning. It does now — see note.

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::proc call shift (yacco2 ::CAbs lr1 sym &Accept terminal)
{
〈Reserve and get current stack record 352 〉;
Shift entry ∗se (0);

if (pr~state ~shift tbl ptr 6= 0)
se = find R or paralleled T shift entry (Accept terminal .enumerated id);

if (se 6= 0) goto set stack to symbol being shifted ;
se = pr~state ~all shift ;
if (se 6= 0) goto set stack to symbol being shifted ;
se = pr~state ~questionable shift ;
if (se 6= 0) goto set stack to symbol being shifted ;
〈Error shift symbol not fnd in fsm table 558 〉;

set stack to symbol being shifted :
〈 shift proc call’s returned symbol and goto state 268 〉;
}

268. Shift proc call’s returned symbol and goto state.

〈 shift proc call’s returned symbol and goto state 268 〉 ≡
pr~symbol = &Accept terminal ; /∗ state’s |t|shift symbol ∗/
yacco2 ::State ∗Goto state = se~goto ;

〈 add to stack 349 〉; /∗ ¡Trace TH the parse stack configuration¿; ∗/
This code is used in section 267.

134 PARALLEL PARSE WLIBRARY §269

269. Parallel parse.
The control loop consuming the parallel tokens.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::Parser ::parse result yacco2 ::Parser ::parallel parse ()
{
〈fire off fsm’s op directive 252 〉;
parse result result ;

〈 check for empty language. yes unsuccessful parallel parse 270 〉;
read token stream :
{
〈process parallel tokens 271 〉;

}
parse successful :

return parallel parse successful ();
parse unsuccessful :

return parallel parse unsuccessful ();
}

270. Check for empty language. yes unsuccessful parallel parse.

〈 check for empty language. yes unsuccessful parallel parse 270 〉 ≡
if (current token ≡ 0) goto parse unsuccessful ;
goto read token stream ;

This code is used in section 269.

§271 WLIBRARY PARALLEL PARSE 135

271. Process parallel tokens.

〈process parallel tokens 271 〉 ≡
〈Reserve and get current stack record 352 〉;
if (stop parse ≡ ON) {

cleanup stack due to abort (); /∗ quasi controlled abort ∗/
goto parse successful ;
}
if (abort parse ≡ ON) goto parse unsuccessful ;

State ∗cur state = pr~state ;

〈dispatch to parallel, or proc call, or straight parsing 254 〉;
parallel parsing :
〈 try parallel parse. no threads-to-run go straight 255 〉;
〈 is parallel parsing successful? If so reduce the |||phrase 256 〉;
〈parallel parsing unsuccessful. So, set up + go to straight parsing 258 〉;

proc call parsing :
{
〈 try proc call parse. no threads-to-run go straight 259 〉;
〈 is proc call parsing successful? If so reduce the |t|phrase 260 〉;
〈proc call parsing unsuccessful. So, set up + go to straight parsing 262 〉;
}

straight parsing :
〈find shift entry 237 〉;
〈 try various shift types. if executed go to process next token in token stream 253 〉;
〈find reduce entry 263 〉;
〈 try reduce 264 〉;
goto parse unsuccessful ;

This code is used in section 269.

136 PARALLEL PARSE SUCCESSFUL WLIBRARY §272

272. Parallel parse successful.
Put the accept message into the requesting grammar’s accept queue. It checks whether it is the last active
thread stopping. If so, it wakes up the requesting grammar by an event.

Notice the 〈 set thread status if launched as a thread 273 〉 is placed in the following parallel parse
procedures: parallel parse successful and parallel parse unsuccessful . This is done to optimize the num-
ber of threads run instead of after the thread has cleanised itself from parsing in the thread loop. See
Parallel thread code loop. 〈 set thread status if launched as a thread 273 〉 was just after the 〈 let’s parallel
parse. do u? 198 〉. Here’s the take, when a event is sent to the requesting grammar, the thread library can
restart executing the calling grammar while in a single cpu environment the parallel thread is put on hold
to complete its duties some time later. Now the grammar requesting parallelism can continue its parse that
can again request parallelism that can contain the thread that is winding down. Due to the winding down
thread’s status being busy, another copy of the thread is created and run. A little softshoe please...

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::Parser ::parse result yacco2 ::Parser ::parallel parse successful ()
{
〈Trace TH current token, and accepted terminal wrapper 595 〉;
if (launched as procedure ≡ true) {
〈 reduce requesting grammar’s active threads count 280 〉;
〈 insert token into requesting grammar’s accept queue 278 〉;
clean up();
return Parser ::accepted ;

}
else {
〈 set thread status if launched as a thread 273 〉;
〈 acquire parallelism requesting grammar’s mutex if required 275 〉;
〈 reduce requesting grammar’s active threads count 280 〉;
〈 insert token into requesting grammar’s accept queue 278 〉;
clean up();
〈notify requesting grammar if launched as a thread 274 〉;
〈 release parallelism requesting grammar’s mutex if required 276 〉;
return Parser ::accepted ;

}
}

273. Set thread status if launched as a thread.

〈 set thread status if launched as a thread 273 〉 ≡
〈 acquire global thread table critical region 380 〉;
th blk .set waiting for work ();
〈 release global thread table critical region 381 〉;

This code is cited in section 272.

This code is used in sections 272 and 279.

274. Notify requesting grammar if launched as a thread.

〈notify requesting grammar if launched as a thread 274 〉 ≡
〈notify parallelism requesting grammar if last thread to complete 277 〉;

This code is used in sections 272 and 279.

§275 WLIBRARY PARALLEL PARSE SUCCESSFUL 137

275. Acquire parallelism requesting grammar’s mutex if required.
If there is only 1 thread running, the critical region is down graded to just a local context. This is an
optimization to minimize “acquire-release” of mutexes.

〈 acquire parallelism requesting grammar’s mutex if required 275 〉 ≡
LOCK_MUTEX_OF_CALLED_PARSER(pp requesting parallelism ~mu , ∗this, " of calling grammar");

This code is used in sections 272 and 279.

276. Release parallelism requesting grammar’s mutex if required. This is an optimization to minimize
“acquire-release” of mutexes. no competing pp ths is a read-only variable that gets set when the thread
is called. It eliminates the called thread having to acquire the mutex of the calling grammar to determine
whether only 1 thread launched.

〈 release parallelism requesting grammar’s mutex if required 276 〉 ≡
UNLOCK_MUTEX_OF_CALLED_PARSER(pp requesting parallelism ~mu , ∗this, " of calling grammar");

This code is used in sections 272 and 279.

277. Notify parallelism requesting grammar if last thread to complete.

〈notify parallelism requesting grammar if last thread to complete 277 〉 ≡
if (have all threads reported back () ≡ YES) {
〈Trace MSG all threads reported back 621 〉;
post event to requesting grammar (∗pp requesting parallelism ,Accept parallel parse , ∗this);
}
else {
〈Trace MSG not all threads reported back 622 〉;
}

This code is used in section 274.

278. Insert token into requesting grammar’s accept queue.

〈 insert token into requesting grammar’s accept queue 278 〉 ≡
pp requesting parallelism ~put T into accept queue (pp rsvp);

This code is used in sections 272 and 282.

138 PARALLEL PARSE UNSUCCESSFUL WLIBRARY §279

279. Parallel parse unsuccessful.
If it is the last active thread, it wakes up the requesting grammar via a message. Otherwise, it just winds
down without any message: a bit of an optimization to lowering messages between friends.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::Parser ::parse result yacco2 ::Parser ::parallel parse unsuccessful ()
{
〈 check failed directive for possible acceptance 281 〉;
〈Trace TH parallel parse current token when an error has occured 596 〉;
if (launched as procedure ≡ true) {
〈 reduce requesting grammar’s active threads count 280 〉;
goto fire off error functor ;

}
else {
〈 set thread status if launched as a thread 273 〉;
〈 acquire parallelism requesting grammar’s mutex if required 275 〉;
〈 reduce requesting grammar’s active threads count 280 〉;
〈notify requesting grammar if launched as a thread 274 〉;
〈 release parallelism requesting grammar’s mutex if required 276 〉;

}
fire off error functor :

cleanup stack due to abort ();
clean up();
return Parser ::erred ;
}

280. Reduce requesting grammar’s active threads count.

〈 reduce requesting grammar’s active threads count 280 〉 ≡
〈Trace TH before parallel parse thread message count reduced 598 〉;
−−pp requesting parallelism ~ th active cnt ;
if (supplier r w cnt > 1) {
−−pp requesting parallelism ~supplier r w cnt ;
if (token supplier ~r w cnt > 1) {
〈 acquire token mu 391 〉;
−−token supplier ~r w cnt ;
〈 release token mu 392 〉;

}
}
〈Trace TH after parallel parse thread message count reduced 599 〉;

This code is used in sections 272 and 279.

281. Check failed directive for possible acceptance.
A fsm failed directive was added to allow for a last chance attempt at an aborted thread parse. One can
return an error token to the calling grammar making its look like a successful parse via syntax directed code
of the failed directive. It’s not a panacea but hey it helps.

〈 check failed directive for possible acceptance 281 〉 ≡
if (fsm tbl ~ failed () ≡ true) {

return parallel parse successful ();
}

This code is used in sections 279 and 283.

§282 WLIBRARY PROC CALL PARSE SUCCESSFUL 139

282. Proc call parse successful.
Put the accept message into the requesting grammar’s accept queue. Just return back to callr.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::Parser ::parse result yacco2 ::Parser ::proc call parse successful ()
{
〈Trace TH current token, and accepted terminal wrapper 595 〉;
〈 insert token into requesting grammar’s accept queue 278 〉;
clean up();
return Parser ::accepted ;
}

283. Proc call parse unsuccessful.
If it is the last active thread, it wakes up the requesting grammar via a message. Otherwise, it just winds
down without any message: a bit of an optimization to lowering messages between friends.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::Parser ::parse result yacco2 ::Parser ::proc call parse unsuccessful ()
{
〈 check failed directive for possible acceptance 281 〉;
〈Trace TH proc call parse current token when an error has occured 597 〉;
goto fire off error functor ;

fire off error functor :
cleanup stack due to abort ();
clean up();
return Parser ::erred ;
}

140 FIND CURRENT T SHIFT ENTRY WLIBRARY §284

284. Find current T shift entry.
Algo. binary search 6.2.1 from Knuth Vol. 3. A little speed to eliminate the passing of the enumerate value.
A quick test showed approximately the sequential search is faster than the binary search when the table
population is less than 72.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::Shift entry ∗yacco2 ::Parser ::find cur T shift entry ()
{
〈Reserve and get current stack record 352 〉;
yacco2 ::USINT Enum id = current token ~enumerated id ;
State ∗State ptr = pr~state ;
Shift tbl ∗st = State ptr~shift tbl ptr ;
yacco2 ::USINT cnt = st~no entries ;
Shift entry array type ∗shft entry array = (Shift entry array type ∗) &st~first entry ;
yacco2 ::Shift entry ∗k entry ;

if (cnt > SEQ_SRCH_VS_BIN_SRCH_LIMIT) goto bin srch ;
for (int x = 0; x < cnt ; ++x) {

k entry = &(∗shft entry array)[x];
if (Enum id ≡ k entry~ id) return k entry ;
if (Enum id < k entry~ id) break;

}
eolr seq :

for (int x = 0; x < cnt ; ++x) {
k entry = &(∗shft entry array)[x];
if (LR1 Eolr ≡ k entry~ id) return k entry ;
if (LR1 Eolr < k entry~ id) return 0;

}
return 0;

bin srch : int lower = 1;
int upper = cnt ;
int seg ln ;
int mid pt ;
int mid pt rel0 ;

B2: /∗ calc mid pt ∗/
if (upper < lower) goto eolr srch ;
seg ln = upper + lower ;
mid pt = seg ln � 1;
mid pt rel0 = mid pt − 1;
k entry = &(∗shft entry array)[mid pt rel0];

B3: /∗ compare ∗/
if (Enum id ≡ k entry~ id) return k entry ;
if (Enum id > k entry~ id) goto B5;

B4: /∗ adjust upper ∗/
upper = mid pt − 1;
goto B2;

B5: /∗ adjust lower ∗/
lower = mid pt + 1;
goto B2;

eolr srch : /∗ see if all T in set ∗/
lower = 1;
upper = st~no entries ;

B2 eolr : /∗ calc mid pt ∗/

§284 WLIBRARY FIND CURRENT T SHIFT ENTRY 141

if (upper < lower) return 0;
seg ln = upper + lower ;
mid pt = seg ln � 1;
mid pt rel0 = mid pt − 1;
k entry = &(∗shft entry array)[mid pt rel0];
if (LR1 Eolr ≡ k entry~ id) return k entry ;
if (LR1 Eolr > k entry~ id) goto B5 eolr ;

B4 eolr : /∗ adjust upper ∗/
upper = mid pt − 1;
goto B2 eolr ;

B5 eolr : /∗ adjust lower ∗/
lower = mid pt + 1;
goto B2 eolr ;
return 0;
}

142 FIND RULE OR PARALLELED RETURNED T SHIFT ENTRY WLIBRARY §285

285. Find Rule or paralleled returned T shift entry.
Algo. binary search 6.2.1 from Knuth Vol. 3.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::Shift entry ∗yacco2 ::Parser ::find R or paralleled T shift entry (yacco2 ::USINT Enum id)
{
〈Reserve and get current stack record 352 〉;
State ∗State ptr = pr~state ;
Shift tbl ∗st = State ptr~shift tbl ptr ;
yacco2 ::USINT cnt = st~no entries ;
Shift entry array type ∗shft entry array = (Shift entry array type ∗) &st~first entry ;
yacco2 ::Shift entry ∗k entry ;

if (cnt > SEQ_SRCH_VS_BIN_SRCH_LIMIT) goto bin srch ;
for (int x = 0; x < cnt ; ++x) {

if (x ≥ cnt) break;
k entry = &(∗shft entry array)[x];
if (Enum id ≡ k entry~ id) return k entry ;
if (Enum id < k entry~ id) break;

}
eolr seq :

for (int x = 0; x < cnt ; ++x) {
if (x ≥ cnt) break;
k entry = &(∗shft entry array)[x];
if (LR1 Eolr ≡ k entry~ id) return k entry ;
if (LR1 Eolr < k entry~ id) return 0;

}
return 0;

bin srch : int lower = 1;
int upper = cnt ;
int seg ln ;
int mid pt ;
int mid pt rel0 ;

B2: /∗ calc mid pt ∗/
if (upper < lower) goto eolr srch ;
seg ln = upper + lower ;
mid pt = seg ln � 1;
mid pt rel0 = mid pt − 1;
k entry = &(∗shft entry array)[mid pt rel0];

B3: /∗ compare ∗/
if (Enum id ≡ k entry~ id) return k entry ;
if (Enum id > k entry~ id) goto B5;

B4: /∗ adjust upper ∗/
upper = mid pt − 1;
goto B2;

B5: /∗ adjust lower ∗/
lower = mid pt + 1;
goto B2;

eolr srch : /∗ see if all T in set ∗/
lower = 1;
upper = st~no entries ;

B2 eolr : /∗ calc mid pt ∗/
if (upper < lower) return 0;

§285 WLIBRARY FIND RULE OR PARALLELED RETURNED T SHIFT ENTRY 143

seg ln = upper + lower ;
mid pt = seg ln � 1;
mid pt rel0 = mid pt − 1;
k entry = &(∗shft entry array)[mid pt rel0];
if (LR1 Eolr ≡ k entry~ id) return k entry ;
if (LR1 Eolr > k entry~ id) goto B5 eolr ;

B4 eolr : /∗ adjust upper ∗/
upper = mid pt − 1;
goto B2 eolr ;

B5 eolr : /∗ adjust lower ∗/
lower = mid pt + 1;
goto B2 eolr ;
return 0;
}

286. add set to map .

〈 accrue yacco2 code 33 〉 +≡
void add set to map(yacco2 ::yacco2 set type &Map , int Partition , int Element)
{

yacco2 ::yacco2 set iter typee = Map .find (Partition);
if (e ≡ Map .end ()) {

Map [Partition] = Element ;
}
else {

int se = e~second ;
int v = se + Element ;

e~second = v;
}
}

287. Reduce Attempts.
The following points detail the order of reduce attempts. Apart from point 1 which is the regular reduce
attempt, points 2 and 3 use various meta terminals attempts for different parsing contexts.

1) current token — standard lr(1) reduce
2) meta Tes except |?|, eog, and |||

in set — eolr, |r|, |.|, |+|, and |t|

3) Only |?|for forced lr(0) reduction
Point 2 is sensitive to the next state’s shift attempts — be it wild or ε . Point 3 is a specific attempt at
drawing the reader’s eye to errors within the grammar. It is used in 2 situations:

a) shift with its syntax directed code to deal with the error
b) when in another rule’s follow set enforce a reduction

Point b covers the situation whereby the subrule to be reduced will reduce and shift the rule into its next
parse state which contains the |?|where the error will be dealt with by its syntax directed code. It is a
forcefull reduce instead of considering it an error which it is due to the bad lookahead T by prolonging the
error situation to be dealt with by the next parse state environment. This allows the parsing to continue
(shift favoured) and to catch the error in the |?|“shift operation” of the new current parse state.

144 FIND |?|IN REDUCE LOOKAHEAD TO FORCE A LR(0) REDUCTION WLIBRARY §288

288. Find |?|in reduce lookahead to force a LR(0) reduction.
Algo. binary search 6.2.1 from Knuth Vol. 3. What do u do when the lookahead is faulty (current token)
and u want the state’s subrule to reduce so as to force the parser into the rule’s shift state which deals with
the |?|error? Remember the |?|sym has been properly calculated in the lookahead set for the reduce to
take place as it is part of the follow set symbol string in the grammar! This is my experiment.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::Reduce entry ∗yacco2 ::Parser ::find questionable sym in reduce lookahead ()
{
〈Reserve and get current stack record 352 〉;
State ∗State ptr = pr~state ;
UCHAR partition ;
UCHAR element ;
int lower ;
int upper ;
int seg ln ;
int mid pt ;
int mid pt rel0 ;
yacco2 ::Set entry ∗k entry ;
Reduce tbl ∗rt = State ptr~reduce tbl ptr ;
yacco2 ::USINT cnt of reducing subrules = rt~no entries ;
Reduce entry ∗re = (Reduce entry ∗) &rt~first entry ;
yacco2 ::Set tbl ∗pla set ;
yacco2 ::INT no set pairs ;

for (yacco2 ::UINT x = 1; x ≤ cnt of reducing subrules ; ++x, ++re) {
pla set = re~ la set ;
no set pairs = pla set~no entries ;

Set entry array type ∗set entry array = (Set entry array type ∗) &(pla set~first entry);

if (no set pairs > SEQ_SRCH_VS_BIN_SRCH_LIMIT) goto QUE srch ;
for (int x = 0; x < no set pairs ; ++x) {

k entry = &(∗set entry array)[x];
if (LRK_LA_QUE_SET.partition ≡ k entry~partition) {

if (LRK_LA_QUE_SET.elements & k entry~elements) {
return re ;

}
else {

break; /∗ next reducing rule; not in set ∗/
}
}
if (LRK_LA_QUE_SET.partition < k entry~partition) break;

}
continue; /∗ next re ∗/

QUE srch : /∗ see if meta |?|in set ∗/
lower = 1;
upper = no set pairs ;

B2 que : /∗ calc mid pt ∗/
if (upper < lower) return 0;
seg ln = upper + lower ;
mid pt = seg ln � 1;
mid pt rel0 = mid pt − 1;
k entry = &(∗set entry array)[mid pt rel0];
if (LRK_LA_QUE_SET.partition ≡ k entry~partition) {

§288 WLIBRARY FIND |?|IN REDUCE LOOKAHEAD TO FORCE A LR(0) REDUCTION 145

if (LRK_LA_QUE_SET.elements & k entry~elements) {
return re ;
}
else {

continue; /∗ this reducing rule not it so next reducing subrule ∗/
}

}
if (LRK_LA_QUE_SET.partition > k entry~partition) goto B5 que ;

B4 que : /∗ adjust upper ∗/
upper = mid pt − 1;
goto B2 que ;

B5 que : /∗ adjust lower ∗/
lower = mid pt + 1;
goto B2 que ;

}
return 0;
}

146 FIND REDUCE ENTRY WLIBRARY §289

289. find reduce entry .
Use own bsearch to speed things up — too much overhead in generic bsearch. See Knuth algo. — variant
used shift entry lookup. The reduce table contains a sequential list of potential reducing subrules. Each
lookahead set is composed of pairs of set partition with its elements. Each entry is a 2 byte of compressed
format. The number of pairs in the table is the 1st byte in the reducing set structure.

The algorithm is potentially a 2 pass over the number of potential reducing subrules in the state. The
pecking order is find the current token within the reducing state followed by other attempts of meta symbols,
and last the |?| symbol.
Pass 1: Is current token in one of the subrule lookahead sets.
If yes then exit with the appropriate reduce entry for that found reducing subrule.

Pass 2: Is the Meta set elements found within one of the reducing subrules?
The Meta symbol LA set elements are Eolr, |.|, |+|, |t|, and |.|. If yes then exit with the appropriate
subrule’s reduce entry having found a meta symbol.

Last gasp: Is |?| in the LA sets?.

As an optimization i implicitly use the current token who already has with it the compressed set key to
be searched against the lookahead set.

A wrinkle is support of the |?|— questionable situations. has questionable shift occured flags its use
and so returns the 1st entry as it is a lr(0) context. It is not dependent on the lookahead symbol with its
context search.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::Reduce entry ∗yacco2 ::Parser ::find reduce entry ()
{
〈Reserve and get current stack record 352 〉;
State ∗State ptr = pr~state ;
UCHAR partition = current token ~ tok co ords .set entry .partition ;
UCHAR element = current token ~ tok co ords .set entry .elements ;
int cp = partition ;
int ce = element ;
Reduce tbl ∗rt = State ptr~reduce tbl ptr ;
yacco2 ::USINT cnt of reducing subrules = rt~no entries ;
Reduce entry ∗re = (Reduce entry ∗) &rt~first entry ;
yacco2 ::Set tbl ∗pla set ;
yacco2 ::INT no set pairs ;
int lower ;
int upper ;
int seg ln ;
int mid pt ;
int mid pt rel0 ;
yacco2 ::Set entry ∗k entry ;

if (has questionable shift occured ≡ ON) {
return re ;

}
〈Pass1: find current tok in potential reducing subrules and exit if fnd 291 〉;
〈Pass2: find meta symbols in potential reducing subrules and exit if fnd 294 〉;
return find questionable sym in reduce lookahead ();
}

§290 WLIBRARY FIND REDUCE ENTRY 147

290. Create element’s key set.

〈 create element’s key set to be searched in reduce set 290 〉 ≡
Set entry la set ;

〈 create set entry 48 〉;

291. Pass1: find current tok in potential reducing subrules.
Rip thru the potential subrules list looking for mister current token. If found return its subrule’s reduce
entry. If not found against the subrules reducing LAs then it drops out of the loop and gives controll to
Pass2.

〈Pass1: find current tok in potential reducing subrules and exit if fnd 291 〉 ≡
{
Pass1 reduce :

re = (Reduce entry ∗) &rt~first entry ;
for (yacco2 ::UINT x = 1; x ≤ cnt of reducing subrules ; ++x, ++re) {

pla set = re~ la set ;
no set pairs = pla set~no entries ;

Set entry array type ∗set entry array = (Set entry array type ∗) &(pla set~first entry);

if (no set pairs > SEQ_SRCH_VS_BIN_SRCH_LIMIT) {
〈binary search for token in current subrule la 293 〉;

}
else {
〈 sequential search for token in current subrule la 292 〉;

}
}
}

This code is used in section 289.

292. Sequential search for token in current subrule la.

〈 sequential search for token in current subrule la 292 〉 ≡
for (int xx = 0; xx < no set pairs ; ++xx) {

k entry = &(∗set entry array)[xx];
if (partition ≡ k entry~partition) {

if (element & k entry~elements) {
return re ;

}
else {

break; /∗ next reducing rule; not in set ∗/
}

}
if (partition < k entry~partition) break;
}

This code is used in section 291.

148 FIND REDUCE ENTRY WLIBRARY §293

293. Binary search for token in current subrule la.

〈binary search for token in current subrule la 293 〉 ≡
{
bin srch cur tok :

lower = 1;
upper = no set pairs ;

B2: /∗ calc mid pt ∗/
if (upper < lower) goto srch end cur tok ;
seg ln = upper + lower ;
mid pt = seg ln � 1;
mid pt rel0 = mid pt − 1;
k entry = &(∗set entry array)[mid pt rel0];

B3: /∗ compare ∗/
if (partition ≡ k entry~partition) {

if (element & k entry~elements) {
return re ;

}
else {

goto srch end cur tok ; /∗ T not in LA ∗/
}

}
if (partition > k entry~partition) goto B5;

B4: /∗ adjust upper ∗/
upper = mid pt − 1;
goto B2;

B5: /∗ adjust lower ∗/
lower = mid pt + 1;
goto B2;

srch end cur tok : ;
}

This code is used in section 291.

294. Pass2: find meta symbols in potential reducing subrules.
Rip thru the potential subrules list looking for meta symbols. If found return its subrule’s reduce entry. If
not found against the subrules reducing LAs then it drops out of the loop and gives controll to the last Gasp.

〈Pass2: find meta symbols in potential reducing subrules and exit if fnd 294 〉 ≡
{

re = (Reduce entry ∗) &rt~first entry ;
for (yacco2 ::UINT x = 1; x ≤ cnt of reducing subrules ; ++x, ++re) {

pla set = re~ la set ;
no set pairs = pla set~no entries ;

Set entry array type ∗set entry array = (Set entry array type ∗) &(pla set~first entry);

if (no set pairs > SEQ_SRCH_VS_BIN_SRCH_LIMIT) {
〈binary search for meta symbol in current subrule la 296 〉;

}
else {
〈 sequential search for meta symbol in current subrule la 295 〉;

}
}
}

This code is used in section 289.

§295 WLIBRARY FIND REDUCE ENTRY 149

295. Sequential search for meta symbol in current subrule la.

〈 sequential search for meta symbol in current subrule la 295 〉 ≡
{
seq meta :

for (int x = 0; x < no set pairs ; ++x) {
k entry = &(∗set entry array)[x];
if (LRK_LA_EOLR_SET.partition ≡ k entry~partition) {

if (LRK_LA_EOLR_SET.elements & k entry~elements) {
return re ;
}
else {

break; /∗ next reducing rule; not in set ∗/
}

}
if (LRK_LA_EOLR_SET.partition < k entry~partition) break;

}
}

This code is used in section 294.

150 FIND REDUCE ENTRY WLIBRARY §296

296. Binary search for meta symbol in current subrule la.

〈binary search for meta symbol in current subrule la 296 〉 ≡
{
bin srch meta : lower = 1;

upper = no set pairs ;
Meta srch : /∗ see if meta Ts in set ∗/

lower = 1;
upper = no set pairs ;

B2 meta : /∗ calc mid pt ∗/
if (upper < lower) {

continue; /∗ next subrule return 0; ∗/
}
seg ln = upper + lower ;
mid pt = seg ln � 1;
mid pt rel0 = mid pt − 1;
k entry = &(∗set entry array)[mid pt rel0];
if (LRK_LA_EOLR_SET.partition ≡ k entry~partition) {

if (LRK_LA_EOLR_SET.elements & k entry~elements) {
return re ;

}
else {

continue; /∗ this reducing rule no meta so next reducing subrule ∗/
}

}
if (LRK_LA_EOLR_SET.partition > k entry~partition) goto B5 meta ;

B4 meta : /∗ adjust upper ∗/
upper = mid pt − 1;
goto B2 meta ;

B5 meta : /∗ adjust lower ∗/
lower = mid pt + 1;
goto B2 meta ;
}

This code is used in section 294.

297. find parallel reduce entry .
See “Notes to myself”. This is a lr(0) reduction. So pick up the first entry in the table. This forces a
reduction to take place regardless of the “lookahead” token. It allows the calling parser to complete the
reduction and then use the “shift” mechanism of |.|, |+|to catch errors.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::Reduce entry ∗yacco2 ::Parser ::find parallel reduce entry ()
{
〈Reserve and get current stack record 352 〉;
State ∗State ptr = pr~state ;
Reduce tbl ∗rt = State ptr~reduce tbl ptr ;
Reduce entry ∗re = (Reduce entry ∗) &rt~first entry ;

return re ;
}

§298 WLIBRARY FIND PROC CALL REDUCE ENTRY 151

298. find proc call reduce entry .
See “Notes to myself”. This is a lr(0) reduction. So pick up the first entry in the table. This forces a
reduction to take place regardless of the “lookahead” token. It allows the calling parser to complete the
reduction and then use the “shift” mechanism of |.|, |+|to catch errors.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::Reduce entry ∗yacco2 ::Parser ::find proc call reduce entry ()
{
〈Reserve and get current stack record 352 〉;
State ∗State ptr = pr~state ;
Reduce tbl ∗rt = State ptr~reduce tbl ptr ;
Reduce entry ∗re = (Reduce entry ∗) &rt~first entry ;

return re ;
}

152 START TOKEN ROUTINES WLIBRARY §299

299. Start token routines.

300. start token .

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::CAbs lr1 sym ∗yacco2 ::Parser ::start token ()
{

return start token ;
}

301. set start token .

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::set start token (CAbs lr1 sym &Token)
{

start token = &Token ;
}

302. start token pos .

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::UINT yacco2 ::Parser ::start token pos ()
{

return start token pos ;
}

303. set start token pos .

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::set start token pos (yacco2 ::UINT Pos)
{

start token pos = Pos ;
}

304. All shift routines.
These routines control how the parser reacts to the |+|all shift terminal. As this terminal is never in the
token stream, it is a condition that the parser checks within the current state’s configuration. If the facility
is on and the ‘all shift’ terminal is present in the current PDA’s state, then the parser shifts the terminal.
Not on or present, the parser tries the next inline operation which is a reduce. The parser favors shifting
over reducing. It is turned on both at initialization time and reset time after a parallel parse.

It is up to the grammar writer to turn off this facility. To shutoff this facility, usually the syntax directed
code tests for a specific terminal by its enumeration id during the shift operation. Shuting off of the facility
allows the grammar to complete instead of sitting in an open loop of consuming terminals until an overrun
occurs against the token stream.

305. set use all shift on .

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::set use all shift on ()
{

use all shift = ON;
}

§306 WLIBRARY SET USE ALL SHIFT OFF 153

306. set use all shift off .

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::set use all shift off ()
{

use all shift = OFF;
}

307. use all shift .

〈 accrue yacco2 code 33 〉 +≡
bool yacco2 ::Parser ::use all shift ()
{

return use all shift ;
}

154 PARSER SYMBOL TABLE FUNCTOR AND ABORT, STOP ROUTINES WLIBRARY §308

308. Parser symbol table functor and abort, stop routines.

309. sym lookup functor .
This is your imported functor used to do token remapping: another term for symbol table handling. The
functor is specific to the language being parsed. It has been tested against the Pascal language and Yacco2’s
grammar. Of course cweb was used to develop these symbol tables.

〈 accrue yacco2 code 33 〉 +≡
yacco2 :: tble lkup type ∗ yacco2 ::Parser ::sym lookup functor ()
{

return sym lookup functor ;
}

310. abort parse .

〈 accrue yacco2 code 33 〉 +≡
bool yacco2 ::Parser ::abort parse ()
{

return abort parse ;
}

311. set abort parse .
Used to abort abruptly a parse. Not too subtle. Directs the parser to do its abort-winddown thing.

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::set abort parse (bool Abort)
{

abort parse = Abort ;
}

312. stop parse .

〈 accrue yacco2 code 33 〉 +≡
bool yacco2 ::Parser ::stop parse ()
{

return stop parse ;
}

313. set stop parse .
Used to stop a parse. This is much more refined as one can place an error token into the accept queue for
grammatical error processing and come to a gentle stop. This is a refinement to an abort. It does the same
thing as abort in its cleanup except that it is considered a successful parse. This process is a grammar writer’s
statement within syntax directed code whereas the abort comes from 2 sources: the grammar writer’s syntax
directed code or an invalid token stream causing the parse thread to abort. Cavate: You still must use the
RSVP macro to place the token into the accept queue. If you don’t, you’ll get a runtime check due to the
accepted token (current lookahead token) having the same lookahead token boundary.

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::set stop parse (bool Stop)
{

stop parse = Stop ;
}

§314 WLIBRARY PARSER’S FSM SUPPORT ROUTINES 155

314. Parser’s FSM support routines.

315. fsm tbl .
Just the fsm automaton ensemble.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::CAbs fsm ∗yacco2 ::Parser :: fsm tbl ()
{

return fsm tbl ;
}

156 PARSE CONTAINERS WLIBRARY §316

316. Parse containers. The four containers are:
Token supplier — input token stream to parser
Token producer — receives output from the parser for next stage processing
Error — container of error terminals
Recycle — ecological bio-degradable

As containers are template driven due to the diversity of inputs, there are 2 typedefs describing containers.
token container type is a tok can based template that other containers inherit from. Used by the error
queue is the TOKEN GAGGLE container based on a vector template.

The 2 variants of an input queue are the source file to raw character conversion, and the regular supplier
queue that feeds the lexical and syntatic parse stages. These are specialized templates.

Another container handles tree related structures with their associated walkers and terminal filter functors.
This allows one to process a tree as a stream of tokens that get digested by a grammar. The filter has a
complement indicator as to include or exclude the terminal types in the filter set. This eases the declaration
task of the compiler writer. Given a large population of terminal types, the set of exclusion terminal
enumerates minimizes the effort of unwanted terminals in the parse stream. The same holds for a small
number of terminals for processing using inclusion. See treecontainers .

〈Type defs 16 〉 +≡
struct Caccept parse;

#define pp accept queue size 8
typedef yacco2 ::Caccept parse pp accept queue type[pp accept queue size];

317. Supplier container.
This is your standard token dispensor that feeds a parser. Due to parallelism, there is only 1 supplier of
tokens. Somewhere in the call chain of the threads there is a token dispensor. It is always supplied by the
calling grammar to its threads. The container is a “many reader” to the called threads of parallelism.

318. token supplier .

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::token container type ∗yacco2 ::Parser :: token supplier ()
{

return token supplier ;
}

319. set token supplier .

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::set token supplier (yacco2 ::token container type &Token supplier)
{

token supplier = &Token supplier ;
}

320. add token to supplier .

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::add token to supplier (yacco2 ::CAbs lr1 sym &Token)
{

if (token supplier ~r w cnt > 1) 〈 acquire token mu 391 〉;
token supplier ~push back (Token);
if (token supplier ~r w cnt > 1) 〈 release token mu 392 〉;
}

§321 WLIBRARY PRODUCER CONTAINER 157

321. Producer container.
Receiver of outputted terminals from a parse stage. It normally becomes a supplier queue to a down stream
parse stage.

322. token producer .

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::token container type ∗yacco2 ::Parser :: token producer ()
{

return token producer ;
}

323. set token producer .

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::set token producer (yacco2 ::token container type &Token producer)
{

token producer = &Token producer ;
}

324. add token to producer .

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::add token to producer (yacco2 ::CAbs lr1 sym &Token)
{
〈 acquire token mu 391 〉;
token producer ~push back (Token);
〈 release token mu 392 〉;
}

325. Recycle container.
A holder of tokens that need to be postprocessed. Typical use is to remove tokens out of a token stream but
will be re-integrated later back into some other token stream. For example, a translator that retargets one
language into another and the comments need re-integrating back into the targetted output.

326. recycle bin .

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::token container type ∗yacco2 ::Parser ::recycle bin ()
{

return recycle bin ;
}

327. set recycle bin .

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::set recycle bin (yacco2 ::token container type &Recycle bin)
{

recycle bin = &Recycle bin ;
}

158 ADD TOKEN TO RECYCLE BIN WLIBRARY §328

328. add token to recycle bin .

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::add token to recycle bin (yacco2 ::CAbs lr1 sym &Token)
{
〈 acquire token mu 391 〉;
recycle bin ~push back (Token);
〈 release token mu 392 〉;
}

329. Error queue.
Just a holding container for error terminals. I use this container to express warnings and errors within
Yacco2. If one is creative, error sentences can be outputted that will be later parsed by an error grammar.
This is how Yacco2 handles its errors outputted to the grammar writer by matching the errors to the source
file co-ordinates. The error queue is just another input queue to be parsed. Error sentences can be expressed
be it of a single token to a complete language of various structures. To process the errors, it can be as
simple as iterating through the container, to use a grammar having only the ‘all shift’ facility, to grammars
describing the error language.

330. set error queue .

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::set error queue (yacco2 ::token container type &Error queue)
{

error queue = &Error queue ;
}

331. error queue .

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::token container type ∗yacco2 ::Parser ::error queue ()
{

return error queue ;
}

332. add token to error queue .

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::add token to error queue (yacco2 ::CAbs lr1 sym &Token)
{
〈Validate error queue 557 〉;
〈 acquire token mu 391 〉;
error queue ~push back (Token);
〈 release token mu 392 〉;
}

333. Accept queue RSVP, RSVP_FSM, RSVP_WLA macro use comments.
This is an array where the arbitrator’s syntax directed code tests against it for the specific presence of an
accepted token. For example, the terminals ‘identifier’ and ‘keyword’ are parallel competitors. The arbitrator
needs to test if the keyword is present to throw away the identifier.

The RSVP macro is used to added to the parser’s accept queue from within the grammar’s rule context.
The RSVP_WLA macro is used to added to the parser’s accept queue and to use its lookahead parameters
instead of the defaults. The RSVP_FSM macro is used to added to the parser’s accept queue from within the
fsm’s context. put T into accept queue is another way to do it.

§334 WLIBRARY PUT POTENTIAL CACCEPT PARSE INTO ACCEPT QUEUE 159

334. Put potential Caccept parse into accept queue.
Caccept parse is just a carrier of the real terminal contained inside it. The parallel thread submitting its
result to the accept queue already has ownership of pp requesting parallelism ’s mutex. pp accept queue
is an array where the 0 subscript does nothing.

The parameter is needed as this is the context of the called thread who is placing its contents into the
calling thread’s accept queue.

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::put T into accept queue (yacco2 ::Caccept parse &Calling parm)
{

++th accepting cnt ;
if (th accepting cnt < pp accept queue size) {

pp accept queue [th accepting cnt].fill it (Calling parm); /∗ copy its contents ∗/
}
else { /∗ throw error ∗/

abort accept queue irregularites (Calling parm);
}
}

160 TOKEN GET ROUTINES: SPECIFIC STACK TOKEN, NEXT TOKEN IN STREAM WLIBRARY §335

335. Token Get routines: specific stack token, next token in stream. A word on the subscript
used to access a container’s content. I’m not a fan of relative-to-zero situations. I count by 1 and a 2 and
a... Lawrence Welk anyone? Just because its more efficient to access an array by relative-to-zero subscripts
doesn’t mean that I must adhold to this. So what are the options. Sit quite and be efficient... ugh. Hear my
teeth grinding? Subtract 1 from the subscript every time the container is being accessed: a bit too expensive
— what, can’t u count this way? Put a boggus record at container creation time into the zero position of the
container. Humm — consider it a bs record: before start. Now what are the merits: no calculation required,
Dave can count, and no off-by-one situations. Now the demerits: extra space, must watch to skip over the
first item in the container if iterators are used. Oh well. Come on u old dog or is it Humpty Dumpty had a
great... No, one is one and that’s it. For now the relative-to-zero works.

To integrate symbol table facilities into the Yacco2, a functor was created. Appropriate cweb macros were
written to easy the pain. Remap token retargets the token read from the input stream. It clones off the
token having the same source co-ordinates. Its logic est tres simple:

1) is there a symbol table functor present: no return token fetched
2) is symbol table lookup turned off: yes return token fetched
3) try look up: if returned token is nil return the fetched token
4) return the looked up token

There are 2 companion cweb macros: Remap set result and return and Remap return result . The first
macro takes the symbol table’s returned token and sets it as the parser’s current token and returns the
new token. Remap return result just returns the retargeted token used by get spec token which is a random
query of a token stream. Remapped tokens eventually get put into other token containers for down stream
processing.

#define Remap token (Token)
if (sym lookup functor ≡ 0) return Token ;
if (sym lookup functor ~ lkup ≡ OFF) {

return Token ;
}
CAbs lr1 sym ∗x = sym lookup functor ~operator()(Token);

if (x ≡ 0) return Token ;
#define Remap set result and return (Token) Token = x;

return Token ;
#define Remap return result return x;

336. get spec stack token .

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::CAbs lr1 sym ∗yacco2 ::Parser ::get spec stack token (yacco2 ::UINT Pos)
{

if (Pos > MAX_LR_STK_ITEMS) return 0; /∗ is pos within bnds ∗/
Cparse record ∗pr = parse stack .sf by sub(Pos);

return pr~symbol ;
}

§337 WLIBRARY GET NEXT TOKEN 161

337. get next token . Due to the “jit” accessing the mutex guarding the container read is NEEDED.
Tests between not “jit” versus “jit” with mutex yielded just 3 seconds difference across 80 compiles. SO
KEEP IT.

Some subtle comments on overflow per token container.
The container template implements the access [] operator which guards against overflow. It returns the
“eog” token to indicate end-of-token stream reached. In this context the end-of-token stream depends on
the specific container. From a tree container’s perspective, the container’s size is open-ended and its internal
tree walking stack determines whether it has been reached. It returns the maximum unsigned integer value
within its size method which forces a call using the access operator []. So the size method is not quite
accurate though the other containers are.

But what is your problem Dave? When porting to VMS/Alpha, the implemented virtual method of the
container template did not execute the TOKEN GAGGLE container’s virtual operator [] which tests its
internal state before accessing its own internal stl array container’s access operator. TOKEN GAGGLE
container is specificly declared for the “Error queue” while all the other containers used in parsing like Sup-
plier and Producer are abstract tok base type which forces the compiler to call the implemented virtual
table of the container to deal with size, [] and other methods. tok base enforces regularity. When parsing
the “Error queue” aka TOKEN GAGGLE using a grammar/Parser approach, the native container’s []
operator and not the virtual method was called and so aborted on “array bounds exceeded” error. This is
why the pre and post overflow evaluation before calling the container’s access [] operator. The first check is
“has overflow already happened” and so don’t increment current token pos , just reset the current token
to “eog” and exit. This keeps the internal token subscript accurate. The post overflow evaluation is af-
ter the current token pos increment to see if it just reached the end-of-token stream condition and so set
current token to “eog” and exit.

Extracting the token from the container:
So now the Parser’s token container needs to be called to get its next token with the incremented subscript.
It is up to the token container’s implementation to determine whether the token is within its internal stl’s
container’s bounds. The subscript is checked against the stl container’s size method for the overflow condi-
tion and to take appropriate action which is return the “eog” token back. Finally the internal stl’s container
is accessed by its [] operation to extract the called for token.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::CAbs lr1 sym ∗yacco2 ::Parser ::get next token (){

if (token supplier ≡ 0) return 0; /∗ is there a token supplier : ∗/
if (token supplier ~empty () ≡ true) { /∗ out-of-bnds: protect current pos ∗/

current token = yacco2 ::PTR LR1 eog ;
return current token ;

}
if (current token pos ≥ token supplier ~size ()) { /∗ out-of-bnds: protect current pos ∗/

current token = yacco2 ::PTR LR1 eog ;
return current token ;

}
++current token pos ;
if (current token pos ≥ token supplier ~size ()) { /∗ out-of-bnds: protect current pos ∗/

current token = yacco2 ::PTR LR1 eog ;
return current token ;

}
if (YACCO2_T__ 6= 0) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_T__::" � thread no � "::" � thread name () �

" get_next_token:: pos to fetch: " � current token pos � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;

162 GET NEXT TOKEN WLIBRARY §337

}
current token = (∗token supplier)[current token pos];
if (YACCO2_T__ 6= 0) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_T__::" � thread no � "::" � thread name () �

" get_next_token:: pos: " � current token pos � " enum: " �
current token ~enumerated id � ’ ’ � ’"’ � current token ~ id � ’"’ �
" token fetched*: " � current token � FILE_LINE � std ::endl ;

yacco2 :: lrclog � "\t\t::GPS FILE: ";
EXTERNAL GPSing (current token)yacco2 :: lrclog � " GPS LINE: " �

current token ~ tok co ords .line no � " GPS CHR POS: " �
current token ~ tok co ords .pos in line � FILE_LINE � std ::endl ;

if (yacco2 ::YACCO2_MU_TRACING__) {
yacco2 :: lrclog � "YACCO2_MU_TRACING__::Releasing trace mu" � FILE_LINE � std ::endl ;
}
EXTERNAL GPSing (current token)yacco2 :: lrclog � " GPS LINE: " �

current token ~ tok co ords .line no � " GPS CHR POS: " �
current token ~ tok co ords .pos in line � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}
Remap token (current token)
if ((YACCO2_T__ 6= 0) ∧ (sym lookup functor 6= 0)) {

if (sym lookup functor ~ lkup ≡ ON 6= 0) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_T__::" � thread no � "::" � thread name () �

" get_next_token:: pos: " � current token pos � " enum: " �
current token ~enumerated id � ’ ’ � " after remap " � ’"’ �
current token ~ id � ’"’ � " token fetched*: " � current token � FILE_LINE �
std ::endl ;

yacco2 :: lrclog � "\t\t::GPS FILE: ";
EXTERNAL GPSing (current token)yacco2 :: lrclog � " GPS LINE: " �

current token ~ tok co ords .line no � " GPS CHR POS: " �
current token ~ tok co ords .pos in line � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

}
Remap set result and return (current token)
}

§338 WLIBRARY GET SPEC TOKEN 163

338. get spec token .

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::CAbs lr1 sym ∗yacco2 ::Parser ::get spec token (yacco2 ::UINT Pos){
〈Validate if parser’s supplier exists 552 〉;
〈Validate if subscript within supplier’s bnds 553 〉;
〈 any tokens in container? no return nil ptr 339 〉;
if (YACCO2_T__ 6= 0) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_T__::" � thread no � "::" � thread name () � "::" �

" get_spec_token pos: " � Pos � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;

}
CAbs lr1 sym ∗token = (∗token supplier)[Pos];

if (YACCO2_T__ 6= 0) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_T__::" � thread no � "::" � thread name () � "::" �

" get_spec_token: returned token " � token~ id � " pos: " � Pos � " enum: " �
token~enumerated id � ’"’ � token~ id � ’"’ � FILE_LINE � std ::endl ;

yacco2 :: lrclog � "\t\t::GPS FILE: ";
EXTERNAL GPSing (token)yacco2 :: lrclog � " GPS LINE: " � token~ tok co ords .line no �

" GPS CHR POS: " � token~ tok co ords .pos in line � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;

}
Remap token (token)
if ((YACCO2_T__ 6= 0) ∧ (sym lookup functor 6= 0)) {

if (sym lookup functor ~ lkup ≡ ON 6= 0) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_T__::" � thread no � "::" � thread name () � "::" �

" get_spec_token: returned token " � token~ id � " pos: " � Pos �
" enum: " � token~enumerated id � " after remap " � ’"’ � token~ id � ’"’ �
FILE_LINE � std ::endl ;

yacco2 :: lrclog � "\t\t::GPS FILE: ";
EXTERNAL GPSing (token)yacco2 :: lrclog � " GPS LINE: " �

token~ tok co ords .line no � " GPS CHR POS: " � token~ tok co ords .pos in line �
FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

}
Remap return result
}

339. Any tokens in container?. no return nil ptr.

〈 any tokens in container? no return nil ptr 339 〉 ≡
if (token supplier ~empty () ≡ YES) return 0;

This code is used in section 338.

164 PARSE STACK ROUTINES WLIBRARY §340

340. Parse stack routines. Currently the subscript to access the stack is relative to ONE.

341. cleanup stack due to abort . The last item on the stack is left so that the thread can be re-used. This
is why its one less for the popping. The thread sits idle, twirling its whatever until a requesting grammar
asks to be serviced.

342. cleanup stack due to abort .

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::cleanup stack due to abort ()
{

yacco2 ::INT stack items to process = parse stack .top sub − 1;

if (stack items to process > 0) {
remove from stack (stack items to process);

}
set abort parse (OFF);
set stop parse (OFF);
}

343. current stack pos .

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::INT yacco2 ::Parser ::current stack pos ()
{

return parse stack .top sub ;
}

344. parse stack .

〈 accrue yacco2 code 33 〉 +≡
yacco2 :: lr stk ∗yacco2 ::Parser ::parse stack ()
{

return &parse stack ;
}

345. top stack record .

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::Cparse record ∗yacco2 ::Parser :: top stack record ()
{

if (parse stack .top sub < 1) return 0; /∗ if(parse stack .empty() == YES) return 0; ∗/
〈Reserve and get current stack record 352 〉;
return pr ;
}

346. get stack record .
The subscript of stack is rel 1 not 0 while the request is rel to 0. In between counting strategies: Ugh!

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::Cparse record ∗yacco2 ::Parser ::get stack record (yacco2 ::INT Pos)
{
〈Validate subscript not ≤ 0 554 〉;
if (Pos ≥ (parse stack .top sub)) return 0;
return parse stack .sf by sub(Pos + 1);
}

§347 WLIBRARY NO ITEMS ON STACK 165

347. no items on stack .
Twist no oliver, it returns one less than whats on the stack. The reason is the first stack record, which is
the start state of the finite automaton, is always maintained for optimization reasons. This allows the parser
to begin just start when its re-commissioned to work. Normally calling no items on stack is a general way
to winddown the parse be it successful or aborted.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::INT yacco2 ::Parser ::no items on stack ()
{

return parse stack .top sub ;
}

348. Add state to parse stack add to stack .

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::add to stack (yacco2 ::State &State)
{

parse stack .push state (State);
〈Trace TH the parse stack configuration 581 〉;

}

349. Add to parse stack — Speed Demon.

〈 add to stack 349 〉 ≡
〈 lr stk ::push state 132 〉; /∗ ¡Trace TH the parse stack configuration¿; ∗/

This code is used in sections 236, 238, 240, 241, 245, 266, 268, 417, and 420.

350. Remove items from the parse stack remove from stack .
Parse stack is a LIFO order of < state∗ : sym∗ > configuration pairs. The parse stack configuration for S1
shifting ‘a’ into S2 has 2 records. The first record contains as an example without the pointer 1 : ‘a′. Symbol
‘a’ is the shift item that takes the finite state from state 1 into state 2. The second record contains the
entered state 2 : nil. There is no symbol as the next parse action has not happened.

This routine also cleans up aborted parses. It always leaves the first parse record on the stack as an
optimization as the thread is snapping its fingers for the next message request to parse.

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::remove from stack (yacco2 ::INT No to remove)
{
〈Validate parse stack number of removal items 555 〉;
〈Validate parse stack removal for underflow 556 〉;
〈Check parse stack for epsilon removal. yes exit 351 〉;
〈Remove items from the parse stack 361 〉;
}

351. Check parse stack for epsilon removal remove from stack .

〈Check parse stack for epsilon removal. yes exit 351 〉 ≡
if (No to remove ≡ 0) {
〈Trace TH when an epsilon rule is being reduced 582 〉;
return;
}

This code is used in section 350.

166 REMOVE ITEMS FROM THE PARSE STACK REMOVE FROM STACK WLIBRARY §352

352. Reserve and get current stack record.

〈Reserve and get current stack record 352 〉 ≡
Cparse record ∗pr = parse stack .top ;

This code is used in sections 236, 238, 240, 241, 251, 265, 267, 271, 284, 285, 288, 289, 297, 298, 345, and 362.

353. Get current stack record.

〈Get current stack record 353 〉 ≡
pr = parse stack .top ;

This code is used in sections 256, 258, 260, 262, 356, and 361.

354. Initialize stack record.

〈 Initialize stack record 354 〉 ≡
pr~symbol = 0;
pr~aborted = 0;
pr~rule s reuse entry ptr = 0;

This code is used in sections 356 and 361.

355. Pop parse stack.

〈Pop parse stack 355 〉 ≡
−−parse stack .top sub ;
−−parse stack .top ; /∗parse stack .pop(); ∗/

This code is used in section 356.

356. Clean up parse stack record and pop from stack.
When the state is popped, the exposed record is the state:symbol pair used by the finite automaton to map
into the state just popped.

〈Clean up parse stack record and pop state from stack exposing symbol record 356 〉 ≡
〈 Initialize stack record 354 〉;
〈Pop parse stack 355 〉;
〈Get current stack record 353 〉; /∗ symbol record ∗/

This code is used in section 361.

357. Check for zeroed out symbol on parse stack.
This situation can happen if the grammar user plays with the stack’s symbols. Once apon a time, meta
symbols were zeroed out to protect from deletion due to their re-cycled nature: for example the parallel and
invisible shift symbols are created once and recycled many times throughout the parse history. Now these
symbols are protected by having their auto delete attribute turned off.

〈Check for zeroed out symbol on parse stack. If so goto next element to remove 357 〉 ≡
if (pr~symbol ≡ 0) {
〈Trace TH zeroed out symbol situation when popped from parse stack 584 〉;
goto next stack element to remove ;
}

This code is used in section 361.

§358 WLIBRARY REMOVE ITEMS FROM THE PARSE STACK REMOVE FROM STACK 167

358. Is popping symbol auto deleted?.
This deals with the grammar symbol’s ‘AD’ attribute. Due to MSN and their bug brigade, , the delete
arttribute is commented out. So the memory heap just grows but with no occasional aborts. When the
parser stops, it’s left to the operating system to reset the heap allocated to the program.

〈 Is popping symbol auto deleted? then deal with it and goto next element to remove 358 〉 ≡
if (pr~rule s reuse entry ptr 6= 0) {

fsm tbl ~recycle rule (pr~rule s reuse entry ptr);
pr~rule s reuse entry ptr = 0; /∗ wipe off the rule from the “in use” slate ∗/
}
else {

if (pr~symbol ~auto delete ≡ ON) {
〈Trace TH advise when symbol deleted due to AD switch 586 〉;
if (pr~symbol ~dtor 6= 0) (∗pr~symbol ~dtor)(pr~symbol , this);
delete pr~symbol ;
pr~symbol = 0; /∗ keep that stack clean ∗/
goto next stack element to remove ;

}
}

This code is used in section 361.

359. Check for aborted parse situation.
If the parse record is clean, then goto next element to remove.

〈Check for aborted parse situation. If clean goto next element to remove 359 〉 ≡
if (pr~aborted ≡ 0) goto next stack element to remove ;

This code is used in section 361.

360. Deal with auto abort.
This is the grammar symbol’s ‘AB’ attribute. It checks to see if there is a destructor function to run.

〈Deal with auto abort 360 〉 ≡
if (pr~rule s reuse entry ptr 6= 0) {

fsm tbl ~recycle rule (pr~rule s reuse entry ptr);
pr~rule s reuse entry ptr = 0; /∗ wipe off the rule from the “in use” slate ∗/
}
else {

if (pr~symbol ~affected by abort ≡ OFF) goto next stack element to remove ;
if (pr~symbol ~dtor 6= 0)

(∗pr~symbol ~dtor)(pr~symbol , this);
delete pr~symbol ;
}

This code is used in section 361.

168 REMOVE ITEMS FROM THE PARSE STACK REMOVE FROM STACK WLIBRARY §361

361. Remove items from the parse stack.
The remove routine is a straddler. The number of records to pop is the appropriate grammar’s subrule: all
the king’s men... The straddler part is how the PDA works: the top record is the state just entered. The
symbol that vectored into it is one back. This is the straggler. So one is popping the vectored into state
leaving the exposed symbol record. This holds for accepted and aborted parse situations. The Start state
record is always on the stack: even at parse shutdown as there is nothing to clean up.

〈Remove items from the parse stack 361 〉 ≡
Cparse record ∗pr ;

〈Get current stack record 353 〉;
〈Trace TH remove items from the parse stack configuration 579 〉;
while (No to remove > 0) {
〈Trace TH popped state no 583 〉;
〈Clean up parse stack record and pop state from stack exposing symbol record 356 〉;
〈Check for zeroed out symbol on parse stack. If so goto next element to remove 357 〉;
〈Trace TH exposed symbol on parse stack 585 〉;
〈 Is popping symbol auto deleted? then deal with it and goto next element to remove 358 〉;
〈Check for aborted parse situation. If clean goto next element to remove 359 〉;
〈Trace TH advise when auto abort happening 587 〉;
〈Deal with auto abort 360 〉;
〈 Initialize stack record 354 〉;

next stack element to remove :
−−No to remove ;

}
〈Trace TH finished removing items from the parse stack configuration 580 〉;

This code is used in section 350.

362. clear parse stack .

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::clear parse stack ()
{

yacco2 ::INT s = parse stack .top sub − 1; /∗ always leave 1st parse record ∗/
if (s > 0) remove from stack (s);
if (s ≡ 0) { /∗ cleanse possible acceptance start rule ∗/
〈Reserve and get current stack record 352 〉;
if (pr~rule s reuse entry ptr 6= 0) { /∗ don’t need hanging around like a dirty smell ∗/

pr~rule s reuse entry ptr = 0; /∗ already recycled ∗/
}

}
}

§363 WLIBRARYTOKENGET, RESET, OVERRIDE FLAVOURS: CURRENT TOKEN , RESET CURRENT TOKEN , ETC 169

363. Token Get, Reset, Override Flavours: current token , reset current token , etc.

364. current token .
It checks whether it has a symbol table lookup functor. If it does not exist or the facility is turned off, the
current terminal is returned. The table lookup will try to remap a generic terminal. The terminal remapped
can be anything. This is dependent on the functor written for the language being compiled.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::CAbs lr1 sym ∗yacco2 ::Parser ::current token (){Remap token (current token)

Remap set result and return (current token)
}

365. Reset current token.
reset current token 15 micro seconds of fame by re-aligning the calling parser’s current token’s co-ordinate
within the token stream using the Pos parameter.

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::reset current token (yacco2 ::UINT Pos)
{
〈Validate if parser’s supplier exists 552 〉;
〈Validate if subscript within supplier’s bnds 553 〉;
if (YACCO2_T__ 6= 0) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_T__::" � thread no � "::" � thread name () � "::" �

" reset_current_token pos: " � Pos � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;

}
current token pos = Pos ;
current token = (∗token supplier)[Pos];
if (YACCO2_T__ 6= 0) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_T__::" � thread no � "::" � thread name () � "::" �

" reset_current_token: token to: " � current token ~ id � " pos: " �
current token pos � " enum: " � current token ~enumerated id � ’"’ �
current token ~ id � ’"’ � FILE_LINE � std ::endl ;

yacco2 :: lrclog � "\t\t::GPS FILE: ";
EXTERNAL GPSing (current token)yacco2 :: lrclog � " GPS LINE: " �

current token ~ tok co ords .line no � " GPS CHR POS: " �
current token ~ tok co ords .pos in line � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}
}

366. override current token .

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::override current token (yacco2 ::CAbs lr1 sym &Token ,yacco2 ::UINT Pos)
{

current token pos = Pos ;
current token = &Token ;
}

170 OVERRIDE CURRENT TOKEN POS WLIBRARY §367

367. override current token pos .

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::override current token pos (yacco2 ::UINT Pos)
{

current token pos = Pos ;
}

368. current token pos .

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::UINT yacco2 ::Parser ::current token pos ()
{

return current token pos ;
}

369. Get shift’s next token get shift s next token .

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::get shift s next token ()
{

get next token ();
}

§370 WLIBRARY THREAD NAME OF GRAMMAR THAT IS A THREAD 171

370. Thread name of grammar that is a thread. Monolithic grammars use their “fsm” name.

371. thread name .

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::KCHARP yacco2 ::Parser :: thread name ()
{

return thread name ;
}

372. Thread entry.
Contains all the dirt about the thread. This entry is nil if its a monolithic grammar. This entry’s thread id
is used as the key into the parallel thread global table.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::Thread entry ∗yacco2 ::Parser :: thread entry ()
{

return thread entry ;
}

172 THREAD “HOWS AND WHYS” ON THREAD ACTIVATION WLIBRARY §373

373. Thread “hows and whys” on thread activation.
There are just 2 critical region classifications:

1) launched threads’ table
2) each grammar’s threading region

Each grammar’s threading region supports the framework for inter-thread communications: messaging (re:
events) and acceptance token queue — tokens passed back as results from a thread’s execution.
Messaging components:
The th active cnt and th accepting cnt are variables that are dynamicly set at each thread launch in-
vocation within the launching grammar. The number of attempted parallel parses is indicated by the
th active cnt which is the launched number of threads. As each thread stops processing, it decrements the
counter of the launching grammar. When the counter reaches 0, it is that thread’s responsibility to notify
the sleeping pp parser by event to wake up and assess the parallel parse results. th accepting cnt is the
number of accept messages placed into the message queue by successful parallel parses. This number can be
0 indicating that all the attempted parallel parses have failed.

Originally the control monitor was the go between for the grammar requesting parallelism and the threads
controlled by it. Now the requesting grammar launches the threads given by the its fa’s configuration state.
A little optimization is done by the requesting grammar: only launch threads whose first set contains the
current token. The launching first checks if the thread is in the global thread table and that it is available
for work.

To further the pursuit of speed, variables no competing pp ths and no requested ths to run determine
how the threads should be executed within the local context of the launched grammar. If there is only 1 thread
to launch, it is executed as a procedure call without the thread baggage and its critical region entourage
(not any more: pure thrrreading in the scotish roll of “r”). Why the 2 variables? no competing pp ths
tells the current thread how many others are competing and have been launched by the requesting gram-
mar. Without it being local the threaded grammar needs to acquire the mutex of its caller to determine
the number of launched threads. It is a read-only variable that receives its value from the requesting
grammar’s no requested ths to run variable at start up time. If this grammar requests parallelism, it
sets its own no requested ths to run variable and calls the appropriate threads who in term set their
no competing pp ths variable at their invocation time. The nesting of threads requires this 2 variable
approach: read-only, and read/write along with the optimization requirement.

The last part to the flow of messages between threads and the launching grammar is the waking up of
the calling grammar. The launching grammar waits on “the wakeup” event posted by the last completed
execution of the launched threads Originally there were many posted messages due to the above middlemen
but this was streamlined to just wake up the grammar requesting parallelism. It then checks the critical
region variable th accepting cnt as to whether any of the launched threads were successful.

Why are there variants on “Wait for an event with or no loop”? Cuz of “pthread” implementations. It
depends on how the library deals with messages for an intended thread that has not gone into the waiting
stupor. Some “pthread” implementation will queue up the potential message while others just drop it. It’s
a question of how to sync the wait. If the “pthread” supports a future thread eventually getting to wait on
the message and the called thread has already fired off the message, this pooled “to be awakened” message
will be be forwarded to the thread asking to be put on hold. Your choice.

§374 WLIBRARY HOW TO CALL A THREAD 173

374. How to call a thread.

375. Procedure call: start procedure call .

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::THR result Parser ::start procedure call (yacco2 ::State &S)
{

th active cnt = 1;
no requested ths to run = 1;
〈Trace MSG start by procedure call 614 〉;
THR result rslt = (∗S.proc call addr)(this);

〈Trace MSG return from by procedure call 615 〉;
return rslt ;
}

376. Manually: spawn thread manually .
There is no checking on the first set of the thread. It just runs it. Allows the grammar writer to explicitly
run a thread.

〈 accrue yacco2 code 33 〉 +≡
bool yacco2 ::Parser ::spawn thread manually (yacco2 ::USINT Thread id)
{

yacco2 ::thread array record ∗thd stable = (yacco2 ::thread array record ∗) THDS_STABLE__;
Thread entry ∗∗thd tbl = (Thread entry ∗∗) &thd stable~first entry ;
int no thds = thd stable~no entries − 1; /∗ rel to 0 ∗/
if ((Thread id > no thds)) {

char a[BUFFER_SIZE];
yacco2 ::KCHARP msg = "spawn_thread_manually thread id: %i out of bounds 0 to %i: \

no thread available";

sprintf (a,msg ,Thread id ,no thds);
Yacco2 faulty precondition (a, __FILE__, __LINE__);
exit (1);

}
th lst .clear ();

Thread entry ∗pe = thd tbl [Thread id];

th lst .push back (pe);
return start threads ();
}

174 START THREADS: START THREADS WLIBRARY §377

377. Start threads: start threads .
The grammar has already determined what threads to launch before calling this routine. See 〈determine
if there are threads to run 378 〉 for details. It supplies this threads thru its own private list. It searches
through the global table for a thread tapping its toes to some ipod beat. If the thread is not in the table, the
thread is created and passed back. If the thread is found and it’s snapping its fingers for service— garçon,
then it is taken, marked in the table as working, and passed back.

The last condition is the thread is found but not available to work as it already is working. This situation
is nested parallelism which is equivalent to recursion used by top down parses. So, create the thread and
enter it in the global table list of same thread, run it, and return.

Question. Why do you use a global mutex to protect the global thread table? As I do not know how a
template runtime library controls multi-access, this is an assurance that there is no destruction or strange
behaviours caused by multiple cpu systems or hyper thread systems. This might be overkill but it can be
fine tuned when ported to a specific platform having standard template library thread safety. Just comment
out the contents of 〈 acquire global thread table critical region 380 〉 and 〈 release global thread table critical
region 381 〉.

Dance of the thread / procedure samba.
Sirens of speed are calling. The procedure call happenns when there is only 1 thread to call so its sidekick
doubles for him. What happens when this sidekick is called recursively? For speed reasons, the called
procedure’s fsm table is static and global. Rephrased having the fsm table locally defined in the procedure
takes on the ctor / use / dtor overhead. So? Well recursion becomes a destructive action on the singular
fsm table. 2 or more chefs adding salt to the same pot without their knowledge of the other. Now detect
whether the procedure is in use so that its thread partner does the strutting.

378. Determine if there are threads to run by current token.

〈determine if there are threads to run 378 〉 ≡
th lst .clear ();
find threads by first set (id of T , th lst , ∗S.state s thread tbl);

This code is cited in section 377.

This code is used in section 421.

379. Are there threads to run?. no exit with no-thds-to-run result.

〈 are there threads to run?. no exit with no-thds-to-run result 379 〉 ≡
if (th lst .empty () ≡ YES) return Parser ::no thds to run ;

This code is used in section 421.

380. Acquire global thread table critical region.

〈 acquire global thread table critical region 380 〉 ≡
if (yacco2 ::YACCO2_MU_TH_TBL__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � " −−> Attempting to acquire thread table Mutex" � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;
}
LOCK_MUTEX(yacco2 ::TH_TBL_MU);
if (yacco2 ::YACCO2_MU_TH_TBL__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � " −−> Acquired thread table Mutex" � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;
}

This code is cited in sections 110, 178, 179, and 377.

This code is used in sections 180, 273, and 384.

§381 WLIBRARY RELEASE GLOBAL THREAD TABLE CRITICAL REGION 175

381. Release global thread table critical region.

〈 release global thread table critical region 381 〉 ≡
if (yacco2 ::YACCO2_MU_TH_TBL__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � " −−> Attempting to release thread table Mutex" � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;
}
UNLOCK_MUTEX(yacco2 ::TH_TBL_MU);
if (yacco2 ::YACCO2_MU_TH_TBL__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � " −−> Released thread table Mutex" � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;
}

This code is cited in sections 110, 178, 179, and 377.

This code is used in sections 180, 273, and 384.

382. Determine disposition of thread in global thread table.
There are 3 possibilities:

1) thread not in global table so needs to be created
2) all threads of same name busy so need to create another copy - nested situation
3) thread loitering around so put it to work

〈determine disposition of thread 382 〉 ≡
int thread disposition (0);
Parallel thread list type &i = Parallel thread table [pe~ thd id];
Parallel thread list iterator type j;
Parallel thread list iterator type je ;
worker thread blk ∗tb ;

if (i.empty () ≡ true) {
thread disposition = NO_THREAD_AT_ALL;
goto dispatch disposition ;
}
j = i.begin ();
je = i.end ();
for (; j 6= je ; ++j) {

tb = ∗j;
〈Trace threads in launched list 619 〉;
if (tb~status ≡ THREAD_WAITING_FOR_WORK) {

thread disposition = THREAD_WAITING_FOR_WORK;
goto dispatch disposition ;

}
}
thread disposition = ALL_THREADS_BUSY;
goto dispatch disposition ;

This code is used in section 384.

176 DISPATCH ON THREAD AVAILABILITY WLIBRARY §383

383. Dispatch on thread availability.
Note at the time of thread creation, it will fill in its operating system’s “thread no” returned
from THREAD_SELF procedure. Also the thread’s pp requesting parallelism , from thread , and
no competing pp ths gets filled in by the canned wpp core .h code. So this is why u do not see these
variables set in the code parts of NO_THREAD_AT_ALL , and ALL_THREADS_BUSY.

〈dispatch on thread availability: busy, available, and create one 383 〉 ≡
switch (thread disposition) {
case THREAD_WAITING_FOR_WORK:
{
LOCK_MUTEX_OF_CALLED_PARSER(tb~grammar s parser ~mu , ∗tb~grammar s parser , " of self");
tb~status = THREAD_WORKING;
++tb~run cnt ;
tb~grammar s parser ~pp requesting parallelism = this;
tb~grammar s parser ~no competing pp ths = this~no requested ths to run ;
tb~grammar s parser ~ from thread = this;
〈Trace MSG found thread in thread pool waiting to be run 611 〉;
UNLOCK_MUTEX_OF_CALLED_PARSER(tb~grammar s parser ~mu , ∗tb~grammar s parser ,

" of self");
SIGNAL_COND_VAR(∗tb~grammar s parser , ∗this);
break;

}
case NO_THREAD_AT_ALL:
{
〈Trace MSG thread not found in global thread pool 613 〉;
THR result result = CREATE_THREAD(pe~ thread fnct ptr , ∗this);

break;
}

case ALL_THREADS_BUSY:
{
〈Trace MSG thread fnd but all busy, so launch another one 612 〉;
yacco2 ::THR result result = CREATE_THREAD(pe~ thread fnct ptr , ∗this);

break;
}
}

This code is used in section 384.

§384 WLIBRARY REQUEST THREADS TO WORK 177

384. Request threads to work.
It goes thru the thread list of the current fa’s state configuration. If there is only 1 thread to be run, it calls
it as a procedure rather than as a thread. The crowd is going mad... A little Fraggle Roc. I got to keep that
white cane from removing me off the stage.

Why the “VMS__” macro variable? Don’t ask, HP fumbled the pthread library implementation and the
procedure call interfers with their pananoia. Blow ups on what they think is recursion to same mutex whereby
a called procedure can then down the grammar call chain call itself again but the thread is launched as a
thread. There is no interference on mutex recursion: each instantiation of a thread / procedure call contains
its own mutex / conditional variable. Oh well enough of the core dump reguritation. Also see their stutter
on the pthread attr t variable that does not default properly on stack size. It really blows its brains out even
with their debugger as the firing up of the threads can’t even get the registers created and so nada on the
debugger scene with bad exception thrown.

〈 request threads to work 384 〉 ≡
th active cnt = th lst .size ();
no requested ths to run = th active cnt ;

yacco2 threads to run iter type i = th lst .begin ();
yacco2 threads to run iter type ie = th lst .end ();
USINT new r w cnt = supplier r w cnt + no requested ths to run − 1;

if (new r w cnt > 1) {
if (supplier r w cnt ≡ 1) {

if (token supplier 6= 0) {
token supplier ~r w cnt = new r w cnt ;

}
}
else {

if (token supplier 6= 0) {
〈 acquire token mu 391 〉;
token supplier ~r w cnt = new r w cnt ;
〈 release token mu 392 〉;

}
}
}
Thread entry ∗pe = ∗i;
〈 acquire global thread table critical region 380 〉;

#ifndef VMS111__

if (no requested ths to run > 1) goto thread call ;
procedure call :
{

if (Parallel thread proc call table [pe~ thd id].proc call in use ≡ true) {
〈Trace MSG proc call in use so call its thread 623 〉;
goto thread call ;

}
Parallel thread proc call table [pe~ thd id].proc call in use = true ;
〈 release global thread table critical region 381 〉;
〈Trace MSG start by procedure call 614 〉;
THR result rslt = (∗pe~proc thread fnct ptr)(this);

〈 acquire global thread table critical region 380 〉;
Parallel thread proc call table [pe~ thd id].proc call in use = false ;
〈 release global thread table critical region 381 〉;
〈Trace MSG return from by procedure call 615 〉;

178 REQUEST THREADS TO WORK WLIBRARY §384

return CALLED_AS_PROC;
}

#endif
thread call :
{

for (; i 6= ie ; ++i) {
pe = ∗i;
〈Trace thread to be launched 620 〉;
〈determine disposition of thread 382 〉;

dispatch disposition :
〈dispatch on thread availability: busy, available, and create one 383 〉;
〈Trace TH parallel parse thread start communication 591 〉;

}
}
〈 release global thread table critical region 381 〉;
return CALLED_AS_THREAD;

This code is cited in section 742.

This code is used in section 385.

385. start threads .

〈 accrue yacco2 code 33 〉 +≡
bool yacco2 ::Parser ::start threads ()
{
〈Trace MSG start thread 610 〉;
〈 request threads to work 384 〉;
}

§386 WLIBRARY CALL ARBITRATOR: CALL ARBITRATOR 179

386. Call arbitrator: call arbitrator .
No distinction made between automatically launched thread and its manual breathern. A pre-canned
arbitrator AR for manual thread spawning is used that just returns the first item in the queue cuz there
is no specialized selective code. There is a check as to more than one accept message within the queue that
produces a thrown error.

Note the optimization code: If there is only 1 parallel thread within the configuration and there is no
arbritration code present, then no arbitrator code for that grammar’s state configuration is emitted by
Yacco2. Also if only 1 T accepting then don’t call the arbitrator function.

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::call arbitrator (yacco2 ::Type pp fnct ptr The judge)
{

if (th accepting cnt ≡ 1) { /∗ optimize no arbitration needed ∗/
arbitrated token = &pp accept queue [1];
pp accept queue idx = 1;
return;

}
(∗The judge)(this);
}

387.

〈Optimized code call arbitrator 387 〉 ≡
if (The judge ≡ 0) { /∗ arbitrator not present in grammar ∗/

arbitrated token = &pp accept queue [1];
pp accept queue idx = 1;
}
if (The judge 6= 0) { /∗ arbitrator present due to code in grammar ∗/

if (th accepting cnt ≡ 1) { /∗ optimize no arbitration needed ∗/
arbitrated token = &pp accept queue [1];
pp accept queue idx = 1;
return;

}
(∗The judge)(this);
return;
}
arbitrated token = &pp accept queue [1];
pp accept queue idx = 1;

180 PEDESTRIAN ROUTINES FOR THREADING WLIBRARY §388

388. Pedestrian routines for threading.

389. Acquire trace mu.
Used to serialize trace output. Sometimes the traced output is skewed due to the threading. The output to
a global container is not thread safe, so make it by use of a mutex.

〈 acquire trace mu 389 〉 ≡
LOCK_MUTEX(yacco2 ::TRACE_MU);
if (yacco2 ::YACCO2_MU_TRACING__) {

yacco2 :: lrclog � "YACCO2_MU_TRACING__::Acquired trace mu" � FILE_LINE � std ::endl ;
}

This code is used in sections 79, 96, 97, 99, 101, 102, 163, 182, 183, 230, 337, 338, 365, 380, 381, 401, 402, 497, 539, 579, 580,
582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 601, 602, 603, 604, 605, 606, 607,

608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 626, 628, 629, 633, 634, 637, 638, 639, 640,
641, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, and 653.

390. Release trace mu.

〈 release trace mu 390 〉 ≡
if (yacco2 ::YACCO2_MU_TRACING__) {

yacco2 :: lrclog � "YACCO2_MU_TRACING__::Releasing trace mu" � FILE_LINE � std ::endl ;
}
UNLOCK_MUTEX(yacco2 ::TRACE_MU);

This code is cited in section 747.

This code is used in sections 79, 96, 97, 99, 101, 102, 163, 182, 183, 230, 337, 338, 365, 380, 381, 401, 402, 497, 539, 579, 580,

582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 601, 602, 603, 604, 605, 606, 607,
608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 626, 628, 629, 633, 634, 637, 638, 639, 640,
641, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, and 653.

391. Acquire token mu.
Used to serialize token reading.

〈 acquire token mu 391 〉 ≡
LOCK_MUTEX(yacco2 ::TOKEN_MU);

This code is used in sections 79, 85, 90, 96, 98, 280, 320, 324, 328, 332, and 384.

392. Release token mu.

〈 release token mu 392 〉 ≡
UNLOCK_MUTEX(yacco2 ::TOKEN_MU);

This code is used in sections 79, 85, 90, 96, 98, 280, 320, 324, 328, 332, and 384.

393. Wait for event: wait for event .

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::wait for event ()
{
〈Trace MSG thread waiting for message 601 〉;

#if THREAD_LIBRARY_TO_USE__ ≡ 1
〈wait for event to arrive with no loop 394 〉;

#else
〈wait for event to arrive with no loop 394 〉;

#endif
〈Trace MSG message received 602 〉;
}

§394 WLIBRARY WAIT FOR AN EVENT TO ARRIVE WITH NO LOOP 181

394. Wait for an event to arrive with no loop.
This is a free-for-all loop, in my case only 1:1. The conditional variable and its associated data value is
protected by the mutex. The calling thread has possession of the called thread’s mutex. It does its thing in
the critical region of the called thread by depositing the message and setting the conditional variable’s data
indicator to EVENT_RECEIVED. It releases the called thread’s critical region and signals the thread library to
wake up the called thread thru a conditional variable. SIGNAL_COND_VAR is the wrapper function to do this
with the passed in variable being the selected thread to wakeup.

The wakened thread has now in its possession its critical region protecting the conditional variable and
associated message indicator.

〈wait for event to arrive with no loop 394 〉 ≡
COND_WAIT(cv ,mu , ∗this);
cv cond = WAIT_FOR_EVENT;

This code is cited in sections 110 and 395.

This code is used in section 393.

395. Wait for an event to arrive with loop.
This is a free-for-all loop, in my case only 1:1. The conditional variable and its associated data value is
protected by the mutex. The calling thread has possession of the called thread’s mutex. It does its thing in
the critical region of the called thread by depositing the message and setting the conditional variable’s data
indicator to EVENT_RECEIVED. It releases the called thread’s critical region and signals the thread library to
wake up the called thread thru a conditional variable. SIGNAL_COND_VAR is the wrapper function to do this
with the passed in variable being the selected thread to wakeup.

The wakened thread has now in its possession its critical region protecting the conditional variable and
associated message indicator. But to be in good keeping, I used Pthread’s recommendation to protect
against spurious interrupts. This is why the wait loop tests the message indicator. If it was a spurious
event, it quitely goes back to sleep waiting for that prince charming to... To protect against false messages
received, the condition is set right after the loop. THIS DOES NOT WORK IN HP’s Alpha. That is why
wait for event () uses 〈wait for event to arrive with no loop 394 〉 in its macro conditional.

〈wait for event to arrive with loop 395 〉 ≡
while (cv cond ≡ WAIT_FOR_EVENT) {
COND_WAIT(cv ,mu , ∗this);
}
cv cond = WAIT_FOR_EVENT;

396. post event to requesting grammar .
The calling thread already has the write access to the called thread’s critical region. Note: All messages are
synchronous in nature

1) A thread waits for an event. There is only one thread that will reply.
2) The replying thread already has the caller’s mutex in its posession.

Therefore, the called grammar’s mutex only needs releasing before it gets wakened by the SIGNAL_COND_VAR

routine. It interrupts the thread runtime library with the thread’s conditional variable.

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::post event to requesting grammar
(yacco2 ::Parser &To thread
,yacco2 ::INT Message id
,yacco2 ::Parser &From thread)
{
〈Trace posting from - to thread info 603 〉;
〈deposit sender’s co-ordinates and event in called thread’s critical region 398 〉;
〈 signal thread to wake up and work 397 〉;
}

182 SIGNAL THREAD TO WAKE UP AND WORK WLIBRARY §397

397. Signal thread to wake up and work.
This is the wake up event for the thread library to activate the thread from slumber.

〈 signal thread to wake up and work 397 〉 ≡
〈Trace signaled grammar to wakeup while releasing its mutex 604 〉;
SIGNAL_COND_VAR(To thread , ∗this);
〈Trace wakened grammar with its acquired mutex 605 〉;

This code is cited in section 110.

This code is used in section 396.

398. Deposit sender’s co-ordinates and event in called thread’s critical region.

〈deposit sender’s co-ordinates and event in called thread’s critical region 398 〉 ≡
To thread .from thread = &From thread ;
To thread .msg id = Message id ;

This code is used in section 396.

399. have all threads reported back .
Each thread has the responsibility to check whether it is the last thread to finish processing launched by
the requesting grammar. There is no distinction on success or failure. If it is the last thread to complete, it
must report back via an event to the grammar requesting parallelism. If this is not done, well you’ve heard
of Rip Van Winkle? The requestor grammar and its dwarfs will sleep forever but not the grammar writer.
Trust me, ‘after you circles’ of politness, or in computer terms the ‘5 dining philosophers’ is down right hard
to solve.

〈 accrue yacco2 code 33 〉 +≡
bool yacco2 ::Parser ::have all threads reported back ()
{

if (pp requesting parallelism ~ th active cnt ≡ 0) return YES;
return NO;
}

§400 WLIBRARY PARANOID ROUTINES — ABORTS 183

400. Paranoid routines — Aborts.

401. abort accept queue irregularites .
Provide logic clues to grammar writer. At least give the writer the grammar’s state, list of threads launched,
and accept tokens to figure out logic bug.

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::abort accept queue irregularites (yacco2 ::Caccept parse &Calling parm)
{
〈 acquire trace mu 389 〉;
char a[BUFFER_SIZE];
int i = 1;
int ie = th accepting cnt ;
KCHARP grammar having logic bug = "abort_accept_queue_\

irregularites ""− Overflow on accept queue Grammar name: %s in parse state: %i";

sprintf (a, grammar having logic bug , fsm tbl ~ id , top stack record ()~state ~state no);
yacco2 :: lrclog � a� FILE_LINE � std ::endl ;
yacco2 :: lrclog � " List of launched threads" � __FILE__ � __LINE__ � std ::endl ;

KCHARP thread in launched list = " − %s";
yacco2 threads to run iter type ii = th lst .begin ();
yacco2 threads to run iter type iie = th lst .end ();

for (; ii 6= iie ; ++ii) {
Thread entry ∗pe = ∗ii ;

sprintf (a, thread in launched list , pe~ thread fnct name);
yacco2 :: lrclog � a� FILE_LINE � std ::endl ;

}
yacco2 :: lrclog � " List of potential accept parse Tes" � __FILE__ � __LINE__ � std ::endl ;

KCHARP no of accept tokens in queue = " no of accept tokens in queue: %i";

sprintf (a,no of accept tokens in queue , th accepting cnt);
yacco2 :: lrclog � a� FILE_LINE � std ::endl ;

KCHARP accept queue tokens = " − id: %s, token position: %i";

for (; i ≤ ie ; ++i) {
sprintf (a, accept queue tokens , pp accept queue [i].accept token ~ id ,

pp accept queue [i].accept token pos);
yacco2 :: lrclog � a� FILE_LINE � std ::endl ;

}
〈 release trace mu 390 〉;
KCHARP msg = "Overflow on Accept queue no of items: %i not eq to thread a\

ccepting cnt: %i\n""This means more than 1 thread adding same accept token into\

 queue?";

sprintf (a,msg , th accepting cnt + 1, th accepting cnt);
Yacco2 faulty precondition (a, __FILE__, __LINE__);
exit (1);
}

184 ABORT NO SELECTED ACCEPT PARSE IN ARBITRATOR WLIBRARY §402

402. abort no selected accept parse in arbitrator .
Provide logic clues to grammar writer. At least give the writer the grammar’s state, list of threads launched,
and accept tokens to figure out logic bug.

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::abort no selected accept parse in arbitrator ()
{
〈 acquire trace mu 389 〉;
char a[BUFFER_SIZE];
int i = 1;
int ie = th accepting cnt ;
KCHARP grammar having logic bug = "abort_no_selected_accept_parse_in_arbit\

rator ""− No selected accept T Grammar name: %s in parse state: %i";

sprintf (a, grammar having logic bug , fsm tbl ~ id , top stack record ()~state ~state no);
yacco2 :: lrclog � a� FILE_LINE � std ::endl ;
yacco2 :: lrclog � " List of launched threads" � __FILE__ � __LINE__ � std ::endl ;

KCHARP thread in launched list = " − %s";
yacco2 threads to run iter type ii = th lst .begin ();
yacco2 threads to run iter type iie = th lst .end ();

for (; ii 6= iie ; ++ii) {
Thread entry ∗pe = ∗ii ;

sprintf (a, thread in launched list , pe~ thread fnct name);
yacco2 :: lrclog � a� FILE_LINE � std ::endl ;

}
yacco2 :: lrclog � " List of potential accept parse Tes" � __FILE__ � __LINE__ � std ::endl ;

KCHARP no of accept tokens in queue = " no of accept tokens in queue: %i";

sprintf (a,no of accept tokens in queue , th accepting cnt);
yacco2 :: lrclog � a� FILE_LINE � std ::endl ;

KCHARP accept queue tokens = " − id: %s, token position: %i";

for (; i ≤ ie ; ++i) {
sprintf (a, accept queue tokens , pp accept queue [i].accept token ~ id ,

pp accept queue [i].accept token pos);
yacco2 :: lrclog � a� FILE_LINE � std ::endl ;

}
〈 release trace mu 390 〉;
KCHARP msg = "No selected accept parse T no of items: %i \n";

sprintf (a,msg , th accepting cnt);
Yacco2 faulty precondition (a, __FILE__, __LINE__);
exit (1);
}

§403 WLIBRARY LETS PARSE DO U? 185

403. Lets parse do u?.

404. Common parsing code.

405. Clean up aborted parallel parse and exit erred.

〈 clean up aborted parallel parse and exit erred 405 〉 ≡
clean up();
return Parser ::erred ;

This code is used in sections 418, 421, and 422.

406. Exit as paralleled.
The passed back token co-ordinates are the token, position in the token stream, and the lookahead token
and its position in the token stream. This is lodged in arbitrated token taken from the accept queue . The
accepted token is determined by the arbitrator. Why the 2 token co-ordinates? The returned terminal is a
digested statement of one or more consumed tokens in the token stream. Its token position is usually the first
terminal passed for the parallel parsing: The position used the stamp the returned token can be anywhere
within the position bounds of the just consummed tokens. The lookahead co-ordinates is the current token
for future use. It has the same meaning as the lookahead set used by a reduce operation.

〈 clean up and exit as paralleled 406 〉 ≡
clean up();
return Parser ::paralleled ;

This code is used in section 422.

407. Wait for parallelism response if required.

〈wait for parallelism response if required 407 〉 ≡
if (how thread called ≡ CALLED_AS_THREAD) {

wait for event ();
}

This code is used in sections 421 and 422.

408. Extract accept parse’s token Caccept parse.
It extracts the arbitrated accept parse’s token, and zeroes out its presence from the accept queue. This
protects against the accept parse cleanup process deleting it as it dutifully erases all potential accept tokens
in its queue.

〈 remove accepted token reference from Caccept parse and delete Caccept parse 408 〉 ≡
arbitrated token ~accept token = 0;

This code is used in sections 418 and 421.

409. Dispatch on parallel result.

〈dispatch on parallel result 409 〉 ≡
if (th accepting cnt 6= 0) goto parallelism successful ;
else goto parallelism unsuccessful ;

This code is used in sections 421 and 422.

410. Re-align token stream to la boundry.

〈 re-align token stream to la boundry 410 〉 ≡
override current token (∗arbitrated token ~ la token , arbitrated token ~ la token pos);

This code is used in sections 418 and 421.

186 RE-ALIGN CURRENT TOKEN STREAM TO ACCEPT TOKEN CO-ORDINATES WLIBRARY §411

411. Re-align current token stream to accept token co-ordinates.

〈 re-align current token stream to accept token co-ordinates 411 〉 ≡
override current token (∗arbitrated token ~accept token , arbitrated token ~accept token pos);

This code is used in sections 418 and 421.

412. Allocate T id to search with.

〈 allocate T id to search with 412 〉 ≡
yacco2 ::USINT id of T = current token ~enumerated id ;

This code is used in section 421.

413. Startup those threads. On your mark, get set, ...

〈 startup those threads 413 〉 ≡
bool how thread called = start threads ();

This code is used in section 421.

414. Clean up parallelism scribbles: clean up .
Sanitize for another round of parallel parses. Its variables are re-initialized, and potential accept messages
deleted from the queue. It is rare that there is many accept messages in the queue. But when it happens,
arbitration zeroed out the winner from the list leaving the balance of messages to be flushed out. The
winning message is handed off to the requesting grammar to digest. no competing pp ths is not cleared as
it’s a read-only variable set by the grammar requesting parallelism.

〈 accrue yacco2 code 33 〉 +≡
void yacco2 ::Parser ::clean up()
{

if (th accepting cnt > 1) { /∗ delete losers ∗/
for (int x = 1; x ≤ th accepting cnt ; ++x) {

if (x ≡ pp accept queue idx) continue;
if (pp accept queue [x].accept token ~auto delete () ≡ YES) {

delete pp accept queue [x].accept token ;
}
pp accept queue [x].initialize it ();

}
}
th active cnt = 0;
th accepting cnt = 0;
pp accept queue idx = 0;
}

415. Chained procedure call parsing: chained proc call parsing .
Procedure call parsing’s logic:

1) if |t|is present in the state.
This is a subrule expression that links the prefix symbol to an explicit procedure call. Its a top-down
attitude to parsing with the efficiency of a procedure call. Though thread calls are neat they have their
runtime inefficiences caused by their launching requirements: registers setup, address paging domains etc.
Until thread calls become hardwire-support equivalent in procedure call speed this allows one to fiddle. See
pass3 .lex grammar dealing with O2’s include file expression.

§416 WLIBRARY DISPATCH ON PROC CALL RESULT 187

416. Dispatch on proc call result.

〈dispatch on proc call result 416 〉 ≡
if (result ≡ th accepting cnt 6= 0) goto proc call successful ;
else goto proc call unsuccessful ;

This code is used in section 418.

417. Shift |t|onto parse stack.

〈 shift proc call operator on to pp’s parsing stack 417 〉 ≡
top stack record ()~set symbol (NS yacco2 k symbols ::PTR LR1 fset transience operator);

State ∗Goto state = S.proc call shift ~goto ;

〈 add to stack 349 〉; /∗ ¡Trace TH the parse stack configuration¿; ∗/
This code is used in section 418.

418. chained proc call parsing .

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::THR result yacco2 ::Parser ::chained proc call parsing (yacco2 ::State &S)
{

THR result result = start procedure call (S);

〈Trace TH request thread received message from parallel thread 594 〉;
〈dispatch on proc call result 416 〉;

proc call successful :
{
〈 shift proc call operator on to pp’s parsing stack 417 〉;
〈 re-align current token stream to accept token co-ordinates 411 〉;
〈Trace TH accepted token info 592 〉;
proc call shift (∗arbitrated token ~accept token);
〈 re-align token stream to la boundry 410 〉;
〈Trace TH re-aligned token stream la boundry info 593 〉;
〈 remove accepted token reference from Caccept parse and delete Caccept parse 408 〉;
clean up();
return Parser ::paralleled ;

}
proc call unsuccessful :
〈 clean up aborted parallel parse and exit erred 405 〉;
}

419. Start parallel parsing: start parallel parsing .
start parallel parsing’s logic:

1) determine by first set evalution if there are threads. exit if none.
2) parser spawns the parallel parser threads and waits for results
3) dispatching of the Arbitrator. Arbitration is local per state

420. Shift (|||) onto parse stack.

〈 shift parallel operator on to pp’s parsing stack 420 〉 ≡
top stack record ()~set symbol (NS yacco2 k symbols ::PTR LR1 parallel operator);
Goto state = S.parallel shift ~goto ;
〈 add to stack 349 〉; /∗ ¡Trace TH the parse stack configuration¿; ∗/

This code is used in section 421.

188 START PARALLEL PARSING WLIBRARY §421

421. start parallel parsing .

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::Parser ::parse result yacco2 ::Parser ::start parallel parsing (yacco2 ::State &S)
{

yacco2 ::State ∗Goto state ;

〈 allocate T id to search with 412 〉;
〈determine if there are threads to run 378 〉;
〈 are there threads to run?. no exit with no-thds-to-run result 379 〉;
〈 startup those threads 413 〉;

wait for response :
〈wait for parallelism response if required 407 〉;
〈Trace TH request thread received message from parallel thread 594 〉;
〈dispatch on parallel result 409 〉;

parallelism successful :
〈 shift parallel operator on to pp’s parsing stack 420 〉;
if (S.state s thread tbl ~ar fnct ptr ≡ 0) {

arbitrated token = &pp accept queue [1];
pp accept queue idx = 1;

}
else {

call arbitrator (S.state s thread tbl ~ar fnct ptr);
} /∗Validate accept message; ∗/
〈 re-align current token stream to accept token co-ordinates 411 〉;
〈Trace TH accepted token info 592 〉;
parallel shift (∗arbitrated token ~accept token);
〈 re-align token stream to la boundry 410 〉;
〈Trace TH re-aligned token stream la boundry info 593 〉;
〈 remove accepted token reference from Caccept parse and delete Caccept parse 408 〉;
clean up();
return Parser ::paralleled ;

parallelism unsuccessful :
〈 clean up aborted parallel parse and exit erred 405 〉;
}

§422 WLIBRARY START MANUALLY PARALLEL PARSING 189

422. start manually parallel parsing .
This facility allows one to do parallel parsing from syntax directed code within a grammar. For example,
one might test a returned terminal whose lookahead expressions need parsing. This is a context sensitive
way to process text dynamically. The Yacco2 compiler uses this approach to process its directives’ syntax
directed code. Here is a code sample using it.

1: /*

2: file: /yacco2/diagrams+etc/threadmanualcall.txt

3: Example of a subrule calling a thread manually.

4: Taken from grammar pass3.lex before explicit procedure call of threads

5: construct invented.

6: The start_manually_parallel_parsing function uses the

7: thread’s id generated from O2linker as its key to find the thread to launch.

8: */

9: -> "@"

10: /@

11: \Yacco2’s pre-processor include directive.\fbreak

12: \fbreak

13: This demonstrates a nested environment

14: where the grammar uses recursion by

15: calling a function which contains the |pass3| grammar sequence.

16: In this example, grammar |pass3|

17: manually calls a thread via

18: |start_manually_parallel_parsing|

19: to get its file name to process.

20: With the returned ‘‘file-inclusion’’ terminal,

21: |PROCESS_INCLUDE_FILE| is called to parse

22: the include file: a bom-de-bom-bom bump-and-grind sequence.

23: The |use_cnt_| is a global variable that protects

24: against the file include recursion of calling self

25: until a stack overflow occurs.

26: @/

27: {

28: op

29: using namespace NS_prefile_include;

30: using namespace NS_yacco2_T_enum;

31:

32: Parser::parse_result result =

33: rule_info__.parser__->

34: start_manually_parallel_parsing(ITH_prefile_include.thd_id__);

35: if(result == Parser::erred){

36: // in this case, it will not happen: here for education

37: rule_info__.parser__->set_abort_parse(true);

38: return;

39: }

40: // process returned token

41: Caccept_parse& accept_parm =

42: *rule_info__.parser__->arbitrated_token__;

43: CAbs_lr1_sym* rtn_tok = accept_parm.accept_token__;

44: int id = rtn_tok->enumerated_id__;

45: accept_parm.accept_token__ = 0;

190 START MANUALLY PARALLEL PARSING WLIBRARY §422

46: if(id == T_Enum::T_T_file_inclusion_) {

47: T_file_inclusion* finc = (T_file_inclusion*)(rtn_tok);

48: CAbs_lr1_sym* err = finc->error_sym();

49: if(err != 0) {

50: rule_info__.parser__->set_abort_parse(true);

51: ADD_TOKEN_TO_ERROR_QUEUE(*finc);

52: ADD_TOKEN_TO_ERROR_QUEUE(*finc->error_sym());

53: finc->error_sym(0);

54: return;

55: }

56: rule_info__.parser__->

57: override_current_token(*accept_parm.la_token__

58: ,accept_parm.la_token_pos__);

59: bool result =

60: PROCESS_INCLUDE_FILE

61: (*rule_info__.parser__

62: ,*finc,*rule_info__.parser__->token_producer__);

63: if(result == false){ // exceeded nested file limit

64: rule_info__.parser__->set_abort_parse(true);

65: return;

66: }

67: ADD_TOKEN_TO_RECYCLE_BIN(*finc);//file name inside

68: return;

69: }

70: // catch all errors

71: rule_info__.parser__->set_abort_parse(true);

72: ***

73: }

74:

75:

〈 accrue yacco2 code 33 〉 +≡
Parser ::parse result yacco2 ::Parser ::start manually parallel parsing
(yacco2 ::USINT Thread id)
{

bool how thread called = spawn thread manually (Thread id);

〈wait for parallelism response if required 407 〉;
〈Trace TH request thread received message from parallel thread 594 〉;
〈dispatch on parallel result 409 〉;

parallelism successful :
{

if (yacco2 ::PTR AR for manual thread spawning ≡ 0) {
arbitrated token = &pp accept queue [1];
pp accept queue idx = 1;

}
else {

call arbitrator (yacco2 ::PTR AR for manual thread spawning);
} /∗Validate accept message; ∗/
〈Trace TH accepted token info 592 〉;
〈 clean up and exit as paralleled 406 〉;

}
parallelism unsuccessful :

§422 WLIBRARY START MANUALLY PARALLEL PARSING 191

〈 clean up aborted parallel parse and exit erred 405 〉;
}

192 YACCO2 GLOBAL VARIABLES WLIBRARY §423

423. Yacco2 global variables.
A hodge-podge of entities and procedures supporting tracing, files processed with recursion support, thread-
ing tables and their first sets, low-level character mapping, and low level mutual exclusion controlling access
to threads, tracing, and symbol table management.

Access control: Bouncer / doorman.
By their name TRACE_MU, MUTEXTH_TBL_MU, and MUTEXSYM_TBL_MU are mutexes for crowd control for tracing,
thread table management, and symbol table access. THDS_STABLE__ and THDS_FSET_BY_T__ are data
structures generated by Yacco2’s Linker that get resolved to the specific use of this library. They are
dangling references.

File management:
FILE_TBL__ is a dictionary of file names that have been opened during the compile process. It’s key is the
file number component to the symbol’s GPS in the source file. FILE_CNT__ is the current file number being
processed. It starts from 0 due to C++’s vector requirement used by FILE_TBL__. The tok can template
containers use these variables: ie, raw character symbol processing. STK_FILE_NOS__ is a stack of nested
FILE_CNT__ file numbers used to re-establish processing of the file following its include statement.

〈Type defs 16 〉 +≡
typedef std ::vector〈std ::string 〉 gbl file map type;

424. Global variables.

〈Global variables 21 〉 +≡
extern std :: list〈std ::string 〉 O2_LOGICALS__;
extern std ::ofstream lrclog ;
extern std ::ofstream lrerrors ;
extern yacco2 ::KCHARP Lr1 VERSION ;
extern yacco2 ::KCHARP O2linker VERSION ;
extern yacco2 ::MUTEXTRACE_MU;
extern yacco2 ::MUTEXTH_TBL_MU;
extern yacco2 ::MUTEXSYM_TBL_MU;
extern yacco2 ::MUTEXTOKEN_MU;
extern yacco2 ::gbl file map type FILE_TBL__;
extern yacco2 ::UINT FILE_CNT__;
extern std ::vector〈yacco2 ::UINT〉 STK_FILE_NOS__;
struct rc map;
extern yacco2 ::rc map RC__;

425. LRK_LA_EOLR_SET.
Used by find reduce entry for meta termials lookahed set. Meta-terminals are 8 elements that start off the
enumeration scheme. Therefore they all fit within one partition. |?|, eog, and ||| are left out of the
lookahead set leaving eolr, |.|, |+|,|t|, and |r|.

〈Global variables 21 〉 +≡
extern yacco2 ::Set entry LRK_LA_EOLR_SET;

426. LRK_LA_QUE_SET for error enforcement.
Used by find questionable sym in reduce lookahead for forced reduce to handle error detection. It forces the
reducing subrule to reduce cuz the |?| symbol in in its follow set. That is the shifted into parse state for
the recuded rule contains the |?| symbol used for error catching.

〈Global variables 21 〉 +≡
extern yacco2 ::Set entry LRK_LA_QUE_SET;

§427 WLIBRARY GLOBAL ROUTINES 193

427. Global routines.

〈External rtns and variables 22 〉 +≡
extern void Delete tokens (yacco2 ::TOKEN GAGGLE &Tks ,bool Do delete = OFF);
extern void Clear yacco2 opened files dictionary ();

428. Global variables implementations.

〈 accrue yacco2 code 33 〉 +≡
std :: list〈std ::string 〉 yacco2 ::O2_LOGICALS__;
yacco2 ::gbl file map type yacco2 ::FILE_TBL__;
std ::vector〈yacco2 ::UINT〉 yacco2 ::STK_FILE_NOS__;
yacco2 ::UINT yacco2 ::FILE_CNT__(0);
yacco2 ::rc map yacco2 ::RC__;

yacco2 ::Type pp fnct ptr yacco2 ::PTR AR for manual thread spawning (0);
/∗ split lines: cuz Apple’s latest compiler bug ∗/
/∗ No matching literal operator for call to ’operator”’ date macro ∗/ /∗ with arguments of types

’const char*’ and ’unsigned long’, and no matching literal operator template ∗/ /∗ ∗/
yacco2 ::KCHARP yacco2 ::Lr1 VERSION = "O2 version: 1.0 Distribution Date: "

__DATE__"\n";
yacco2 ::KCHARP yacco2 ::O2linker VERSION = "O2linker version: 1.0 Distribution Date: "

__DATE__"\n";

yacco2 ::MUTEXyacco2 ::TOKEN_MU;
yacco2 ::MUTEXyacco2 ::TRACE_MU;
yacco2 ::MUTEXyacco2 ::TH_TBL_MU;
yacco2 ::MUTEXyacco2 ::SYM_TBL_MU;
std ::ofstreamyacco2 :: lrclog ("1lrtracings.log");
std ::ofstreamyacco2 :: lrerrors ("1lrerrors.log");

yacco2 ::Set entry yacco2 ::LRK_LA_EOLR_SET = {0, #f4}; /∗ eolr, |r|, |.|, |+|, and |t| ∗/
yacco2 ::Set entry yacco2 ::LRK_LA_QUE_SET = {0, #01}; /∗ elem 1 is |?|so 2⊕ 0 ∗/

429. Runtime errors.
It supplies all the error objects that get thrown within yacco2’s environment. Presently, my design is crude:
no design but a list of error events.

〈Structure defs 18 〉 +≡
struct Source info {

Source info(yacco2 ::KCHARP File ,yacco2 ::UINT Line);

void w info();
yacco2 ::KCHARP file ;
yacco2 ::INT line ;
};
struct Yacco2 faulty precondition : Source info {

Yacco2 faulty precondition(yacco2 ::KCHARP Message ,yacco2 ::KCHARP
File = __FILE__,yacco2 ::UINT Line = __LINE__);

};
struct Yacco2 faulty postcondition : Source info {

Yacco2 faulty postcondition(yacco2 ::KCHARP Message ,yacco2 ::KCHARP
File = __FILE__,yacco2 ::UINT Line = __LINE__);

};

194 RUNTIME ERROR MESSAGES IMPLEMENTATIONS WLIBRARY §430

430. Runtime error messages implementations.

〈 accrue yacco2 code 33 〉 +≡
yacco2 ::Source info ::
Source info(yacco2 ::KCHARP File ,yacco2 ::UINT Line)
: file (File), line (Line) {

w info();
}
void yacco2 ::Source info ::
w info()
{

yacco2 :: lrclog � " Version: " � yacco2 ::Lr1 VERSION � " thrown from source file: " �
file � " line: " � line � __FILE__ � __LINE__ � std ::endl ;

std ::cout � " Version: " � yacco2 ::Lr1 VERSION � " thrown from source file: " �
file � " line: " � line � __FILE__ � __LINE__ � std ::endl ;

}
yacco2 ::Yacco2 faulty precondition ::
Yacco2 faulty precondition(yacco2 ::KCHARP Message ,yacco2 ::KCHARP File ,yacco2 ::UINT

Line)
: Source info(File ,Line) {

yacco2 :: lrclog � "Yacco2_faulty_precondition: " � Message � ’ ’ � __FILE__ � ": " �
__LINE__ � std ::endl ;

std ::cout � "Yacco2_faulty_precondition: " � Message � std ::endl ;
}
yacco2 ::Yacco2 faulty postcondition ::
Yacco2 faulty postcondition(yacco2 ::KCHARP Message ,yacco2 ::KCHARP

File ,yacco2 ::UINT Line)
: Source info(File ,Line) {

yacco2 :: lrclog � "Yacco2_faulty_postcondition: " � Message � ’ ’ � __FILE__ � ": " �
__LINE__ � std ::endl ;

std ::cout � "Yacco2_faulty_postcondition: " � Message � std ::endl ;
}

431. Global garbage sweeper.
Simple container whose contents are deleted. As one parses, somewhere the newly minted tokens needed to
be deleted. The container maintains a one-to-one reference to the symbol which gets deleted by this routine.
Due to the “lr k symbols” being globally defined in global space rather than being their creation by the new
operator, there is protective code to prevent their deletion.

Depending on how the “Raw Characters” are built, they could also be bypassed. For now, the “global
garbage” sweeper is not very good: a map template just is down right slow. So I must revisit my thought
and come up with a better data structure to use.

I bypass this routine as the cost of building the thread index is TOOOOOooo slow and occassionally buggy
from the template implementation.

〈Type defs 16 〉 +≡
typedef std ::set〈yacco2 ::CAbs lr1 sym ∗〉 set of objs type;
typedef set of objs type :: iterator set of objs iter type;

§432 WLIBRARY DELETE TOKENS 195

432. Delete tokens .

〈 accrue yacco2 code 33 〉 +≡
extern void yacco2 ::Delete tokens (yacco2 ::TOKEN GAGGLE &Tks ,bool Do delete)
{

return;

using namespace NS yacco2 k symbols;
static yacco2 ::set of objs type deleted syms ;
static yacco2 ::set of objs type dont delete syms ;
static bool onetime (OFF);

if (onetime ≡ OFF) {
onetime = ON;
dont delete syms .insert (PTR LR1 eolr);
dont delete syms .insert (PTR LR1 questionable shift operator);
dont delete syms .insert (PTR LR1 eog);
dont delete syms .insert (PTR LR1 parallel operator);
dont delete syms .insert (PTR LR1 invisible shift operator);
dont delete syms .insert (PTR LR1 all shift operator);
dont delete syms .insert (PTR LR1 fset transience operator);

}
if (Do delete ≡ ON) {

set of objs iter type k = deleted syms .begin ();
set of objs iter type ke = deleted syms .end ();

for (; k 6= ke ; ++k) {
CAbs lr1 sym ∗sym = ∗k; /∗ /delete sym ; ∗/

}
return;

}
TOKEN GAGGLE ITER i = Tks .begin ();
TOKEN GAGGLE ITER ie = Tks .end ();

for (; i 6= ie ; ++i) {
yacco2 ::CAbs lr1 sym ∗sym = ∗i;
yacco2 ::set of objs iter type j;

j = deleted syms .find (sym);
if (j 6= deleted syms .end ()) continue; /∗ already deleted ∗/
j = dont delete syms .find (sym);
if (j 6= dont delete syms .end ()) continue;
deleted syms .insert (sym);

}
}

433. Clear yacco2 opened files dictionary .
Allows one to have multiple parse sessions. This clears the previous parse attempt. Give me an example of
why u need this? Consider a XML language recognizer that is continuously being called to process a say
Soap session. Each session is a new parsing bout.

〈 accrue yacco2 code 33 〉 +≡
extern void yacco2 ::Clear yacco2 opened files dictionary ()
{

yacco2 ::FILE_TBL__.clear ();
yacco2 ::STK_FILE_NOS__.clear ();
yacco2 ::FILE_CNT__ = 0;
}

196 TREE CONTAINERS, FUNCTORS, AND WALKERS WLIBRARY §434

434. Tree containers, functors, and walkers.
The AST structure allows one to build tree structures where each node enrobes a terminal symbol’s address.
Each node contains a left link representing dominance: parent to child relation, a right link representing
equivalence: siblings or brothers — your preference of terminology, and a previous link representing an older
node; this can be nil as the node is the root, an older brother, or a parent as the node is the oldest child. The
previous link depends on where within the tree the node sits. The left and right links can be nil indicating
no children, or no younger brothers.

To support the creation and walking of the trees, various static procedures are available. There are 2 tree
walkers: prefix and postfix. The way the tree is built, there is no infix walker! The balance of the walkers
are variants on these 2 that have restrictions on how much of the tree is to be read. Restriction 1: the node
is a forest where pre and post fix walks are done — though the node can be linked with brothers, as a forest
it stays within its bounds. Restriction 2: breadth only walk — walk self and younger brothers. Restriction
3: prefix with breadth only — the node is considered a parent; walk itself and its immediate children.

The container has 3 parts: the container of tokens that match the filtering mechanism, the parts needed
to walk the tree, and a token access mechanism. As an optimization, the token access determines whether
the requested token-by-number is in the container. This allows one to iterate randomly a tree structure.
The tree walker linearizes the token stream. It uses a finite automaton with 5 elements in its alphabet:
init, left, right, visit, eoc. These represent how the node has been processed. The left and right elements
indicate that the dominance or equivalence link is being followed. The init, visit, and eoc are states on how
the node was processed. Originally, the initial access of the node represented by ‘init’, and the end of the
node access before it is popped from the stack represented by ‘eoc’ allowed the user to fine tune the walker’s
behavior but this was overkill. The ‘visit’ state breaks out of the tree traversal and allows one to deal with
the situation. Each tree walker implements these states in their ‘exec’ and ‘advance’ methods. To control
the tree traversal, a stack is used due to the type of control needed to break out of the traversal. Recursion
does not allow one to do this due to its implicit call stack and continuous behavior as opposed to discrete
stepwise logic. The only difference to iterating the tree container versus the other token containers is a tree
container can only be accessed by token-number. There is no STL type iterator. One accesses the container
by its ‘operator[]’ method iterating by the numbers started by 0. Ugh. To break out of the iteration, the
returned terminal is tested against the LR1 eog terminal indicating end-of-tree met.

A functor mechanism is available to capture info at time of the visited node. It can be a stand alone
behaviour or it could be used in conjunction with a grammar. For example if a tree’s node is being printed
by use of a grammar, the recursion level count must be maintained by the functor and used by the grammar’s
subrule. Why not process the recursion count at the time of the grammar’s subrule reduction? Remember:
the lookahead terminal to reduce the subrule is the current stack configuration that is one ahead of what’s
needed. Hence the need for the functor and its registering of recursion level.

As a tree structure is very large and diverse, to deal with specific node types, a set mechanism of inclusion
or exclussion of symbols is supported. With these walkers and companions — filters and functor, a tree is
walked in linear fashion just like a normal token stream. This allows one to write grammars to consume tree
structures in the same spirit as a to-be-parsed language. Typically these phases are the down stream stages
of the semantic side to compilation. Really good stuff!

§435 WLIBRARY TREE WALKER’S TRAVERSAL WITH FILTER MECHANISM 197

435. Tree walker’s traversal with filter mechanism.

〈 tree walker’s traversal with filter mechanism 435 〉 ≡
advance (); /∗ status advance ∗/
int set iter type i;
CAbs lr1 sym ∗sym ;

tree traverse :
{

if (base stk .cur stk rec ≡ 0) return;
if (base stk .cur stk rec ~act 6= ast base stack ::visit) {
〈Go to next t 437 〉;

}
sym = AST ::content (∗base stk .cur stk rec ~node);
if (base stk .filter ≡ 0) 〈Go to accept t 438 〉;

filter node :
〈 see if just read node’s content is in filter set 442 〉;
〈dispatch on filter type: accept or reject filter 436 〉;

reject filter :
〈 is node’s content found in bypass filter? yes next t, no accept t 441 〉;

accept filter :
〈 is node’s content in accept filter? no next t, yes accept t 440 〉;

next t :
advance (); /∗ go fetch next node as current ∗/
goto tree traverse ;
}

accept t : 〈fire off visit functor 439 〉;
return;

This code is used in sections 455, 458, 461, 464, 467, and 470.

436. Dispatch on filter type: accept or reject filter.

〈dispatch on filter type: accept or reject filter 436 〉 ≡
if (base stk .accept opt ≡ true) goto accept filter ;
else goto reject filter ;

This code is used in section 435.

437. Go to next t.

〈Go to next t 437 〉 ≡
goto next t ;

This code is used in sections 435, 440, and 441.

438. Go to accept t.

〈Go to accept t 438 〉 ≡
goto accept t ;

This code is used in sections 435, 440, and 441.

198 TREE WALKER’S TRAVERSAL WITH FILTER MECHANISM WLIBRARY §439

439. Fire off visit functor.

〈fire off visit functor 439 〉 ≡
yacco2 ::functor result type rr = base stk .action ~operator()(&base stk);

switch (rr) {
case yacco2 ::bypass node : goto next t ;
case yacco2 ::accept node : return;
case yacco2 ::stop walking :
{

base stk .cur stk rec = 0;
return;

}
}

This code is used in section 435.

440. Is node’s content found in accept filter? no next t, yes accept t.

〈 is node’s content in accept filter? no next t, yes accept t 440 〉 ≡
if (i ≡ base stk .filter ~end ()) 〈Go to next t 437 〉;
〈Go to accept t 438 〉;

This code is used in section 435.

441. Is node’s content found in bypass filter? yes next t, no accept t.

〈 is node’s content found in bypass filter? yes next t, no accept t 441 〉 ≡
if (i 6= base stk .filter ~end ()) 〈Go to next t 437 〉;
〈Go to accept t 438 〉;

This code is used in section 435.

442. See if just read node’s content is in filter set.

〈 see if just read node’s content is in filter set 442 〉 ≡
i = base stk .filter ~find (sym~enumerated id);

This code is used in section 435.

443. ast postfix tree walker.

〈Structure defs 18 〉 +≡
struct ast postfix : public ast stack {

ast postfix(AST &Forest ,Type AST functor ∗Action ,yacco2 :: int set type ∗Filter = 0,bool
Accept opt = true);

void exec();
void advance ();
};

444. Prefix tree walker.

〈Structure defs 18 〉 +≡
struct ast prefix : public ast stack {

ast prefix(AST &Forest ,Type AST functor ∗Action ,yacco2 :: int set type ∗Filter = 0,bool
Accept opt = true);

void exec();
void advance ();
};

§445 WLIBRARY POSTFIX TREE WALKER OF SELF ONLY 199

445. Postfix tree walker of self only.
The forest in its name indicates that it is considered a stand alone tree. It will not follow it’s brother links.

〈Structure defs 18 〉 +≡
struct ast postfix 1forest : public ast stack {

ast postfix 1forest(AST &Forest ,Type AST functor ∗Action ,yacco2 :: int set type
∗Filter = 0,bool Accept opt = true);

void exec();
void advance ();
};

446. Prefix tree walker of a forest.
This only walks itself and its underlings. It does not follow its brother link.

〈Structure defs 18 〉 +≡
struct ast prefix 1forest : public ast stack {

ast prefix 1forest(AST &Forest ,Type AST functor ∗Action ,yacco2 :: int set type
∗Filter = 0,bool Accept opt = true);

void exec();
void advance ();
};

447. Breadth only tree walker.
Deal with self and younger siblings.

〈Structure defs 18 〉 +≡
struct ast breadth only : public ast stack {

ast breadth only(AST &Forest ,Type AST functor ∗Action ,yacco2 :: int set type
∗Filter = 0,bool Accept opt = true);

void exec();
void advance ();
};

448. Prefix with breadth only tree walker.
Parental walk with immediate children.

〈Structure defs 18 〉 +≡
struct ast prefix wbreadth only : public ast stack {

ast prefix wbreadth only(AST &Forest ,Type AST functor ∗Action ,yacco2 :: int set type
∗Filter = 0,bool Accept opt = true);

void exec();
void advance ();
};

200 MOON WALKING — GET ANCESTRY FOR A SPECIFIC NODE WLIBRARY §449

449. Moon walking — get ancestry for a specific node.
This walk goes up a tree looking for its ancestral goal node. It fills the list in youngest to oldest order where
the last node being the goal node. The goal node allows u to stop partway thru the global tree: ie somewhere
within a context. If no filter set is passed it defaults to all Tes accepted. The resultant list of ancestral nodes
can be empty.

If a functor is provided, it allow one to fine-tune the acceptance of an ancester or to recurse on its own
tree walking: no inter-family feuds allowed?!

〈Structure defs 18 〉 +≡
struct ast moonwalk looking for ancestors {

ast moonwalk looking for ancestors(AST &Moonchild ,USINT Goal ,
Type AST ancestor list & Ancestors ,Type AST functor ∗Functor ,yacco2 :: int set type
∗Filter = 0,bool Accept opt = true);

void let s moonwalk ();
bool deal with parent (AST ∗Parent);
functor result type let s functor (AST ∗Parent);
bool deal with functor (AST ∗Parent);
AST ∗moonchild ;
USINT goal ;

Type AST ancestor list ∗ ancestor list ;

Type AST functor ∗functor ;
yacco2 :: int set type ∗filter ;
bool filter type ;
bool filter provided ;
};

450. Tree implementations.

〈 wtree.cpp 450 〉 ≡
〈 copyright notice 565 〉;
〈 iyacco2 26 〉;
〈 accrue tree code 451 〉;

451. Accrue tree code.

〈 accrue tree code 451 〉 ≡ /∗ accrue tree code ∗/
See also sections 452, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475,

476, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 501, 502, 503,

504, 505, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 525, 534, 535, 536, 537, 538, 539, 540, and 541.

This code is used in section 450.

§452 WLIBRARY AST BASE STACK IMPLEMENTATION 201

452. ast base stack implementation.

〈 accrue tree code 451 〉 +≡
yacco2 ::ast base stack ::ast base stack(Type AST functor ∗Action ,yacco2 :: int set type

∗Filter ,bool Accept opt)
: idx (No Token start pos), stk (std ::vector〈s rec〉()), action (Action), cur stk rec (0), filter (Filter),

accept opt (Accept opt) { }
yacco2 ::ast base stack ::ast base stack()
: idx (No Token start pos), stk (std ::vector〈s rec〉()), action (0), cur stk rec (0), filter (0),

accept opt (YES) { }
yacco2 ::ast stack ::ast stack(Type AST functor ∗Action ,yacco2 :: int set type ∗Filter ,bool

Accept opt)
: base stk (Action ,Filter ,Accept opt) { }
void yacco2 ::ast base stack ::pop()
{

if (stk .empty () ≡ YES) return;
−−idx ;
stk .pop back ();
if (stk .empty () ≡ YES) {

idx = No Token start pos ;
cur stk rec = 0;
return;

}
cur stk rec = &stk [idx];
}
void yacco2 ::ast base stack ::push (AST &Node ,ast base stack ::n action Action)
{

++idx ;
stk .push back (yacco2 ::ast base stack ::s rec());
cur stk rec = &stk [idx];
cur stk rec ~node = &Node ;
cur stk rec ~act = Action ;
}
yacco2 ::INT yacco2 ::ast base stack ::cur stk index ()
{

return idx ;
}
yacco2 ::ast base stack ::s rec ∗yacco2 ::ast base stack ::cur stk rec()
{

return cur stk rec ;
}
yacco2 ::ast base stack ::s rec ∗yacco2 ::ast base stack ::stk rec(yacco2 ::INT I)
{

if (I > idx) return 0;
return &stk [I];
}

202 TREE WALKER IMPLEMENTATIONS WLIBRARY §453

453. Tree walker implementations.

454. ast postfix.
This is your regular postfix tree walker of a complete tree.

〈 accrue tree code 451 〉 +≡
yacco2 ::ast postfix ::ast postfix(AST &Forest ,Type AST functor ∗Action ,yacco2 :: int set type

∗Filter ,bool Accept opt)
: yacco2 ::ast stack(Action ,Filter ,Accept opt) {

base stk .push (Forest ,ast base stack :: init);
}

455. ast postfix exec.
Originally this was a switch statement handling the 5 states. As this is a 80/20 situation, the if statement
is more efficient: no need for the specifics.

〈 accrue tree code 451 〉 +≡
void yacco2 ::ast postfix ::exec()
{
〈 tree walker’s traversal with filter mechanism 435 〉;
}

§456 WLIBRARY AST POSTFIX ADVANCE 203

456. ast postfix advance.

〈 accrue tree code 451 〉 +≡
void yacco2 ::ast postfix ::advance ()
{

if (base stk .cur stk rec ≡ 0) return;
switch (base stk .cur stk rec ~act) {
case ast base stack :: init :
{

AST ∗down = AST ::get 1st son (∗base stk .cur stk rec ~node);

if (down ≡ 0) {
base stk .cur stk rec ~act = ast base stack ::visit ; /∗ bypass left ∗/
return;
}
base stk .cur stk rec ~act = ast base stack :: left ;
base stk .push (∗down ,ast base stack :: init);
return;

}
case ast base stack :: left :
{

base stk .cur stk rec ~act = ast base stack ::visit ;
return;

}
case ast base stack ::visit :
{

AST ∗rt = AST ::brother (∗base stk .cur stk rec ~node);

if (rt ≡ 0) {
base stk .cur stk rec ~act = ast base stack ::eoc ; /∗ bypass ∗/
return;
}
base stk .pop();
base stk .push (∗rt ,ast base stack :: init);
return;

}
case ast base stack ::right :
{

base stk .cur stk rec ~act = ast base stack ::eoc ;
return;

}
case ast base stack ::eoc :
{

base stk .pop();
return;

}
}
}

204 AST PREFIX WLIBRARY §457

457. ast prefix.
Prefix walk of complete tree.

〈 accrue tree code 451 〉 +≡
yacco2 ::ast prefix ::ast prefix(AST &Forest ,Type AST functor ∗Action ,yacco2 :: int set type

∗Filter ,bool Accept opt)
: yacco2 ::ast stack(Action ,Filter ,Accept opt) {

base stk .push (Forest ,ast base stack :: init);
}

458. ast prefix exec.

〈 accrue tree code 451 〉 +≡
void yacco2 ::ast prefix ::exec()
{
〈 tree walker’s traversal with filter mechanism 435 〉;
}

§459 WLIBRARY AST PREFIX ADVANCE 205

459. ast prefix advance.

〈 accrue tree code 451 〉 +≡
void yacco2 ::ast prefix ::advance ()
{

if (base stk .cur stk rec ≡ 0) return;
switch (base stk .cur stk rec ~act) {
case ast base stack :: init :
{

base stk .cur stk rec ~act = ast base stack ::visit ;
return;

}
case ast base stack :: left :
{

AST ∗rt = AST ::brother (∗base stk .cur stk rec ~node);

if (rt 6= 0) {
base stk .pop();
base stk .push (∗rt ,ast base stack :: init);
return;
}
base stk .cur stk rec ~act = ast base stack ::eoc ;
return;

}
case ast base stack ::visit :
{

AST ∗lt = AST ::get 1st son (∗base stk .cur stk rec ~node);

if (lt 6= 0) {
base stk .cur stk rec ~act = ast base stack :: left ;
base stk .push (∗lt ,ast base stack :: init);
return;
}
AST ∗rt = AST ::brother (∗base stk .cur stk rec ~node);

if (rt 6= 0) {
base stk .pop();
base stk .push (∗rt ,ast base stack :: init);
return;
}
base stk .cur stk rec ~act = ast base stack ::eoc ;
return;

}
case ast base stack ::right :
{

base stk .cur stk rec ~act = ast base stack ::eoc ;
return;

}
case ast base stack ::eoc :
{

base stk .pop();
return;

}
}
}

206 AST POSTFIX 1FOREST WLIBRARY §460

460. ast postfix 1forest.
Forest postfix walk. Do not go outside its bounds.

〈 accrue tree code 451 〉 +≡
yacco2 ::ast postfix 1forest ::ast postfix 1forest(AST &Forest ,Type AST functor

∗Action ,yacco2 :: int set type ∗Filter ,bool Accept opt)
: yacco2 ::ast stack(Action ,Filter ,Accept opt) {

base stk .push (Forest ,ast base stack :: init);
}

461. ast postfix 1forest exec.

〈 accrue tree code 451 〉 +≡
void yacco2 ::ast postfix 1forest ::exec()
{
〈 tree walker’s traversal with filter mechanism 435 〉;
}

§462 WLIBRARY AST POSTFIX 1FOREST ADVANCE 207

462. ast postfix 1forest advance.

〈 accrue tree code 451 〉 +≡
void yacco2 ::ast postfix 1forest ::advance ()
{

if (base stk .cur stk rec ≡ 0) return;
switch (base stk .cur stk rec ~act) {
case ast base stack :: init :
{

AST ∗down = AST ::get 1st son (∗base stk .cur stk rec ~node);

if (down ≡ 0) {
base stk .cur stk rec ~act = ast base stack ::visit ; /∗ bypass left ∗/
return;
}
base stk .cur stk rec ~act = ast base stack :: left ;
base stk .push (∗down ,ast base stack :: init);
return;

}
case ast base stack :: left :
{

base stk .cur stk rec ~act = ast base stack ::visit ;
return;

}
case ast base stack ::visit :
{

AST ∗rt (0);

if (base stk .idx 6= 0) /∗ only traverse the forest ∗/
rt = AST ::brother (∗base stk .cur stk rec ~node);

if (rt ≡ 0) {
base stk .cur stk rec ~act = ast base stack ::eoc ; /∗ bypass ∗/
return;
}
base stk .pop();
base stk .push (∗rt ,ast base stack :: init);
return;

}
case ast base stack ::right :
{

base stk .cur stk rec ~act = ast base stack ::eoc ;
return;

}
case ast base stack ::eoc :
{

base stk .pop();
return;

}
}
}

208 AST PREFIX 1FOREST WLIBRARY §463

463. ast prefix 1forest.
Forest prefix walk. Do not go outside its bounds.

〈 accrue tree code 451 〉 +≡
yacco2 ::ast prefix 1forest ::ast prefix 1forest(AST &Forest ,Type AST functor

∗Action ,yacco2 :: int set type ∗Filter ,bool Accept opt)
: yacco2 ::ast stack(Action ,Filter ,Accept opt) {

base stk .push (Forest ,ast base stack :: init);
}

464. ast prefix 1forest exec.

〈 accrue tree code 451 〉 +≡
void yacco2 ::ast prefix 1forest ::exec()
{
〈 tree walker’s traversal with filter mechanism 435 〉;
}

§465 WLIBRARY AST PREFIX 1FOREST ADVANCE 209

465. ast prefix 1forest advance.

〈 accrue tree code 451 〉 +≡
void yacco2 ::ast prefix 1forest ::advance ()
{

if (base stk .cur stk rec ≡ 0) return;
switch (base stk .cur stk rec ~act) {
case ast base stack :: init :
{

base stk .cur stk rec ~act = ast base stack ::visit ;
return;

}
case ast base stack :: left :
{

AST ∗rt (0);

if (base stk .idx 6= 0) /∗ only traverse the forest ∗/
rt = AST ::brother (∗base stk .cur stk rec ~node);

if (rt 6= 0) {
base stk .pop();
base stk .push (∗rt ,ast base stack :: init);
return;
}
base stk .cur stk rec ~act = ast base stack ::eoc ;
return;

}
case ast base stack ::visit :
{

AST ∗lt = AST ::get 1st son (∗base stk .cur stk rec ~node);

if (lt 6= 0) {
base stk .cur stk rec ~act = ast base stack :: left ;
base stk .push (∗lt ,ast base stack :: init);
return;
}
AST ∗rt (0);

if (base stk .idx 6= 0) /∗ only traverse the forest ∗/
rt = AST ::brother (∗base stk .cur stk rec ~node);

if (rt 6= 0) {
base stk .pop();
base stk .push (∗rt ,ast base stack :: init);
return;
}
base stk .cur stk rec ~act = ast base stack ::eoc ;
return;

}
case ast base stack ::right :
{

base stk .cur stk rec ~act = ast base stack ::eoc ;
return;

}
case ast base stack ::eoc :
{

base stk .pop();

210 AST PREFIX 1FOREST ADVANCE WLIBRARY §465

return;
}

}
}

466. ast breadth only.
Walk self and its younger brothers.

〈 accrue tree code 451 〉 +≡
yacco2 ::ast breadth only ::ast breadth only(AST &Forest ,Type AST functor

∗Action ,yacco2 :: int set type ∗Filter ,bool Accept opt)
: yacco2 ::ast stack(Action ,Filter ,Accept opt) {

base stk .push (Forest ,ast base stack :: init);
}

467. ast breadth only exec.

〈 accrue tree code 451 〉 +≡
void yacco2 ::ast breadth only ::exec()
{
〈 tree walker’s traversal with filter mechanism 435 〉;
}

§468 WLIBRARY AST BREADTH ONLY ADVANCE 211

468. ast breadth only advance.

〈 accrue tree code 451 〉 +≡
void yacco2 ::ast breadth only ::advance ()
{

if (base stk .cur stk rec ≡ 0) return;
switch (base stk .cur stk rec ~act) {
case ast base stack :: init :
{

base stk .cur stk rec ~act = ast base stack ::visit ;
return;

}
case ast base stack :: left :
{

AST ∗rt = AST ::brother (∗base stk .cur stk rec ~node);

if (rt 6= 0) {
base stk .pop();
base stk .push (∗rt ,ast base stack :: init);
return;
}
base stk .cur stk rec ~act = ast base stack ::eoc ;
return;

}
case ast base stack ::visit :
{

AST ∗rt = AST ::brother (∗base stk .cur stk rec ~node);

if (rt 6= 0) {
base stk .pop();
base stk .push (∗rt ,ast base stack :: init);
return;
}
base stk .cur stk rec ~act = ast base stack ::eoc ;
return;

}
case ast base stack ::right :
{

base stk .cur stk rec ~act = ast base stack ::eoc ;
return;

}
case ast base stack ::eoc :
{

base stk .pop();
return;

}
}
}

212 AST PREFIX WBREADTH ONLY WLIBRARY §469

469. ast prefix wbreadth only.
Walk self who is a parent and its immediate children.

〈 accrue tree code 451 〉 +≡
yacco2 ::ast prefix wbreadth only ::ast prefix wbreadth only(AST &Forest ,

Type AST functor ∗Action ,yacco2 :: int set type ∗Filter ,bool Accept opt)
: yacco2 ::ast stack(Action ,Filter ,Accept opt) {

base stk .push (Forest ,ast base stack :: init);
}

470. ast prefix wbreadth only exec.

〈 accrue tree code 451 〉 +≡
void yacco2 ::ast prefix wbreadth only ::exec()
{
〈 tree walker’s traversal with filter mechanism 435 〉;
}

§471 WLIBRARY AST PREFIX WBREADTH ONLY ADVANCE 213

471. ast prefix wbreadth only advance.

〈 accrue tree code 451 〉 +≡
void yacco2 ::ast prefix wbreadth only ::advance ()
{

if (base stk .cur stk rec ≡ 0) return;
switch (base stk .cur stk rec ~act) {
case ast base stack :: init :
{

base stk .cur stk rec ~act = ast base stack ::visit ;
return;

}
case ast base stack :: left :
{

if (base stk .idx ≡ 0) {
base stk .cur stk rec ~act = ast base stack ::eoc ;
return;
}
AST ∗rt = AST ::brother (∗base stk .cur stk rec ~node);

if (rt 6= 0) {
base stk .pop();
base stk .push (∗rt ,ast base stack :: init);
return;
}
base stk .cur stk rec ~act = ast base stack ::eoc ;
return;

}
case ast base stack ::visit :
{

if (base stk .idx ≡ 0) {
AST ∗lt = AST ::get 1st son (∗base stk .cur stk rec ~node);

if (lt ≡ 0) {
base stk .cur stk rec ~act = ast base stack ::eoc ;
return;

}
base stk .cur stk rec ~act = ast base stack :: left ;
base stk .push (∗lt ,ast base stack :: init);
return;
}
AST ∗rt = AST ::brother (∗base stk .cur stk rec ~node);

if (rt 6= 0) {
base stk .pop();
base stk .push (∗rt ,ast base stack :: init);
return;
}
base stk .cur stk rec ~act = ast base stack ::eoc ;
return;

}
case ast base stack ::right :
{

base stk .cur stk rec ~act = ast base stack ::eoc ;
return;

214 AST PREFIX WBREADTH ONLY ADVANCE WLIBRARY §471

}
case ast base stack ::eoc :
{

base stk .pop();
return;

}
}
}

472. ast moonwalk looking for ancestors.

〈 accrue tree code 451 〉 +≡
yacco2 ::ast moonwalk looking for ancestors ::ast moonwalk looking for ancestors(AST

&Moonchild ,USINT Goal ,Type AST ancestor list & Ancestors list ,Type AST functor
∗Functor ,yacco2 :: int set type ∗Filter ,bool Accept opt)

: moonchild (&Moonchild), goal (Goal), ancestor list (&Ancestors list), functor (Functor),
filter (Filter), filter type (Accept opt), filter provided (NO) {

if (Filter 6= 0) filter provided = YES;
}

473. let s functor .
It’s returned value indicates either stop the tree walk, or continue the walk and what to do with the visited
node — accept it or bypass.

〈 accrue tree code 451 〉 +≡
yacco2 ::functor result type yacco2 ::ast moonwalk looking for ancestors :: let s functor (AST

∗Parent)
{

functor result type functor result ;
yacco2 ::ast base stack abs ;

abs .push (∗Parent ,ast base stack :: init);
return functor ~operator()(&abs);
}

§474 WLIBRARY DEAL WITH FUNCTOR 215

474. deal with functor .
If the Parent passes the grade it’s added to the ancestry list. Returning a “NO” indicates to terminate the
tree walking while a “YES” is keep-it-going thriller.

〈 accrue tree code 451 〉 +≡
bool yacco2 ::ast moonwalk looking for ancestors ::deal with functor (AST ∗Parent)
{

if (functor 6= 0) {
functor result type functor result = let s functor (Parent);

switch (functor result) {
case accept node :
{

ancestor list ~push back (Parent);
return YES;
}

case bypass node :
{

return YES;
}

case stop walking :
{

return NO;
}

}
}
else {

ancestor list ~push back (Parent);
return YES;

}
return YES;
}

475. let s moonwalk .
Do those backward moves on the tree like MJ.

〈 accrue tree code 451 〉 +≡
void yacco2 ::ast moonwalk looking for ancestors :: let s moonwalk ()
{

functor result type functor result ;
AST ∗cnode = moonchild ;
AST ∗parent (0);

while (cnode 6= 0) {
parent = AST ::get parent (∗cnode);

bool continue waldo = deal with parent (parent);

if (continue waldo ≡ NO) return;
cnode = parent ;

}
}

216 DEAL WITH PARENT WLIBRARY §476

476. deal with parent .
Returning a “NO” indicates to terminate the tree walking.

〈 accrue tree code 451 〉 +≡
bool yacco2 ::ast moonwalk looking for ancestors ::deal with parent (AST ∗Parent)
{

if (Parent ≡ 0) { /∗ orphan? ∗/
return NO;

}
CAbs lr1 sym ∗tsym = AST ::content (∗Parent);
USINT id = tsym~enumerated id ();

if (id ≡ goal) {
ancestor list ~push back (Parent);
return NO; /∗ finished going thru tree as goal found ∗/

}
〈Dispatch on use-of-filter 477 〉;

no filter so accept all Tes :
{

return deal with functor (Parent);
}

filtered Tes :
{

int set iter type i = filter ~find (id);

if (i ≡ filter ~end ()) {
if (filter type ≡ ACCEPT_FILTER) return YES;
return deal with functor (Parent);

} /∗ found T in filter ∗/
if (filter type ≡ BYPASS_FILTER) return YES;
return deal with functor (Parent);

}
}

477. Dispatch on use-of-filter.

〈Dispatch on use-of-filter 477 〉 ≡
if (filter provided ≡ NO) goto no filter so accept all Tes ;
else goto filtered Tes ;

This code is used in section 476.

§478 WLIBRARY BUILD AND RESTRUCTURE TREES 217

478. Build and restructure trees.

479. restructure 2trees into 1tree . .

〈 accrue tree code 451 〉 +≡
yacco2 ::AST ∗yacco2 ::AST ::restructure 2trees into 1tree (AST &S1,AST &S2)
{

AST ∗s2lt = AST ::get 1st son (S2);

AST ::zero 1st son (S2);
AST ::crt tree of 2sons (S2, S1, ∗s2lt);
return &S2;
}

218 CREATE TREES CRT TREE OF 1SON —CRT TREE OF 9SONS WLIBRARY §480

480. Create trees crt tree of 1son—crt tree of 9sons .

〈 accrue tree code 451 〉 +≡
void yacco2 ::AST ::crt tree of 1son (yacco2 ::AST &Parent ,yacco2 ::AST &S1)
{

yacco2 ::AST :: join pts (Parent , S1);
}
void yacco2 ::AST ::crt tree of 2sons (yacco2 ::AST &Parent ,yacco2 ::AST &S1,yacco2 ::AST

&S2)
{

yacco2 ::AST :: join pts (Parent , S1);
yacco2 ::AST :: join sts (S1, S2);
}
void yacco2 ::AST ::crt tree of 3sons (yacco2 ::AST &Parent ,yacco2 ::AST &S1,yacco2 ::AST

&S2,yacco2 ::AST &S3)
{

yacco2 ::AST :: join pts (Parent , S1);
yacco2 ::AST :: join sts (S1, S2);
yacco2 ::AST :: join sts (S2, S3);
}
void yacco2 ::AST ::crt tree of 4sons (yacco2 ::AST &Parent ,yacco2 ::AST &S1,yacco2 ::AST

&S2,yacco2 ::AST &S3,yacco2 ::AST &S4)
{

yacco2 ::AST :: join pts (Parent , S1);
yacco2 ::AST :: join sts (S1, S2);
yacco2 ::AST :: join sts (S2, S3);
yacco2 ::AST :: join sts (S3, S4);
}
void yacco2 ::AST ::crt tree of 5sons (yacco2 ::AST &Parent ,AST &S1,yacco2 ::AST

&S2,yacco2 ::AST &S3,yacco2 ::AST &S4,yacco2 ::AST &S5)
{

yacco2 ::AST :: join pts (Parent , S1);
yacco2 ::AST :: join sts (S1, S2);
yacco2 ::AST :: join sts (S2, S3);
yacco2 ::AST :: join sts (S3, S4);
yacco2 ::AST :: join sts (S4, S5);
}
void yacco2 ::AST ::crt tree of 6sons (yacco2 ::AST &Parent ,yacco2 ::AST &S1,yacco2 ::AST

&S2,yacco2 ::AST &S3,yacco2 ::AST &S4,yacco2 ::AST &S5,yacco2 ::AST &S6)
{

yacco2 ::AST :: join pts (Parent , S1);
yacco2 ::AST :: join sts (S1, S2);
yacco2 ::AST :: join sts (S2, S3);
yacco2 ::AST :: join sts (S3, S4);
yacco2 ::AST :: join sts (S4, S5);
yacco2 ::AST :: join sts (S5, S6);
}
void yacco2 ::AST ::crt tree of 7sons (yacco2 ::AST &Parent ,yacco2 ::AST &S1,yacco2 ::AST

&S2,yacco2 ::AST &S3,yacco2 ::AST &S4,yacco2 ::AST &S5,yacco2 ::AST
&S6,yacco2 ::AST &S7)

{

§480 WLIBRARY CREATE TREES CRT TREE OF 1SON —CRT TREE OF 9SONS 219

yacco2 ::AST :: join pts (Parent , S1);
yacco2 ::AST :: join sts (S1, S2);
yacco2 ::AST :: join sts (S2, S3);
yacco2 ::AST :: join sts (S3, S4);
yacco2 ::AST :: join sts (S4, S5);
yacco2 ::AST :: join sts (S5, S6);
yacco2 ::AST :: join sts (S6, S7);
}
void yacco2 ::AST ::crt tree of 8sons (yacco2 ::AST &Parent ,yacco2 ::AST &S1,yacco2 ::AST

&S2,yacco2 ::AST &S3,yacco2 ::AST &S4,yacco2 ::AST &S5,yacco2 ::AST
&S6,yacco2 ::AST &S7,yacco2 ::AST &S8)

{
yacco2 ::AST :: join pts (Parent , S1);
yacco2 ::AST :: join sts (S1, S2);
yacco2 ::AST :: join sts (S2, S3);
yacco2 ::AST :: join sts (S3, S4);
yacco2 ::AST :: join sts (S4, S5);
yacco2 ::AST :: join sts (S5, S6);
yacco2 ::AST :: join sts (S6, S7);
yacco2 ::AST :: join sts (S7, S8);
}
void yacco2 ::AST ::crt tree of 9sons (yacco2 ::AST &Parent ,yacco2 ::AST &S1,yacco2 ::AST

&S2,yacco2 ::AST &S3,yacco2 ::AST &S4,yacco2 ::AST &S5,yacco2 ::AST
&S6,yacco2 ::AST &S7,yacco2 ::AST &S8,yacco2 ::AST &S9)

{
AST :: join pts (Parent , S1);
AST :: join sts (S1, S2);
AST :: join sts (S2, S3);
AST :: join sts (S3, S4);
AST :: join sts (S4, S5);
AST :: join sts (S5, S6);
AST :: join sts (S6, S7);
AST :: join sts (S7, S8);
AST :: join sts (S8, S9);
}

481. content of node.

〈 accrue tree code 451 〉 +≡
yacco2 ::CAbs lr1 sym ∗yacco2 ::AST ::content (yacco2 ::AST &Node)
{

return Node .obj ;
}

482. zero 1st son link.

〈 accrue tree code 451 〉 +≡
void yacco2 ::AST ::zero 1st son (yacco2 ::AST &Node)
{

Node .lt = 0;
}

220 ZERO 2ND SON LINK WLIBRARY §483

483. zero 2nd son link.

〈 accrue tree code 451 〉 +≡
void yacco2 ::AST ::zero 2nd son (yacco2 ::AST &Node)
{

yacco2 ::AST ∗lt = Node .lt ;

if (lt ≡ 0) {
yacco2 ::KCHARP msg = "zero_2nd_son 2nd son’s 1st son Node ptr is zero";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);

}
lt~rt = 0;
}

484. zero brother link.

〈 accrue tree code 451 〉 +≡
void yacco2 ::AST ::zero brother (yacco2 ::AST &Node)
{

Node .rt = 0;
}

485. zero content .

〈 accrue tree code 451 〉 +≡
void yacco2 ::AST ::zero content (yacco2 ::AST &Node)
{

Node .obj = 0;
}

486. set content of node.

〈 accrue tree code 451 〉 +≡
void yacco2 ::AST ::set content (yacco2 ::AST &Node ,yacco2 ::CAbs lr1 sym &Sym)
{

Node .obj = &Sym ;
}

487. zero previous link.

〈 accrue tree code 451 〉 +≡
void yacco2 ::AST ::zero previous (yacco2 ::AST &Node)
{

Node .pr = 0;
}

488. set content wdelete : mark node’s content to be deleted when node deleted.

〈 accrue tree code 451 〉 +≡
void yacco2 ::AST ::set content wdelete (yacco2 ::AST &Node ,yacco2 ::CAbs lr1 sym &Sym)
{

Node .obj = &Sym ;
Node .wdelete = true ;
}

§489 WLIBRARY SET PREVIOUS LINK 221

489. set previous link.

〈 accrue tree code 451 〉 +≡
void yacco2 ::AST ::set previous (yacco2 ::AST &Node ,yacco2 ::AST &Previous node)
{

Node .pr = &Previous node ;
}

490. wdelete is node’s contents marked as to-be-deleted?.

〈 accrue tree code 451 〉 +≡
bool yacco2 ::AST ::wdelete (yacco2 ::AST &Node)
{

return Node .wdelete ;
}

491. wdelete set delete attribute: true or false.

〈 accrue tree code 451 〉 +≡
void yacco2 ::AST ::wdelete (yacco2 ::AST &Node ,bool Wdelete)
{

Node .wdelete = Wdelete ;
}

492. Fetch various tree nodes: brother .

〈 accrue tree code 451 〉 +≡
yacco2 ::AST ∗yacco2 ::AST ::brother (yacco2 ::AST &Node)
{

return Node .rt ;
}

493. previous node: returns its heritage parent or older brother.
Returns either the older brother or parent if the brother is first in the chain. A root node returns NIL. The
difference between previous and get older sibling is in how it treats the oldest brother node. get older sibling
does not return its parent node but returns NIL.

〈 accrue tree code 451 〉 +≡
yacco2 ::AST ∗yacco2 ::AST ::previous (yacco2 ::AST &Node)
{

return Node .pr ;
}

494. Birth, pruning, and death of a tree node: AST.

〈 accrue tree code 451 〉 +≡
yacco2 ::AST ::AST()
: lt (0), rt (0), pr (0), obj (0), wdelete (false) { }
yacco2 ::AST ::AST(yacco2 ::CAbs lr1 sym &Obj)
: lt (0), rt (0), pr (0), obj (&Obj), wdelete (false) { }
yacco2 ::AST ::∼AST()
{

if (wdelete ≡ true) {
delete obj ;

}
}

222 JOIN PTS : PARENT TO SON BONDING WLIBRARY §495

495. join pts : parent to son bonding.

〈 accrue tree code 451 〉 +≡
void yacco2 ::AST :: join pts (yacco2 ::AST &Parent ,yacco2 ::AST &Child)
{

if (Parent .lt 6= 0) {
yacco2 ::KCHARP msg = "join_pts Parent lt ptr not zero";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);

}
if (&Parent ≡ &Child) {

yacco2 ::KCHARP msg = "join_pts Parent and child nodes are the same";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);

}
Parent .lt = &Child ;
Child .pr = &Parent ;
}

496. join sts : brother to brother bonding.

〈 accrue tree code 451 〉 +≡
void yacco2 ::AST :: join sts (yacco2 ::AST &Elder sibling ,yacco2 ::AST &Younger sibling)
{

if (Elder sibling .rt 6= 0) {
yacco2 ::KCHARP msg = "join_sts Elder_sibling rt ptr not zero";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);

}
if (&Elder sibling ≡ &Younger sibling) {

yacco2 ::KCHARP msg = "join_sts Left and Right nodes are the same";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);

}
Elder sibling .rt = &Younger sibling ;
Younger sibling .pr = &Elder sibling ;
}

§497 WLIBRARY AST DELETE : DELETE THE TREE NODE 223

497. ast delete : delete the tree node.

〈 accrue tree code 451 〉 +≡
void yacco2 ::AST ::ast delete (yacco2 ::AST &Node ,bool Due to abort)
{

if (YACCO2_T__ 6= 0) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_T__::ast_DELETE Node to be deleted*: " � &Node �

" Abort switch: " � Due to abort � __FILE__ � __LINE__ � std ::endl ;
〈 release trace mu 390 〉;

}
if (&Node ≡ Node .lt) {

yacco2 ::KCHARP msg = "ast_delete recursion to self Node";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);

}
if (&Node ≡ Node .rt) {

yacco2 ::KCHARP msg = "ast_delete Right recursion to self Node";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);

}
yacco2 ::CAbs lr1 sym ∗sym = Node .obj ;

if (YACCO2_T__ 6= 0) {
if (sym 6= 0) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_T__::ast_DELETE Node to be deleted*: " � &Node �

" sym*: " � sym � " id: " � sym~ id � __FILE__ � __LINE__ � std ::endl ;
〈 release trace mu 390 〉;

}
}
if (YACCO2_T__ 6= 0) {

if (Node .lt) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_T__::call ast_DELETE Node by LEFT node to be deleted*: " �

Node .lt � " by node*: " � &Node � __FILE__ � __LINE__ � std ::endl ;
〈 release trace mu 390 〉;
AST ::ast delete (∗Node .lt ,Due to abort);

}
if (Node .rt) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "call ast_DELETE Node by RIGHT node to be deleted*: " � Node .rt �

" by node*: " � &Node � __FILE__ � __LINE__ � std ::endl ;
〈 release trace mu 390 〉;
AST ::ast delete (∗Node .rt ,Due to abort);

}
}
if (sym 6= 0) { /∗ is there a sym to work on. if the delete process ∗/

/∗ was originally started by delete sym is 0 ∗/
if (Due to abort ≡ true) {

if (sym~affected by abort () ≡ true) {
if (YACCO2_T__ 6= 0) {
〈 acquire trace mu 389 〉;

224 AST DELETE : DELETE THE TREE NODE WLIBRARY §497

yacco2 :: lrclog � "YACCO2_T__::ast_DELETE node’s object deleted due to ABORT: " �
sym~ id � __FILE__ � __LINE__ � std ::endl ;

〈 release trace mu 390 〉;
}
delete sym ; /∗ protects against recycled bin deleting its items ∗/
Node .obj = 0;
}
;

}
else { /∗ normal throes of death ∗/

delete sym ;
Node .obj = 0;

}
}
delete &Node ;
〈 acquire trace mu 389 〉;
lrclog � "ast_DELETE Node deleted*: " � &Node � __FILE__ � __LINE__ � std ::endl ;
〈 release trace mu 390 〉;
}

§498 WLIBRARY FIND DEPTH 225

498. find depth .

〈 accrue tree code 451 〉 +≡
yacco2 ::AST ∗yacco2 ::AST ::find depth (AST &Node ,yacco2 ::INT Enum)
{

if (&Node ≡ Node .lt) {
yacco2 ::KCHARP msg = "find_depth Left recursion to self Node";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);

}
if (&Node ≡ Node .rt) {

yacco2 ::KCHARP msg = "find_depth Right recursion to self Node";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);

}
if (Node .obj ≡ 0) {

yacco2 ::KCHARP msg = "find_depth Tree’s oject is zero";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);

}
yacco2 ::CAbs lr1 sym ∗sym = Node .obj ;

if (sym~enumerated id ≡ Enum) return &Node ;
if (Node .lt 6= 0) {

yacco2 ::AST ∗rtn = find depth (∗Node .lt ,Enum);

if (rtn 6= 0) return rtn ;
}
if (Node .rt 6= 0) {

yacco2 ::AST ∗rtn = find depth (∗Node .rt ,Enum);

if (rtn 6= 0) return rtn ;
}
return 0;
}

226 FIND BREADTH WLIBRARY §499

499. find breadth .

〈 accrue tree code 451 〉 +≡
yacco2 ::AST ∗yacco2 ::AST ::find breadth (yacco2 ::AST &Node ,yacco2 ::INT Enum)
{

if (&Node ≡ Node .lt) {
yacco2 ::KCHARP msg = "find_breadth Left recursion to self Node";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);

}
if (&Node ≡ Node .rt) {

yacco2 ::KCHARP msg = "find_breadth Right recursion to self Node";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);

}
if (Node .obj ≡ 0) {

yacco2 ::KCHARP msg = "find_breadth Tree’s object is zero";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);

}
yacco2 ::CAbs lr1 sym ∗sym = Node .obj ;

if (sym~enumerated id ≡ Enum) return &Node ;
if (Node .rt 6= 0) {

yacco2 ::AST ∗rtn = find breadth (∗Node .rt ,Enum);

if (rtn 6= 0) return rtn ;
}
return 0;
}

§500 WLIBRARYTREE RELINKING ROUTINES: BEFORE, BETWEEN, AFTER AND OTHER SUNDRIES 227

500. Tree relinking routines: before, between, after and other sundries.

501. relink .
This drops the old link and re-welds the previous node to the new node. The relationships between the
previous and old node are erased. No memory meltdown but pure lobotomy with 2 scoops.

〈 accrue tree code 451 〉 +≡
void yacco2 ::AST ::relink (yacco2 ::AST &Previous ,yacco2 ::AST &Old to ,yacco2 ::AST

&New to)
{

if (&Previous ≡ &Old to) {
yacco2 ::KCHARP msg = "relink Previous ptr == Old ptr";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);

}
if (&Previous ≡ &New to) {

yacco2 ::KCHARP msg = "relink Previous ptr == New ptr";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);

}
if (&Old to ≡ &New to) {

yacco2 ::KCHARP msg = "relink Old ptr == New ptr";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);

}
if (Previous .rt ≡ &Old to) {

Old to .pr = 0;
Previous .rt = &New to ;
New to .pr = &Previous ;
return;

}
Old to .pr = 0;
Previous .lt = &New to ;
New to .pr = &Previous ;
}

228 RELINK BETWEEN WLIBRARY §502

502. relink between .
This wedges the new node inbetween the previous and old node. Depending on the relationship between the
previous and old node, the same relationship is maintained; this can be parental or brotherly love. The new
node becomes the older brother to the old node.

〈 accrue tree code 451 〉 +≡
void yacco2 ::AST ::relink between (yacco2 ::AST &Previous ,yacco2 ::AST &Old to ,yacco2 ::AST

&New to)
{

if (&Previous ≡ &Old to) {
yacco2 ::KCHARP msg = "relink_between Previous ptr == Old ptr";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);

}
if (&Previous ≡ &New to) {

yacco2 ::KCHARP msg = "relink_between Previous ptr == New ptr";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);

}
if (&Old to ≡ &New to) {

yacco2 ::KCHARP msg = "relink_between Old ptr == New ptr";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);

}
if (Previous .rt ≡ &Old to) {

Old to .pr = &New to ;
Previous .rt = &New to ;
New to .pr = &Previous ;
New to .rt = &Old to ;
return;

}
if (Previous .lt ≡ &Old to) {

Old to .pr = &New to ;
Previous .lt = &New to ;
New to .pr = &Previous ;
New to .rt = &Old to ;
return;

}
yacco2 ::KCHARP msg = "ast_relink_between Previous node does not have lt or rt of \

Old";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);
}

§503 WLIBRARY RELINK AFTER 229

503. relink after .
This adds the new node as the previous node’s immediate younger brother. If there was a younger brother
already established, it re-aligns these relations. There is no politeness; just raw butting in.

〈 accrue tree code 451 〉 +≡
void yacco2 ::AST ::relink after (yacco2 ::AST &Previous ,yacco2 ::AST &To)
{

if (&Previous ≡ &To) {
yacco2 ::KCHARP msg = "relink_after Previous ptr == To ptr";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);

}
if (Previous .rt ≡ 0) { /∗ eoc ∗/

Previous .rt = &To ;
To .pr = &Previous ;
return;

}
AST ∗rt = Previous .rt ;

if (rt~pr ≡ &Previous) {
rt~pr = &To ;
Previous .rt = &To ;
To .pr = &Previous ;
To .rt = rt ;
return;

}
yacco2 ::KCHARP msg = "relink_after Previous Node does not have lt or rt of Old";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);
}

230 RELINK BEFORE WLIBRARY §504

504. relink before .
The new node is added before the ‘Before’ node. Depending on the Before’s node relationship as either the
oldest child or a younger sibling, relink before maintains this relationship with the New to node while the
‘Before’ node becomes New to ’s younger brother.

〈 accrue tree code 451 〉 +≡
void yacco2 ::AST ::relink before (yacco2 ::AST &Before ,yacco2 ::AST &New to)
{

if (&Before ≡ &New to) {
yacco2 ::KCHARP msg = "relink_before Before ptr == New ptr";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);

}
if (Before .pr ≡ 0) { /∗ eoc ∗/

Before .pr = &New to ;
New to .rt = &Before ;
return;

}
yacco2 ::AST ∗pr = Before .pr ;

if (pr~ lt ≡ &Before) {
pr~ lt = &New to ;
New to .pr = pr ;
New to .rt = &Before ;
Before .pr = &New to ;
return;

}
if (pr~rt ≡ &Before) {

pr~rt = &New to ;
New to .pr = pr ;
New to .rt = &Before ;
Before .pr = &New to ;
return;

}
yacco2 ::KCHARP msg = "relink_before Before node does not have lt or rt of Old";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);
}

§505 WLIBRARY REPLACE NODE 231

505. replace node .
Substitute the Old node with the By node. Remap all the relations to the By node and wipe out relationships
in Old node leaving it as an orphan.

〈 accrue tree code 451 〉 +≡
void yacco2 ::AST ::replace node (yacco2 ::AST &Old ,yacco2 ::AST &By)
{

if (&Old ≡ &By) {
yacco2 ::KCHARP msg = "replace_node Old ptr == By ptr";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);

}
yacco2 ::AST ∗prev = Old .pr ;
yacco2 ::AST ∗rt = Old .rt ;

if (prev~rt ≡ &Old) {
prev~rt = &By ;
By .pr = prev ;
By .rt = rt ;
if (rt 6= 0) rt~pr = &By ;
Old .rt = 0;
Old .pr = 0;
return;

}
if (prev~ lt ≡ &Old) {

prev~ lt = &By ;
By .pr = prev ;
By .rt = rt ;
if (rt 6= 0) rt~pr = &By ;
Old .rt = 0;
Old .pr = 0;
return;

}
By .rt = Old .rt ;
Old .rt = 0;
}

232 VARIOUS TREE NODE ROUTINES WLIBRARY §506

506. Various tree node routines.

507. add son to tree .
Just wedge the new kid as an oldest child with the Parent node. If the Parent node is childless... well
congratulations. If there are already children, well let the probate officer deal with the squawkes.

〈 accrue tree code 451 〉 +≡
void yacco2 ::AST ::add son to tree (yacco2 ::AST &Parent ,yacco2 ::AST &Son)
{

AST ∗p lt = Parent .lt ;

if (p lt ≡ 0) {
Parent .lt = &Son ;
Son .pr = &Parent ;
return;

}
Parent .lt = &Son ;
Son .pr = &Parent ;
Son .rt = p lt ;
p lt~pr = &Son ;
}

508. add child at end .

〈 accrue tree code 451 〉 +≡
yacco2 ::AST ∗yacco2 ::AST ::add child at end (yacco2 ::AST &Tree ,yacco2 ::AST &Child)
{

yacco2 ::AST ∗cur youngest child = AST ::get child at end (Tree);

if (cur youngest child ≡ 0) {
AST :: join pts (Tree ,Child);

}
else {

AST :: join sts (∗cur youngest child ,Child);
}
return &Child ;
}

§509 WLIBRARY GET SPEC CHILD 233

509. get spec child .

〈 accrue tree code 451 〉 +≡
yacco2 ::AST ∗yacco2 ::AST ::get spec child (yacco2 ::AST &Tree ,yacco2 ::INT Cnt)
{

if (Cnt ≤ 0) {
yacco2 ::KCHARP msg = "get_spec_child Node Cnt is <= 0";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);

}
yacco2 ::INT pos (0);
yacco2 ::AST ∗ct = Tree .lt ;

for (; ct 6= 0; ct = ct~rt) {
++pos ;
if (pos ≡ Cnt) return ct ;

}
return 0;
}

234 GET SPECIFIC SON NODE BY NUMBER WLIBRARY §510

510. Get specific son node by number.

〈 accrue tree code 451 〉 +≡
yacco2 ::AST ∗yacco2 ::AST ::get 1st son (yacco2 ::AST &Node)
{

return get spec child (Node , 1);
}
yacco2 ::AST ∗yacco2 ::AST ::get 2nd son (yacco2 ::AST &Node)
{

return get spec child (Node , 2);
}
yacco2 ::AST ∗yacco2 ::AST ::get 3rd son (yacco2 ::AST &Node)
{

return get spec child (Node , 3);
}
yacco2 ::AST ∗yacco2 ::AST ::get 4th son (yacco2 ::AST &Node)
{

return get spec child (Node , 4);
}
yacco2 ::AST ∗yacco2 ::AST ::get 5th son (yacco2 ::AST &Node)
{

return get spec child (Node , 5);
}
yacco2 ::AST ∗yacco2 ::AST ::get 6th son (yacco2 ::AST &Node)
{

return get spec child (Node , 6);
}
yacco2 ::AST ∗yacco2 ::AST ::get 7th son (yacco2 ::AST &Node)
{

return get spec child (Node , 7);
}
yacco2 ::AST ∗yacco2 ::AST ::get 8th son (yacco2 ::AST &Node)
{

return get spec child (Node , 8);
}
yacco2 ::AST ∗yacco2 ::AST ::get 9th son (yacco2 ::AST &Node)
{

return get spec child (Node , 9);
}

§511 WLIBRARY GET CHILD AT END 235

511. get child at end . Go thru the parent’s children looking for the youngest.

〈 accrue tree code 451 〉 +≡
yacco2 ::AST ∗yacco2 ::AST ::get child at end (yacco2 ::AST &Tree)
{

yacco2 ::AST ∗ct = Tree .lt ;
yacco2 ::AST ∗pct (0);

for (; ct 6= 0; ct = ct~rt) {
pct = ct ;

}
return pct ;
}

512. get youngest sibling .
If there is no younger brother then a NIL pointer is returned indicating such condition. It is up to the user
to check the validity.

〈 accrue tree code 451 〉 +≡
yacco2 ::AST ∗yacco2 ::AST ::get youngest sibling (yacco2 ::AST &Tree)
{

yacco2 ::AST ∗start = &Tree ;
yacco2 ::AST ∗younger sibling = start ;

for (; younger sibling 6= 0;) {
if (younger sibling~rt ≡ 0) break;
younger sibling = younger sibling~rt ;

}
if (start ≡ younger sibling) return 0;
return younger sibling ;
}

513. get younger sibling .
It goes right along the brother chain looking for the brother x youngest to him.

〈 accrue tree code 451 〉 +≡
yacco2 ::AST ∗yacco2 ::AST ::get younger sibling (yacco2 ::AST &Child ,yacco2 ::INT Pos)
{

if (Pos ≤ 0) {
yacco2 ::KCHARP msg = "get_younger_sibling Pos <= 0";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);

}
int cnt (0);
yacco2 ::AST ∗younger sibling = Child .rt ;

for (; younger sibling 6= 0; younger sibling = younger sibling~rt) {
++cnt ;
if (cnt ≡ Pos) return younger sibling ;

}
return 0;
}

236 GET OLDER SIBLING : RETURNS ONLY OLDER BROTHER WLIBRARY §514

514. get older sibling : returns only older brother.
It goes to its left along the brother chain in older order. If it is the first in the breadth chain, well, it’s the
end and returns a nil ptr.

〈 accrue tree code 451 〉 +≡
yacco2 ::AST ∗yacco2 ::AST ::get older sibling (yacco2 ::AST &Child ,yacco2 ::INT Pos)
{

if (Pos ≥ 0) {
yacco2 ::KCHARP msg = "get_older_sibling Pos >= 0";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);

}
int cnt (0);
AST ∗older sibling = Child .pr ;

for (; older sibling 6= 0; older sibling = older sibling~pr) {
−−cnt ;
if (cnt ≡ Pos) return older sibling ;

}
return 0;
}

515. get parent : child guidance required.

〈 accrue tree code 451 〉 +≡
yacco2 ::AST ∗yacco2 ::AST ::get parent (yacco2 ::AST &Tree)
{

yacco2 ::AST ∗cnode = &Tree ;
yacco2 ::AST ∗older sibling = cnode~pr ;

for (; older sibling 6= 0; cnode = older sibling , older sibling = cnode~pr) {
if (older sibling~rt 6= cnode) return older sibling ; /∗ ∗/

}
return 0;
}

§516 WLIBRARY COMMON ANCESTOR : ARE WE DISTANT ? 237

516. common ancestor : Are we distant ?.

〈 accrue tree code 451 〉 +≡
yacco2 ::AST ∗yacco2 ::AST ::common ancestor (yacco2 ::Type AST ancestor list & ListA,

yacco2 ::Type AST ancestor list & ListB){ Type AST ancestor list ∗ a;
Type AST ancestor list ∗ b;
if (ListA.size () < ListB .size ()) {
a = &ListA;
b = &ListB ;

}
else {
b = &ListA;
a = &ListB ;

}
Type AST ancestor list

:: iterator ai = a~begin (); Type AST ancestor list
:: iterator aie = a~end (); Type AST ancestor list

:: iterator bi ;
Type AST ancestor list

:: iterator bie ;
for (; ai 6= aie ; ++ai) {

bi = b~begin ();
bie = b~end ();
for (; bi 6= bie ; ++bi) {

AST ∗A = ∗ai ;
AST ∗B = ∗bi ;

if (A ≡ B) return A;
}
}
return 0; }

517. divorce node from tree .
Never pretty but civil in its settlement.

〈 accrue tree code 451 〉 +≡
yacco2 ::AST ∗yacco2 ::AST ::divorce node from tree (yacco2 ::AST &Node)
{

yacco2 ::AST ∗bpr = Node .pr ;
yacco2 ::AST ∗brt = Node .rt ;

〈 remove node’s association from tree 524 〉;
〈dispatch to node association: forest, among brothers, or parental 518 〉;

forest :
〈handle a forest situation, with or without a younger brother 522 〉;

amongst brothers :
〈handle sibling relationship 523 〉;

parental guidance :
〈handle parent / sibling relationship 519 〉;
}

238 DIVORCE NODE FROM TREE WLIBRARY §518

518. Dispatch to node association.
The following points are the sequences checked on the removed node’s relationship within the tree structure.

1) forest — only node or oldest node in the forest
2) middle or youngest node in the forest
3) parent with one or more children

〈dispatch to node association: forest, among brothers, or parental 518 〉 ≡
if (bpr ≡ 0) goto forest ;
if (bpr~rt ≡ &Node) goto amongst brothers ;
if (bpr~ lt ≡ &Node) goto parental guidance ;

This code is used in section 517.

519. Handle parent / sibling relationship. Is it an only child? If so, then remove the parent relationship.
If there are brothers, then re-align the relationships in both the parent and the younger child.

〈handle parent / sibling relationship 519 〉 ≡
〈 only child? yes make parent childless and exit 520 〉;
〈 re-bond younger child with parent and exit with child 521 〉;

This code is used in section 517.

520. Only child? yes make parent childless and exit.

〈 only child? yes make parent childless and exit 520 〉 ≡
if (brt ≡ 0) {

bpr~ lt = 0;
return 0;
}

This code is used in section 519.

521. Re-bond younger child with parent.

〈 re-bond younger child with parent and exit with child 521 〉 ≡
bpr~ lt = brt ;
brt~pr = bpr ;
return brt ;

This code is used in section 519.

522. Handle a forest situation, with or without a younger brother.
It is considered a forest if there is no older brother attached to it. If it has a brother, disconnect the younger
brother’s association from he removed node, and back back the younger brother.

〈handle a forest situation, with or without a younger brother 522 〉 ≡
if (brt ≡ 0) return 0; /∗ onlynode; ∗/
brt~pr = 0;
return brt ;

This code is used in section 517.

523. Handle sibling relationship. This situation is:
a → b→? where ? is either nil or a node. So, relink node a with its younger brother c.

〈handle sibling relationship 523 〉 ≡
bpr~rt = brt ;
if (brt 6= 0) brt~pr = bpr ;
return brt ;

This code is used in section 517.

§524 WLIBRARY RE-BOND YOUNGER CHILD WITH PARENT 239

524. Remove node’s association from tree.

〈 remove node’s association from tree 524 〉 ≡
Node .pr = 0;
Node .rt = 0;

This code is used in section 517.

525. clone tree .
logic: walk the tree in prefix
Ip:

1) To - node to copy
2) Calling - predecessor: if 0, no predecesor. it’s the root
3) Relation - join options: init,left,right

Op:
new tree with each new node’s content being a duplicate

The new tree is a complete copy. The tree nodes are fresh from the malloc bakery with their contents being
the same.

〈 accrue tree code 451 〉 +≡
yacco2 ::AST ∗yacco2 ::AST ::clone tree (yacco2 ::AST &Node to copy ,yacco2 ::AST

∗Calling node ,yacco2 ::ast base stack ::n action Relation)
{

yacco2 ::AST ∗new t = new yacco2 ::AST(∗yacco2 ::AST ::content (Node to copy));
/∗ copy node ∗/

switch (Relation) { /∗ how to join ∗/
case ast base stack :: init : break; /∗ root ∗/
case ast base stack :: left :
{

if (Calling node 6= 0) {
AST :: join pts (∗Calling node , ∗new t);
}
break;

}
case ast base stack ::right :
{

if (Calling node 6= 0) {
AST :: join sts (∗Calling node , ∗new t);
}
break;

}
}
if (Node to copy .lt 6= 0) AST ::clone tree (∗Node to copy .lt ,new t ,ast base stack :: left);
if (Node to copy .rt 6= 0) AST ::clone tree (∗Node to copy .rt ,new t ,ast base stack ::right);
return new t ;
}

240 SOME TREE FUNCTORS: REMOVE, INSERT BACK, PRINT A TREE, ETC WLIBRARY §526

526. Some tree functors: remove, insert back, print a tree, etc.
These functors are examples of how to create your own functor. prt ast functor prints out a tree in indented
format. fire a func functor just calls a procedure passing it the current tree node. str ast functor claim to
fame is in its use of the BYPASS_FILTER given the many abstract meta-terminal that parent each subtree: for
example the Pascal railroad diagrams with expression, simple expression, term, factor, etc. Depending on
how abstract u make the tree, there are still parent nodes that u might not want to see. str ast functor builds
a source string from an tree used in a Pascal translator from Oregon to HP Pascal source code retargeting.

An improvement: the address of the functor is passed to the call-back function so that is can also act
as a container. The reason behind this is the str ast functor . It orginally had a global string for the function
to fill. As the functor is the driver of the call-back, it is the one that knows when the source string should
be cleared for reuse.

〈Structure defs 18 〉 +≡
struct insert back recycled items functor : public Type AST functor {

functor result type operator()(yacco2 ::ast base stack ∗Stk env);
void insert node (yacco2 ::AST &Inode);
yacco2 ::AST ∗new root ();
void insert before ();

private:
yacco2 ::ast base stack ∗stk env ;
yacco2 ::INT idx ;
yacco2 ::AST ∗cnode ;
yacco2 ::ast base stack ::s rec ∗srec ;
yacco2 ::AST ∗insert node ;
yacco2 ::AST ∗new root ;
};

527. tok can ast functor .

〈Structure defs 18 〉 +≡
struct tok can ast functor : public Type AST functor {

functor result type operator()(yacco2 ::ast base stack ∗Stk env);
};

528. tok can ast no stop functor .

〈Structure defs 18 〉 +≡
struct tok can ast no stop functor : public Type AST functor {

functor result type operator()(yacco2 ::ast base stack ∗Stk env);
};

529. tok can ast bypass functor .

〈Structure defs 18 〉 +≡
struct tok can ast bypass functor : public Type AST functor {

functor result type operator()(yacco2 ::ast base stack ∗Stk env);
};

§530 WLIBRARY PRT AST FUNCTOR 241

530. prt ast functor .

〈Structure defs 18 〉 +≡
struct prt ast functor : public Type AST functor {

functor result type operator()(yacco2 ::ast base stack ∗Stk env);
typedef void(∗PF)(AST ∗);
prt ast functor(PFFunc , std ::ofstream ∗Ofile = 0);

void reset cnt ();
private:

yacco2 ::ast base stack ∗stk env ;
yacco2 ::INT idx ;
yacco2 ::AST ∗cnode ;
yacco2 ::ast base stack ::s rec ∗srec ;

PFprt funct ;

yacco2 ::INT cnt ;
char how [3];

std ::ofstream ∗ ofile ;
};

531. fire a func ast functor .

〈Structure defs 18 〉 +≡
struct fire a func ast functor : public Type AST functor {

functor result type operator()(yacco2 ::ast base stack ∗Stk env);
typedef void(∗PF)(AST ∗);
fire a func ast functor(PFFunc);

private:
yacco2 ::ast base stack ∗stk env ;
yacco2 ::INT idx ;
yacco2 ::AST ∗cnode ;
yacco2 ::ast base stack ::s rec ∗srec ;

PFa funct ;
};

532. str ast functor — build up source string.

〈Structure defs 18 〉 +≡
struct str ast functor : public Type AST functor {

functor result type operator()(yacco2 ::ast base stack ∗Stk env);
typedef void(∗PF)(AST ∗,Type AST functor ∗);
str ast functor(PFFunc);
std ::string source str ;

private:
yacco2 ::ast base stack ∗stk env ;
yacco2 ::INT idx ;
yacco2 ::AST ∗cnode ;
yacco2 ::ast base stack ::s rec ∗srec ;

PFprt funct ;

char how [3];
};

242 REMOVE UNWANTED AST FUNCTOR WLIBRARY §533

533. remove unwanted ast functor .

〈Structure defs 18 〉 +≡
struct remove unwanted ast functor : public Type AST functor {

functor result type operator()(yacco2 ::ast base stack ∗Stk env);
void possible delete ();

∼remove unwanted ast functor();

private:
yacco2 ::ast base stack ∗stk env ;
yacco2 ::INT idx ;
yacco2 ::AST ∗cnode ;
yacco2 ::ast base stack ::s rec ∗srec ;
};

§534 WLIBRARY IMPLEMENTATION OF SOME FUNCTORS 243

534. Implementation of some functors. remove unwanted ast functor.

〈 accrue tree code 451 〉 +≡
yacco2 ::functor result type

yacco2 ::remove unwanted ast functor ::operator()(yacco2 ::ast base stack
∗Stk env)

{
stk env = Stk env ;
srec = stk env ~cur stk rec ;
idx = stk env ~ idx ;
cnode = srec ~node ;

yacco2 ::CAbs lr1 sym ∗sobj = AST ::content (∗cnode);

if (sobj ≡ 0) return accept node ;
if (sobj~ tok co ords .external file id ≤ 1) return accept node ;
idx = stk env ~ idx ;
if (stk env ~ idx ≡ 0) { /∗ 1st entry of complete tree ∗/

return accept node ;
}
return bypass node ; /∗ cuz: apple’s symantic error ∗/
}
void yacco2 ::remove unwanted ast functor ::possible delete ()
{

yacco2 ::INT pidx = idx − 1;

if (pidx < 0) return;

ast base stack ::s rec ∗psrec = stk env ~stk rec(pidx);
yacco2 ::AST ∗psnode = psrec~node ;
yacco2 ::AST ∗srt = AST ::brother (∗cnode);

switch (psrec~act) {
case ast base stack :: left :
{

if (srt 6= 0) { /∗ replace current record with rt node: shift left tree ∗/
yacco2 ::AST ::relink (∗psnode , ∗cnode , ∗srt);
srec ~node = srt ;
srec ~act = ast base stack :: init ;
return;
}
yacco2 ::AST ::zero 1st son (∗psnode);
srec ~act = ast base stack ::eoc ; /∗ deleted node: complete its seq ∗/
return;

}
case ast base stack ::right :
{

if (srt 6= 0) {
yacco2 ::AST ::relink (∗psnode , ∗cnode , ∗srt);
srec ~node = srt ;
srec ~act = ast base stack :: init ;
return;
}
yacco2 ::AST ::zero brother (∗psnode);
srec ~act = ast base stack ::eoc ; /∗ deleted node: complete its seq ∗/
return;

244 IMPLEMENTATION OF SOME FUNCTORS WLIBRARY §534

}
default:
{

return;
}

}
}
yacco2 ::remove unwanted ast functor ::∼remove unwanted ast functor()
{ }

§535 WLIBRARY INSERT ITEMS BACK INTO A TREE 245

535. Insert items back into a tree.

〈 accrue tree code 451 〉 +≡
yacco2 ::functor result type

yacco2 :: insert back recycled items functor ::operator()(yacco2 ::ast base stack
∗Stk env)

{
stk env = Stk env ;
srec = stk env ~cur stk rec ;
idx = stk env ~ idx ;
cnode = srec ~node ;

yacco2 ::CAbs lr1 sym ∗top node sym = AST ::content (∗cnode);
yacco2 ::CAbs lr1 sym ∗node sym = AST ::content (∗insert node);

if (node sym~ tok co ords .rc pos ≤ top node sym~ tok co ords .rc pos) return accept node ;
return bypass node ; /∗ cuz: apple’s symantic error ∗/
}
void yacco2 :: insert back recycled items functor :: insert node (yacco2 ::AST &Inode)
{

insert node = &Inode ;
}
yacco2 ::AST ∗yacco2 :: insert back recycled items functor ::new root ()
{

return new root ;
}
void yacco2 :: insert back recycled items functor :: insert before ()
{

if (stk env ~ idx > 0) goto overlay ;
root change :

new root = insert node ;
overlay : /∗ overlay cur node with new node to insert ∗/

srec ~node = insert node ;
srec ~act = ast base stack ::right ;
AST :: join sts (∗insert node , ∗cnode);
/∗ adj visited node: default to visit cuz next ast could be ¡ than it ∗/

stk env ~push (∗cnode ,ast base stack ::visit);
adj prev caller :

if (stk env ~ idx ≡ 0) return; /∗ only root ∗/
yacco2 ::INT pi = idx − 1;
yacco2 ::ast base stack ::s rec ∗pcur rec = stk env ~stk rec(pi);
yacco2 ::AST ∗pnode = pcur rec~node ;

switch (pcur rec~act) {
case yacco2 ::ast base stack :: left :
{

yacco2 ::AST ::zero 1st son (∗pnode);
yacco2 ::AST :: join pts (∗pnode , ∗insert node);
return;

}
case yacco2 ::ast base stack ::right :
{

yacco2 ::AST ::zero brother (∗pnode);
yacco2 ::AST :: join sts (∗pnode , ∗insert node);

246 INSERT ITEMS BACK INTO A TREE WLIBRARY §535

return;
}

}
return;
}

536. tok can ast functor continue looping thru the tree.

〈 accrue tree code 451 〉 +≡
yacco2 ::functor result type yacco2 ::tok can ast functor ::operator()(ast base stack ∗Stk env)
{

return accept node ; /∗ stop looping thru ast ∗/
}

537. tok can ast no stop functor stop looping thru the tree.

〈 accrue tree code 451 〉 +≡
yacco2 ::functor result type yacco2 ::tok can ast no stop functor ::operator()(ast base stack

∗Stk env)
{

return stop walking ; /∗ continue looping thru ast ∗/
}

538. tok can ast bypass functor.

〈 accrue tree code 451 〉 +≡
yacco2 ::functor result type yacco2 ::tok can ast bypass functor ::operator()(ast base stack

∗Stk env)
{

yacco2 ::ast base stack ::s rec ∗srec = Stk env~cur stk rec ;
yacco2 ::AST ∗cnode = srec~node ;
yacco2 ::CAbs lr1 sym ∗sym = AST ::content (∗cnode);

if (sym~ tok co ords .external file id > 1) return bypass node ;
/∗ contine the walk, not wanted ∗/

return bypass node ;
}

§539 WLIBRARY PRT AST FUNCTOR 247

539. prt ast functor.

〈 accrue tree code 451 〉 +≡
yacco2 ::functor result type yacco2 ::prt ast functor ::operator()(yacco2 ::ast base stack

∗Stk env)
{

stk env = Stk env ;
srec = stk env ~cur stk rec ;
idx = stk env ~ idx ;

yacco2 ::INT pidx = idx − 1;

cnode = srec ~node ; /∗ std::string how; ∗/
if (pidx ≤ 0) goto prt prefix ;
{

ast base stack ::s rec ∗psrec = stk env ~stk rec(pidx);

if (psrec~act ≡ ast base stack :: left) {
how [0] = ’l’;

}
else {

how [0] = ’r’;
}
how [1] = ’t’;
how [2] = (char) 0;

}
prt prefix :
〈 acquire trace mu 389 〉;
yacco2 ::INT no lt (0);

for (yacco2 ::INT x = 0; x ≤ idx ; ++x)
if (stk env ~stk rec(x)~act ≡ ast base stack :: left) ++no lt ;

for (yacco2 ::INT x = 0; x ≤ no lt ; ++x) (∗ofile)� " ";
(∗ofile)� ++cnt � "::" � ’ ’;
〈 release trace mu 390 〉;

call prt func :
(∗prt funct)(cnode);
return accept node ; /∗ continue looping thru ast ∗/
}

yacco2 ::prt ast functor ::prt ast functor(PFFunc , std ::ofstream ∗Ofile): prt funct (Func), cnt (0)
{

if (Ofile ≡ 0) {
ofile = &yacco2 :: lrclog ;

}
else {

ofile = Ofile ;
}
}
void yacco2 ::prt ast functor ::reset cnt ()
{

cnt = 0;
}

248 FIRE A FUNC AST FUNCTOR WLIBRARY §540

540. fire a func ast functor.

〈 accrue tree code 451 〉 +≡
yacco2 ::functor result type

yacco2 ::fire a func ast functor ::operator()(yacco2 ::ast base stack
∗Stk env)

{
stk env = Stk env ;
srec = stk env ~cur stk rec ;
idx = stk env ~ idx ;

yacco2 ::INT pidx = idx − 1;

cnode = srec ~node ;
call prt func :

(∗a funct)(cnode);
return accept node ; /∗ continue looping thru ast ∗/
}

yacco2 ::fire a func ast functor ::fire a func ast functor(PFFunc): a funct (Func)
{ }

541. str ast functor.

〈 accrue tree code 451 〉 +≡
yacco2 ::functor result type yacco2 ::str ast functor ::operator()(yacco2 ::ast base stack

∗Stk env)
{

stk env = Stk env ;
srec = stk env ~cur stk rec ;
idx = stk env ~ idx ;

yacco2 ::INT pidx = idx − 1;

cnode = srec ~node ; /∗ std::string how; ∗/
if (pidx ≤ 0) goto prt prefix ;
{

ast base stack ::s rec ∗psrec = stk env ~stk rec(pidx);

if (psrec~act ≡ ast base stack :: left) {
how [0] = ’l’;

}
else {

how [0] = ’r’;
}
how [1] = ’t’;
how [2] = (char) 0;

}
prt prefix :

call prt func :
(∗prt funct)(cnode , this);
return accept node ; /∗ continue looping thru ast ∗/
}

yacco2 ::str ast functor ::str ast functor(PFFunc): prt funct (Func)
{

source str .clear ();
}

§542 WLIBRARY CONSTRAINTS 249

542. Constraints. Validation code snippets.
This is the source collector of all constraints used across Yacco2’s code. Why one place insead of keeping
the code close to the routines using them? Good question. Code comprehension demands that the code
be within the the reading periphery of the programmer. But, code clutter can remove this advantage to
understanding. cweb provides a better way to do it. You can still use the code clutter approach but it
provides a better way. Just describe the code block with intention and reference it. No need to keep the
code near by! Gardening chores are tidier, one-place-only to correct and improve.

543. Invalid use of |?| instead of |+| symbol.

〈 Invalid |?|instead of |+|use 543 〉 ≡
char a[BUFFER_SIZE];
yacco2 ::KCHARP msg = "Error − Bad use of |?| instead of |+| symbol or epsilon sub\

rule. ""Correct %s grammar, parse state: %i. Cannot continue parsing.";

sprintf (a,msg , fsm tbl ~ id , parse stack .top ~state ~state no);
Yacco2 faulty precondition(a, __FILE__, __LINE__);
exit (1);

This code is cited in section 700.

This code is used in section 253.

544. Validate any token for parsing.

〈Validate any token for parsing 544 〉 ≡
if (current token ≡ 0) {

yacco2 ::KCHARP msg = "Error − current token ptr zero. Cannot continue parsing.";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);
}

This code is used in section 254.

545. Validate Line no parameter.

〈Validate Line no parameter 545 〉 ≡
if (Line no < 1) {

yacco2 ::KCHARP msg = "Error − Line_no not 1 or greater";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);
}

This code is used in section 74.

546. Validate Pos parameter.

〈Validate Pos parameter 546 〉 ≡
if (Pos < 1) {

yacco2 ::KCHARP msg = "Error − Pos not 1 or greater";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);
}

This code is used in section 72.

250 CONSTRAINTS WLIBRARY §547

547. Validate Pos in line parameter.

〈Validate Pos in line parameter 547 〉 ≡
if (Pos in line < 1) {

yacco2 ::KCHARP msg = "Error − Pos_in_line not 1 or greater";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);
}

This code is used in section 74.

548. Validate File no parameter.

〈Validate File no parameter 548 〉 ≡
if (File no < 1) {

yacco2 ::KCHARP msg = "Error − File_no not 1 or greater";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);
}

This code is used in sections 56 and 73.

549. Validate any symbol for co-ordinate setting to relate to?.

〈Validate any symbol for co-ordinate setting to relate to? 549 〉 ≡
if (pt ≡ 0) {

;

yacco2 ::KCHARP msg = "Error − no supplier symbol found to relate to for co−ordina\

te setting";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);
}

550. Validate parser’s finite state table.

〈Validate parser’s finite state table 550 〉 ≡
if (parser~ fsm tbl ≡ 0) {

yacco2 ::KCHARP msg = "Error − parser’s finite state table is zero ptr";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);
}

This code is used in section 636.

551. Validate that parser stack is not empty.

〈Validate that parser stack is not empty 551 〉 ≡
if (parser~parse stack .top sub < 1) {

yacco2 ::KCHARP msg = "Error − parser’s stack is empty";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);
}

This code is used in section 636.

§552 WLIBRARY CONSTRAINTS 251

552. Validate if parser’s supplier exists.

〈Validate if parser’s supplier exists 552 〉 ≡
if (token supplier ≡ 0) {

yacco2 ::KCHARP msg = "Error − parser’s supplier is zero ptr";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);
}

This code is used in sections 338 and 365.

553. Validate if subscript within supplier’s bnds.

〈Validate if subscript within supplier’s bnds 553 〉 ≡
if (Pos > token supplier ~size ()) {

yacco2 ::KCHARP msg = "Error − Pos out of bounds against supplier";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);
}

This code is used in sections 338 and 365.

554. Validate subscript not ≤ 0. The subscript must be a positive integer. This condition is now controlled
by Token start pos macro. The original subscript is relative to 0. My preference is relative to 1. So, provide
a mechanism to change in one place so that these conditions can be experimented with.

〈Validate subscript not ≤ 0 554 〉 ≡
if (Pos < Token start pos) {

char a[BUFFER_SIZE];
yacco2 ::KCHARP msg = "Error − Subcript Pos value < %i −−− out of bounds";

sprintf (a,msg ,Token start pos);
Yacco2 faulty precondition(a, __FILE__, __LINE__);
exit (1);
}

This code is used in section 346.

555. Validate parse stack number of removal items.

〈Validate parse stack number of removal items 555 〉 ≡
if (No to remove < 0) {

yacco2 ::KCHARP msg = "Error − parse stack number of removal items < 0";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);
}

This code is used in section 350.

252 CONSTRAINTS WLIBRARY §556

556. Validate parse stack removal for underflow.

〈Validate parse stack removal for underflow 556 〉 ≡
if (parse stack .top sub < 1) {

char a[BUFFER_SIZE];
yacco2 ::KCHARP msg = "FSM id: %s parse stack empty!";

sprintf (a,msg , fsm tbl ~ id);
Yacco2 faulty precondition(a, __FILE__, __LINE__);
exit (1);
}
if (No to remove > MAX_LR_STK_ITEMS) {

char a[BUFFER_SIZE];
yacco2 ::KCHARP msg = "Error − Underflow FSM id: %s on parse stack size:%i removal\

 request: %i ";

sprintf (a,msg , fsm tbl ~ id , MAX_LR_STK_ITEMS,No to remove);
Yacco2 faulty precondition(a, __FILE__, __LINE__);
exit (1);
}

This code is used in section 350.

557. Validate error queue.

〈Validate error queue 557 〉 ≡
if (error queue ≡ 0) {

yacco2 ::KCHARP msg = "Error − Trying to add to Parser error_queue__ which is zero\

 ptr";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);
}

This code is used in section 332.

558. Error shift symbol not fnd in fsm table.
The reason for not using a Error type T is that this is below the language being parsed. It would force having
a pre-canned error terminal in the error class of the language being defined: lr constants and rc terminals
are enough cement. That’s the short of it.

〈Error shift symbol not fnd in fsm table 558 〉 ≡
if (se ≡ 0) {

char a[BUFFER_SIZE];
yacco2 ::KCHARP msg = "Error − Can’t find symbol to shift in FSM id: %s state: %i \

sym−id: %i literal: %s";
CAbs lr1 sym ∗xxx = current token ();

sprintf (a,msg , fsm tbl ~ id , pr~state ~state no , xxx~enumerated id (), xxx~ id ());
Yacco2 faulty precondition(a, __FILE__, __LINE__);

yacco2 ::KCHARP msg2 = "T co−ordinates: file: %s GPS LINE: %i GPS CHR POS: %i";

sprintf (a,msg2 , xxx~ tok co ords .external file id 6= MAX_USINT ?
yacco2 ::FILE_TBL__[xxx~ tok co ords .external file id].c str () : " No external file",
xxx~ tok co ords .line no , xxx~ tok co ords .pos in line);

Yacco2 faulty precondition(a, __FILE__, __LINE__);
exit (1);
}

This code is used in sections 265 and 267.

§559 WLIBRARY CONSTRAINTS 253

559. Validate if rule shift symbol in fsm table.

〈Validate if rule shift symbol in fsm table 559 〉 ≡
if (se ≡ 0) {

char a[BUFFER_SIZE];
yacco2 ::KCHARP msg = "Error − Cant find rule shift in state FSM id: %s state: %i \

rule id: %i ";

sprintf (a,msg , fsm tbl ~ id , parse stack .top ~state ~state no , (∗rule rec)~rule ~enumerated id);
Yacco2 faulty precondition(a, __FILE__, __LINE__);
exit (1);
}

This code is used in section 243.

560. Validate reduce entry.

〈Validate reduce entry 560 〉 ≡
if (re ≡ 0) {

char a[BUFFER_SIZE];
yacco2 ::KCHARP msg = "Error − Cant find parallel sym reduce in FSM id: %s state: \

%i token: %s subs: %i ";

sprintf (a,msg , fsm tbl ~ id , pr~state ~state no , current token ~ id , current token pos);
Yacco2 faulty precondition(a, __FILE__, __LINE__);
exit (1);
}

This code is used in sections 256 and 260.

561. Validate accept message.

〈Validate accept message 561 〉 ≡
if (arbitrated token ~accept token pos ≡ arbitrated token ~ la token pos) {

yacco2 ::KCHARP msg = "Error − Parallel token boundry same as LA token boundry";

Yacco2 faulty precondition(msg , __FILE__, __LINE__);
exit (1);
}

562. Error bad character mapping.

〈Error bad character mapping 562 〉 ≡
char a[BUFFER_SIZE];
yacco2 ::KCHARP msg = "Error − Bad char mapping chr value: %i";

sprintf (a,msg ,Char);
Yacco2 faulty precondition(a, __FILE__, __LINE__);
exit (1);

This code is used in section 56.

563. Error no more raw character storage.

〈Error no more raw character storage 563 〉 ≡
char a[BUFFER_SIZE];
yacco2 ::KCHARP msg = "Error − Sorry run out of raw character storage: need to reg\

en Yacco2: %i";

sprintf (a,msg , SIZE_RC_MALLOC);
Yacco2 faulty precondition(a, __FILE__, __LINE__);
exit (1);

This code is used in section 57.

254 MACRO DEFINITIONS WLIBRARY §564

564. Macro definitions.
I use macros of C++ and cweb variety. Their use covers terminal constructor initialization, tracing of flow
control events, parse stack configuration and syntax directed directives, utilities to deal with specific parse
situations or results, and aid macros to debug grammars.

As log trace files can be volumous, i placed within each logged message the macro variable’s name that
controls its output. For example, YACCO2_MSG__ controls signalling between threads as in wait-for-wakeup
message from one of the called threads etc. I’ll see how refined this is by use of an UNIX shell’s scripting
language like “bash” with piping. I’ll let u posted.

565. Copyright.

〈 copyright notice 565 〉 ≡ /∗ copyright ∗/
This code is used in sections 35, 36, 42, 55, 76, 169, 188, 191, 193, 203, and 450.

566. EXTERNAL GPSing macro is used to print out T’s external file.
The external file comes from tok can container use that registers the external files processed with
FILE_TBL__. A created T has a subscript reference into this stack. Sanity check must exist against the
FILE_TBL__ registrar or a possible out-of-subscript error could be thrown.

One misuse is to process the “command line” input where the input is written to a holding file. A
hardwiring of 1 for the file is used as the “holding file” is the first file inputted to Yacco2 . But if the holding
file name is illegal, a T error of “bad file inputted” created with this file reference as crap. The other potential
error is the CLI inputted file is non existent and creating the error T referenced to the holding file which has
not been registered with FILE_TBL__ thru tok can〈ifstream 〉 container create also becomes poop-poop.

Now u defined an Error handler grammar to trace out those errors expecting to see the traced output with
the external file name and its contents line references. Say the “holding file” exists with the command line
data placed there but never registered the holding file with the tok can. Hence the non registering of
the CLI holding file will not be printed by the parser / Error processing grammar. See the “./grammar-
testsuite/testout.pdf” program as an example of “command line processing” to avoid the above errors.

#define EXTERNAL GPSing (TOK__)
if (TOK__~ tok co ords .external file id < yacco2 ::FILE_TBL__.size ()) {

yacco2 :: lrclog � yacco2 ::FILE_TBL__[TOK__~ tok co ords .external file id].c str ();
}
else {

yacco2 :: lrclog � " EXTERNAL_GPSing − No external file registered to use" �
" stack subscript: " � TOK__~ tok co ords .external file id ;

}

567. FILE_LINE macro source file co-ordinates for tracing.
Add the file and line number to the dynamic tracing output. Allows one to go to the source code if things
are askew. Gum stuck to your shoe but hey it’s an indication.

#define FILE_LINE ’ ’ � __FILE__ � ": " � __LINE__

§568 WLIBRARY T_CTOR MACRO IS USED BY THE TERMINAL DEFS SUPPLIED TO THE GRAMMAR 255

568. T_CTOR macro is used by the terminal defs supplied to the grammar.
When a terminal definition needs to be customized, the grammar writer can roll his own class definition.
It just initializes the base variables within the class constructor’s implementation. Its name is composed
of T indicating for terminals, and the CTOR uses the C++ naming convention to indicate that it belongs to
the class constructor. Please have a look at Yacco2’s yacco2 k symbols .lex file that defines the lr constants
definitions for a demonstration of use. For the moment there are 5 parameters: A..E. Originally there was
more to handle the push-pop-lookahead functors. From Yacco2’s use, these functors were never needed. It
was only during my Master’s thesis that they got their 15 minutes of fame.

Parameter A: provides the terminal’s literal name for tracing
Parameter B is the enumerated value

It is symbolically gened by prefixing an T_ to the ‘C++’ name of the terminal and ending it off with a
suffix. This is described in Enumeration of Alphabets .

Parameter C is the address of the class destructor function or nil
I know, this should be automatically detected by Yacco2’s parse generator but for now this is reality: still

outstanding.
parser is the associated parser for the grammar used by the grammar’s rules. As the CAbs lr1 sym

is a base structure for both the terminals and rules of the grammar, it has no associated parser for the
terminals as terminals are nomadic by nature. Normally tok co ords ’s attributes are overriden by a raw
character co-ordinates. Terminals are composites of other basic entities like raw character terminals.

Parameter D is auto delete boolean value of ON or OFF
Parameter E is auto abort boolean value of ON or OFF

An auto delete attribute indicates that the terminal is deleted when popped from the parse stack. When
an abort of a parse occurs, this attribute when turned on indicates that the object should be deleted. It’s
a ‘clean up your own mess’ attribute. Both paramaters relate to the terminal’s ‘AD’ and ‘AB’ grammatical
attributes. An example of T_CTOR use is:

T_CTOR(”labeled-stmt”,T T labeled stmt ,&dtor T labeled stmt ,OFF,ON)
T_CTOR_RW macro handles the raw character terminals. The additional 2 parameters F, and G are the

source file index and character position within the file. Please look at Yacco2’s yacco2 characters .lex file to
see an example of T_CTOR_RW use. The Yacco2 runtime environment maintains an index of files included
into the source grammar. FILE_TBL__ is a vector of file index and the external filename literal. FILE_CNT__
is the matching external variable used by the include file grammar that stacks them when nested include
statements come into and out of scope. From the raw character classes, the GPS of the character is passed
in as parameters. A specialized tok can template for ‘file to raw character’ object mapping handles this
task.

569. T_CTOR, T_CTOR_RW macros.

#define T_CTOR(A,B,C,D,E) : CAbs lr1 sym(A,C,B,D,E)
#define T_CTOR_RW(A,B,C,D,E, F ,G) : CAbs lr1 sym(A,C,B,D,E, F ,G)

570. Define YACCO2 define trace variables .
See “The C++ preprocessor coding game” regarding the individual tracing variable functionality.

#define YACCO2 define trace variables () int yacco2 ::YACCO2_T__(OFF);
int yacco2 ::YACCO2_TLEX__(OFF);
int yacco2 ::YACCO2_MSG__(OFF);
int yacco2 ::YACCO2_TH__(OFF);
int yacco2 ::YACCO2_AR__(OFF);
int yacco2 ::YACCO2_THP__(OFF);
int yacco2 ::YACCO2_MU_TRACING__(OFF);
int yacco2 ::YACCO2_MU_TH_TBL__(OFF);
int yacco2 ::YACCO2_MU_GRAMMAR__(OFF);

256 TOKEN PLACEMENT MACROS WLIBRARY §571

571. Token placement macros.
They are used by the grammar writer within syntax directed code sections of a grammar to place a token
into appropriate queues:

recycle container — used to delete or re-integrate tokens back into a parse stream
accept container — tokens returned by launched threads for arbitration
producer container - tokens outputted for other parse stages
error container — a container of accrued error tokens
supplier of tokens — token stream that a grammar parses

572. ADD_TOKEN_TO_RECYCLE_BIN.
This is a holding pen for possibly re-use of the token that has been pulled out of the token stream. It is a
minor facility but has poco merit.

#define ADD_TOKEN_TO_RECYCLE_BIN(Token) rule info .parser ~add token to recycle bin (Token)

573. DELETE_T_SYM macro.
This macro deletes a T when passed by pointer. It only allows Tes that are from either Error or Meta-
terminal classes. This guards against the erasing of preallocated Tes of LR k or RC (raw chacacter) classes.
They are preallocated from the memory heap for speed. It checks whether the symbol’s dtor static method
is present and calls it. This allows a delete chain calling of other dependents or other dependencies when
the destructor directive is used within the T grammar definition. Why this route to T symbol deletes rather
than c++’s dtor: ∼T ()? Mixed into the fray is my AB abort parse stack cleanup. Whether its of any
use this is my experiment. It required the stack frame pointer as the 2nd parameter. For the just plain
way to deletes, this macro eases the complaints without the stack frame pointer. Depending on how your
compiler/translator runs, deleting of Tes could be left to the process teardown. If your language recognizer
is always on and being invoked like an Internet protocol, then T hygiene is required or those memory leaks
will haunt u.

#define DELETE_T_SYM(T)
if (T 6= 0) {

if (T~enumerated id > END_OF_RC_ENUMERATE) {
if (T~dtor 6= 0) {

(∗T~dtor)(T , 0); /∗ stack frame 0 ∗/
}
delete T ;

}
}

§574 WLIBRARY ADD TOKEN TO AN ACCEPT QUEUE: RSVP, RSVP_FSM, RSVP_WLA MACROS 257

574. Add token to an accept queue: RSVP, RSVP_FSM, RSVP_WLA macros.
RSVP places a token into the calling grammar’s accept queue that requested this thread. It can be placed
anywhere in the syntax directed code of the grammar except within the grammar’s fsm context where you
use the RSVP_FSM macro. The RSVP_WLA allows u to override the lookahead bounds instead of taking as
default the current token. A quick review of messages, threads, and accept tokens:

the calling grammar: 1:m launching of threads
accept queue: 0:m potential tokens returned by launched threads
1 wakeup event to calling grammar by thread finished last in execution

Arbitration is used by the caller grammar when it is re-activated by an event (message) from the thread
finishing last in execution order: the status message “accept parallel parse” is posted to just wake up the
calling grammar regardless of the overall parse success by the launched threads. It is the th accepting cnt
that determines whether the threads were successful or not. It only occurs when there are items in the
accept queue. If none of the launched threads are successful in their parsing, then the calling grammar will
attempt to go through its conditional parsing (non-determinism). Arbitration is the associated code within
the grammar’s fsm state that launched the threads. It rules on possibly more than one accept token being
returned. A little french spices up this ho-hum macro.

Why is there an accepted token position? Remember the current token in the thread’s parse stream is
now the future position in the token stream to continue parsing from for the calling grammar. In a long
stream of characters that makes up the accept token, usually its the start token’s position passed to the
called thread that is used to GPS it’s position within the token stream. The current token context (I call
the “lookahead context”) is provided by the last 2 parameters for the Caccept parse. It is this lookahead
context of the accepted token that is used to continue parsing within the calling grammar. The arbitrated
token is parallel shifted and its accompaning lookahead boundry is then used to reduce the parallel shift’s
subrule expression. All other potential accept tokens are flushed out of the accept queue.

#define RSVP(Token)
rule info .parser ~pp rsvp .fill it (∗rule info .parser , ∗Token ,Token~ tok co ords .rc pos ,

∗rule info .parser ~current token , rule info .parser ~current token pos)
#define RSVP_WLA(Token , LATOK, LAPOS) rule info .parser ~pp rsvp .fill it (∗rule info .parser ,

∗Token ,Token~ tok co ords .rc pos , ∗LATOK, LAPOS)
#define RSVP_FSM(Token) parser ~pp rsvp .fill it (∗parser , ∗Token ,Token~ tok co ords .rc pos ,

∗parser ~current token , parser ~current token pos)

575. ADD_TOKEN_TO_PRODUCER_QUEUE.
This allows one to output from a parse a terminal stream that becomes a supplier queue for another grammar
to parse.

#define ADD_TOKEN_TO_PRODUCER_QUEUE(TOKEN) rule info .parser ~add token to producer (TOKEN)

576. ADD_TOKEN_TO_ERROR_QUEUE and ADD_TOKEN_TO_ERROR_QUEUE_FSM.
This becomes a holding queue that can be processed by a error grammar. It’s a nice way to format parsing
errors. It is the context that determines which macro to use.

#define ADD_TOKEN_TO_ERROR_QUEUE(TOKEN) rule info .parser ~add token to error queue (TOKEN)
#define ADD_TOKEN_TO_ERROR_QUEUE_FSM(TOKEN) parser ~add token to error queue (TOKEN)

258 GENERATED FINITE STATE AUTOMATON MACROS WLIBRARY §577

577. Generated finite state automaton macros.
They are included in the C++ code of each rule emitted by Yacco2. Their names are sufficient to explain
their intent. Why the wrapping of the macros within the @= ... @> construct instead of a plain macro
“# define” definition? Glad u asked. The cweave version “7.5.5” on a Mac emits code that pdftex Version
3.141592-1.30.4-2.2 honks: too many “}′′ or “$”. So this is my workaround until i have time to get a higher
version of cweave.

Note: the cweb Microsoft flavour works. More rumblings from within my quest to port Yacco2. Screw the
port. i need to read it.
Brought back cweb macros as they work on the Mac now.

#define ssNEW TRACEss (ssPss , ssQss) yacco2 :: lrclog � "\t!!!!! new adr: " � (void ∗)
ssPss � " " � #ssQss � ’ ’ � __FILE__ � ’:’ � __LINE__ � std ::endl ;

yacco2 :: lrclog � "\tfile: " � __FILE__ � " line: " � __LINE__ � std ::endl ;
#define ssP TRACEss (ssPss , ssQss)

yacco2 :: lrclog � ’\t’ � Parse env~ thread no � "\t!!!!! new adr: " � (void ∗)
ssPss � " " � #ssQss � FILE_LINE � std ::endl ;

yacco2 :: lrclog � "\tfile: " � __FILE__ � " line: " � __LINE__ � std ::endl ;
#define sstrace terminalsss

if (yacco2 ::YACCO2_TLEX__) {
bool to trace or not to = trace parser env (rule info .parser , FORCE_STK_TRACE);

if (to trace or not to ≡ true) {
yacco2 :: lrclog � "\tYACCO2_TLEX__::" � rule info .parser ~ thread no �

rule info .parser ~ fsm tbl ~ id � "::" � id � "::op()\n";
}
}

#define sstrace rulesss
if (yacco2 ::YACCO2_TLEX__) {

bool to trace or not to = trace parser env (rule info .parser , FORCE_STK_TRACE);

if (to trace or not to ≡ true) {
yacco2 :: lrclog � "\tYACCO2_TLEX__::" � rule info .parser ~ thread no � "::" �

rule info .parser ~ fsm tbl ~ id � "::" � id � "::op()\n";
}
}

#define sstrace sub rulesss
if (yacco2 ::YACCO2_TLEX__) {

bool to trace or not to = trace parser env (rule info .parser , FORCE_STK_TRACE);

if (to trace or not to ≡ true) {
yacco2 :: lrclog � "\tYACCO2_TLEX__::" � rule info .parser ~ thread no � "::" �

rule info .parser ~ fsm tbl ~ id � "::" � id � "::op()\n";
}
}

#define sstrace stack rtnsss
if (yacco2 ::YACCO2_TLEX__) {
bool to trace or not to = trace parser env (Parse env , FORCE_STK_TRACE)) ;
if (to trace or not to ≡ true) {

yacco2 :: lrclog � "\tYACCO2_TLEX__::" � Parse env~ thread no � "::" �
Parse env~ fsm tbl ~ id � "::op() sym: " � id � FILE_LINE � std ::endl ;

}
}

§578 WLIBRARY PUSHDOWN AUTOMATON’S FLOW CONTROL MACROS 259

578. Pushdown automaton’s flow control macros.
They are placed in stragetic places for operations accept, reduce, shift, and abort. As there are many points
being traced, a little explanation is required to give some semblance of order. The messages outputted go
to a log file named ‘tracings.log’. What type of name is this? The prefix 1 sorts the file to the top of a
directory. The balance of the name was an attempt to say lr output of clog type. Ugh. This will be changed.

Messages logged fall into the parsing configuration that tries to give a semblance of a stack. It prints the
stack content in bottomup order. A sample of the trace is:

. .1500::rule def phrase .lex ::1−−identifier~3
The dots indicate the number of items on the stack to be displayed, followed by the thread’s identity — a
runtime thread number and the grammar’s name being traced. Following this are the stacked items displayed
in bottom-to-top order. Each item contains the finite state that it is in, a vector containing the stacked item
and the finite state’s shift into state no.

Other traces will try to output regular sentences so that they can be parsed by a grammar or a scripting
language. This will allow one to digest intelligently the interplay between the grammar, and the appropriate
running threads. As there are many threads simultaneously running, this will help in consolidating the
reported tracings.

579. T_0 trace remove items from the parse stack.

〈Trace TH remove items from the parse stack configuration 579 〉 ≡
if (YACCO2_TH__) {

if (fsm tbl ~debug ≡ ON) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_TH__::" � thread no � "::" � fsm tbl ~ id �

":: Popping items from stack # to pop: " � No to remove � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;

}
}

This code is used in section 361.

580. T 0a trace finished removing items from the parse stack.

〈Trace TH finished removing items from the parse stack configuration 580 〉 ≡
if (YACCO2_TH__) {

if (fsm tbl ~debug ≡ ON) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_TH__::" � thread no � "::" � fsm tbl ~ id �

":: Finished Popping items from stack" � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;

}
}

This code is used in section 361.

581. T_1 trace the parse stack if the grammar is requesting to be debugged. The returned
debug switch’s value is dropped.

〈Trace TH the parse stack configuration 581 〉 ≡
if (YACCO2_TH__) {

bool to trace or not to = trace parser env (this, COND_STK_TRACE);
}

This code is used in sections 236, 238, 240, 241, 245, and 348.

260 T_2 TRACE WHEN AN EPSILON RULE IS BEING REDUCED WLIBRARY §582

582. T_2 trace when an epsilon rule is being reduced.

〈Trace TH when an epsilon rule is being reduced 582 〉 ≡
if (YACCO2_TH__) {

bool to trace or not to = trace parser env (this, COND_STK_TRACE);

if (to trace or not to ≡ YES) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "\tYACCO2_TH__::" � thread no � "::" � fsm tbl ~ id � "::epsilon" �

FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;

}
}

This code is used in section 351.

583. T_3 trace the state no when popped from the parse stack.

〈Trace TH popped state no 583 〉 ≡
if (YACCO2_TH__) {

bool to trace or not to = trace parser env (this, COND_STK_TRACE);

if (to trace or not to ≡ YES) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "\tYACCO2_TH__::" � thread no ;
yacco2 :: lrclog � "::" � fsm tbl ~ id � "::popped state:: ";
yacco2 :: lrclog � pr~state ~state no � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;

}
}

This code is used in section 361.

584. T_4 trace when invisible shift symbol popped from stack.
Because this symbol is universal, ?? chk why zeroed instead of not having AD on?

〈Trace TH zeroed out symbol situation when popped from parse stack 584 〉 ≡
if (YACCO2_TH__) {

bool to trace or not to = trace parser env (this, COND_STK_TRACE);

if (to trace or not to ≡ YES) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "\tYACCO2_TH__::" � thread no � "::" � fsm tbl ~ id �

"::exposed rule/terminal:: NULL due to invisible shift" � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;

}
}

This code is used in section 357.

§585 WLIBRARY T_5 TRACE EXPOSED SYMBOL ON PARSE STACK 261

585. T_5 trace exposed symbol on parse stack.

〈Trace TH exposed symbol on parse stack 585 〉 ≡
if (YACCO2_TH__) {

bool to trace or not to = trace parser env (this, COND_STK_TRACE);

if (to trace or not to ≡ YES) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "\tYACCO2_TH__::" � thread no � "::" � fsm tbl ~ id �

"::exposed rule/terminal:: " � parse stack .top ~symbol ~ id � ’ ’ �
parse stack .top ~symbol � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}
}

This code is used in section 361.

586. T_6 trace top item on the parse stack when auto-delete switch on.
This is the grammatical attribute AD requesting deletion when popped from the parse stack.

〈Trace TH advise when symbol deleted due to AD switch 586 〉 ≡
if (YACCO2_TH__) {

bool to trace or not to = trace parser env (this, COND_STK_TRACE);

if (to trace or not to ≡ YES) {
if (parse stack .top ~symbol ~auto delete ≡ YES) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "\tYACCO2_TH__::" � thread no � "::" � fsm tbl ~ id �

"::AD deleting exposed rule/terminal:: " � parse stack .top ~symbol ~ id � ’ ’ �
parse stack .top ~symbol � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

}
}

This code is used in section 358.

587. T 6a trace top item on the parse stack when auto-abort switch on.
This occurs usually at abort time of a threaded parse. It can occur when the grammar writer has not
removed the appropriate objects from being checked by a destructor directive for deletion in a grammar rule.

〈Trace TH advise when auto abort happening 587 〉 ≡
if (YACCO2_TH__) {

bool to trace or not to = trace parser env (this, COND_STK_TRACE);

if (to trace or not to ≡ YES) {
if (parse stack .top ~symbol ~affected by abort ≡ YES) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "\tYACCO2_TH__::" � thread no � "::" � fsm tbl ~ id �

"::AB deleting exposed rule/terminal:: " � parse stack .top ~symbol ~ id � ’ ’ �
parse stack .top ~symbol � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

}
}

This code is used in section 361.

262 T_7 TRACE WHEN THREADING FAILED: TRY STRAIGHT PARSE WLIBRARY §588

588. T_7 trace when threading failed: try straight parse.

〈Trace TH failed parallel try straight parse 588 〉 ≡
if (YACCO2_TH__) {

bool to trace or not to = trace parser env (this, COND_STK_TRACE);

if (to trace or not to ≡ YES) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_TH__::" � thread no � "::" � fsm tbl ~ id �

"::############# TRY STRAIGHT try_straight_due_to_aborted_parallel" �
" reset token pos: " � current token pos � " reset token: " � current token ~ id �
FILE_LINE � std ::endl ;

yacco2 :: lrclog � "\tYACCO2_TH__::" � thread no � "::GPS RESET FILE: ";
EXTERNAL GPSing (current token ())yacco2 :: lrclog � " GPS RESET LINE: " �

current token ()~ tok co ords .line no � " GPS RESET CHR POS: " �
current token ()~ tok co ords .pos in line � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}
}

This code is used in section 258.

589. T_7 trace when proc call failed: try straight parse.

〈Trace TH failed proc call try straight parse 589 〉 ≡
if (YACCO2_TH__) {

bool to trace or not to = trace parser env (this, COND_STK_TRACE);

if (to trace or not to ≡ YES) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_TH__::" � thread no � "::" � fsm tbl ~ id �

"::############# TRY STRAIGHT try_straight_due_to_aborted_parallel" �
" reset token pos: " � current token pos � " reset token: " � current token ~ id �
FILE_LINE � std ::endl ;

yacco2 :: lrclog � "\tYACCO2_TH__::" � thread no � "::GPS RESET FILE: ";
EXTERNAL GPSing (current token ())yacco2 :: lrclog � " GPS RESET LINE: " �

current token ()~ tok co ords .line no � " GPS RESET CHR POS: " �
current token ()~ tok co ords .pos in line � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}
}

This code is used in section 262.

§590 WLIBRARY T_11 STRAIGHT PARSE ERROR 263

590. T_11 straight parse error.
How and why NIL pointer? protects when the

〈Trace TH straight parse error 590 〉 ≡
if (YACCO2_TH__) {

bool to trace or not to = trace parser env (this, COND_STK_TRACE);

if (to trace or not to ≡ YES) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "\tYACCO2_TH__::" � thread no � "::" � fsm tbl ~ id � "::";
yacco2 :: lrclog � "#############straight parse−error current token " � ’"’ �

current token ()~ id � ’"’ � " pos: " � current token pos � FILE_LINE � std ::endl ;
yacco2 :: lrclog � "\tYACCO2_TH__::" � thread no � "::GPS RESET FILE: ";
EXTERNAL GPSing (current token ())yacco2 :: lrclog � " GPS RESET LINE: " �

current token ()~ tok co ords .line no � " GPS RESET CHR POS: " �
current token ()~ tok co ords .pos in line � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}
}

This code is used in section 249.

591. T_14 trace parallel parse thread startup communication.

〈Trace TH parallel parse thread start communication 591 〉 ≡
if (YACCO2_TH__) {

bool to trace or not to = trace parser env (this, COND_STK_TRACE);

if (to trace or not to ≡ YES) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_TH__::" � "requestor of parallelism* : " �

" pp id: " � thread no � "::" � thread name () � " parallel PP started: " �
pe~ thread fnct name � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}
}

This code is used in section 384.

264 T_17 TRACE ACCEPTED TOKEN INFO WLIBRARY §592

592. T_17 trace accepted token info.

〈Trace TH accepted token info 592 〉 ≡
if (YACCO2_TH__) {

bool to trace or not to = trace parser env (this, COND_STK_TRACE);

if (to trace or not to ≡ YES) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "\tYACCO2_TH__::" � thread no � "::||||||||||ACCEPTED token POS: " �

arbitrated token ~accept token pos � " token*: " � arbitrated token ~accept token �
" token: " � arbitrated token ~accept token ~ id � std ::endl ;

yacco2 :: lrclog � "\tYACCO2_TH__::" � thread no � "::GPS FILE: ";
EXTERNAL GPSing (arbitrated token ~accept token)yacco2 :: lrclog � " GPS LINE: " �

arbitrated token ~accept token ~ tok co ords .line no � " GPS CHR POS: " �
arbitrated token ~accept token ~ tok co ords .pos in line � FILE_LINE � std ::endl ;

yacco2 :: lrclog � "\tYACCO2_TH__::" � thread no �
"::||||||||||ACCEPTED la token POS: " � arbitrated token ~ la token pos �
" la token: " � arbitrated token ~ la token ~ id � std ::endl ;

yacco2 :: lrclog � "\t" � thread no � "::GPS LA FILE: ";
EXTERNAL GPSing (arbitrated token ~ la token)yacco2 :: lrclog � " GPS LA LINE: " �

arbitrated token ~ la token ~ tok co ords .line no � " GPS LA CHR POS: " �
arbitrated token ~ la token ~ tok co ords .pos in line � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}
}

This code is used in sections 418, 421, and 422.

593. Trace re-aligned token stream la boundry info.

〈Trace TH re-aligned token stream la boundry info 593 〉 ≡
if (YACCO2_TH__) {

bool to trace or not to = trace parser env (this, COND_STK_TRACE);

if (to trace or not to ≡ YES) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "\tYACCO2_TH__::" � thread no �

"::|||re−aligned token stream la boundry POS: " � current token pos �
" la token: " � current token ~ id � FILE_LINE � std ::endl ;

yacco2 :: lrclog � "\tYACCO2_TH__::" � thread no � "::GPS RE−ALIGN FILE: ";
EXTERNAL GPSing (current token)yacco2 :: lrclog � " GPS RE−ALIGN LINE: " �

current token ~ tok co ords .line no � " GPS RE−ALIGN CHR POS: " �
current token ~ tok co ords .pos in line � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}
}

This code is used in sections 418 and 421.

§594 WLIBRARY T_18 TRACE REQUESTING GRAMMAR’S RECEIVED MESSAGE FROM A THREAD 265

594. T_18 trace requesting grammar’s received message from a thread.

〈Trace TH request thread received message from parallel thread 594 〉 ≡
if (YACCO2_TH__) {

if (no requested ths to run > 1) {
bool to trace or not to = trace parser env (this, COND_STK_TRACE);

if (to trace or not to ≡ YES) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_TH__::" � thread no � "::" � fsm tbl ~ id � "::" �

"parallel parsing received message from id:" � from thread ~ thread no � "::" �
from thread ~ thread name ()� FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

}
}

This code is used in sections 418, 421, and 422.

595. T_22 and T 22a trace returned thread accept info.

〈Trace TH current token, and accepted terminal wrapper 595 〉 ≡
if (YACCO2_TH__) {

bool to trace or not to = trace parser env (this, COND_STK_TRACE);

if (to trace or not to ≡ YES) {
if (current token () 6= 0) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_TH__::" � thread no � "::";
yacco2 :: lrclog � fsm tbl ~ id � "::";
yacco2 :: lrclog � "accept−parallel−parse current token " � ’"’ � current token ()~ id �

’"’ � " pos: " � current token pos � FILE_LINE � std ::endl ;
yacco2 :: lrclog � "YACCO2_TH__::" � " accept tok: " � pp rsvp .accept token ~ id �

" tok pos: " � pp rsvp .accept token pos � " la tok: " � pp rsvp .la token ~ id �
" la tok pos: " � pp rsvp .la token pos � FILE_LINE � std ::endl ;

yacco2 :: lrclog � " thru fsm−> parser*: " � fsm tbl ~parser ()� std ::endl ;
yacco2 :: lrclog � "\tYACCO2_TH__::" � thread no � "::GPS ACCEPT FILE: ";
EXTERNAL GPSing (pp rsvp .accept token)yacco2 :: lrclog � " GPS ACCEPT LINE: " �

pp rsvp .accept token ~ tok co ords .line no � " GPS ACCEPT CHR POS: " �
pp rsvp .accept token ~ tok co ords .pos in line � FILE_LINE � std ::endl ;

yacco2 :: lrclog � "\tYACCO2_TH__::" � thread no � "::GPS ACCEPT LA FILE: ";
EXTERNAL GPSing (pp rsvp .la token)yacco2 :: lrclog � " GPS ACCEPT LA LINE: " �

pp rsvp .la token ~ tok co ords .line no � " GPS ACCEPT LA CHR POS: " �
pp rsvp .la token ~ tok co ords .pos in line � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

}
}

This code is used in sections 272 and 282.

266 T_23 TRACE PARALLEL PARSE CURRENT TOKEN WHEN AN ERROR HAS OCCUREDWLIBRARY §596

596. T_23 trace parallel parse current token when an error has occured.

〈Trace TH parallel parse current token when an error has occured 596 〉 ≡
if (YACCO2_TH__) {

bool to trace or not to = trace parser env (this, COND_STK_TRACE);

if (to trace or not to ≡ YES) {
if (current token ()) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_TH__::" � thread no � "::";
yacco2 :: lrclog � fsm tbl ~ id � "::";
yacco2 :: lrclog � "YACCO2_TH__::" � "#############parallel parse−error curre\

nt token " � current token ()~ id � " pos: " � current token pos � " enum id: " �
current token ()~enumerated id � FILE_LINE � std ::endl ;

yacco2 :: lrclog � "\tYACCO2_TH__::" � thread no � "::GPS RESET FILE: ";
EXTERNAL GPSing (current token ())yacco2 :: lrclog � " GPS RESET LINE: " �

current token ()~ tok co ords .line no � " GPS RESET CHR POS: " �
current token ()~ tok co ords .pos in line � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

}
}

This code is used in section 279.

597. T_23 trace proc call parse current token when an error has occured.

〈Trace TH proc call parse current token when an error has occured 597 〉 ≡
if (YACCO2_TH__) {

bool to trace or not to = trace parser env (this, COND_STK_TRACE);

if (to trace or not to ≡ YES) {
if (current token ()) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_TH__::" � thread no � "::";
yacco2 :: lrclog � fsm tbl ~ id � "::";
yacco2 :: lrclog � "YACCO2_TH__::" � "#############parallel parse−error curre\

nt token " � current token ()~ id � " pos: " � current token pos � " enum id: " �
current token ()~enumerated id � FILE_LINE � std ::endl ;

yacco2 :: lrclog � "\tYACCO2_TH__::" � thread no � "::GPS RESET FILE: ";
EXTERNAL GPSing (current token ())yacco2 :: lrclog � " GPS RESET LINE: " �

current token ()~ tok co ords .line no � " GPS RESET CHR POS: " �
current token ()~ tok co ords .pos in line � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

}
}

This code is used in section 283.

§598 WLIBRARY T_24 TRACE BEFORE PARALLEL PARSE THREAD MESSAGE COUNT REDUCED 267

598. T_24 trace before parallel parse thread message count reduced. This allows one to see if
threading mutexes etc are behaving.

〈Trace TH before parallel parse thread message count reduced 598 〉 ≡
if (YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MSG__::" � thread no � "::";
yacco2 :: lrclog � fsm tbl ~ id � "::";
yacco2 :: lrclog � " called thread reducing thread active count of caller thread " �

pp requesting parallelism ~ thread no � "::" � pp requesting parallelism ~ fsm tbl ~ id �
" active thread count::" � pp requesting parallelism ~ th active cnt � FILE_LINE �
std ::endl ;

〈 release trace mu 390 〉;
}

This code is used in section 280.

599. T_25 trace parallel parse current token when an error has occured.

〈Trace TH after parallel parse thread message count reduced 599 〉 ≡
if (YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MSG__::" � thread no � "::";
yacco2 :: lrclog � fsm tbl ~ id � "::";
yacco2 :: lrclog � " called thread after reducing thread active count of caller thread " �

pp requesting parallelism ~ thread no � "::" � pp requesting parallelism ~ fsm tbl ~ id �
" active thread count::" � pp requesting parallelism ~ th active cnt � FILE_LINE �
std ::endl ;

〈 release trace mu 390 〉;
}

This code is used in section 280.

600. Message macros.
They trace the correspondence between various threads. Here are the thread relationships:

grammar calling its spawned threads
launched threads to the grammar requesting thread service

These macros are very verbous but it allows one to analyse whether messages have been dropped. Typically
dropped messages come about when an event depends on a specific result and the order of execution within
the threads can change the current terminal mapping such that executing produces possibly an aborted
thread parse. For example when a terminal is fetched with dynamic symbol table evaluation taking place,
depending on the sequence execution of the threads errant terminal delivery can occur. This is a critical
region problem between the competing threads. To fix the problem, either eliminate the competition of
threads between themselves by blending into one thread the competing grammatical sentences, or use a
MUTEX to tame the eradic behavior.

To control messaging back to the requesting grammar when all threads have finished processing, an activity
thread count under the control of its MUTEX is referenced by each launched thread. The responsibility of
who responds back to the grammar requesting parallelism when all threads are done be it success or failure,
is left to the individual threads launched. When a thread finishes work, it goes into the critical region of
the requesting grammar and decrements the active thread count. It also checks if the activity count is zero
indicating that it is the last thread in the house to lock up so wake up the requesting grammar.

268 TT_1 TRACE THREAD WAITING FOR MESSAGE WLIBRARY §601

601. TT_1 trace thread waiting for message.

〈Trace MSG thread waiting for message 601 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MSG__::" � thread no � "::" � thread name () �

" −−>WAIT_FOR_EVENT " � " # threads to run:: " � no requested ths to run �
" # active threads: " � th active cnt � " # competing threads: " �
no competing pp ths � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

This code is used in section 393.

602. TT_2 trace message received.
Protect against procedure call that has wound down and destroyed itself before the calling grammar can
trace it. Only trace returned call from threads.

〈Trace MSG message received 602 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MSG__::" � thread no � "::" � thread name () �

" MESSAGE RECEIVED from " � from thread ~ thread no � "::" �
from thread ~ thread name ()� FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

This code is used in section 393.

603. TT_4 trace posting from - to thread info.

〈Trace posting from - to thread info 603 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MSG__::" � From thread .thread no � "::" �

From thread .thread name () � " −−−−−> Posting message to: " � To thread .thread no �
"::" � To thread .thread name ()� FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

This code is used in section 396.

604. TT 4a trace signaled grammar to wakeup.

〈Trace signaled grammar to wakeup while releasing its mutex 604 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MSG__::" � From thread .thread no � "::" �

From thread .thread name () � " −−−−−> before SIGNAL_COND_VAR() to sig\

nal wakeup grammar for: " � To thread .thread no � "::" � To thread .thread name () �
FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

This code is used in section 397.

§605 WLIBRARY TT 4B TRACE WAKENED GRAMMAR WITH ITS ACQUIRED MUTEX 269

605. TT 4b trace wakened grammar with its acquired mutex.

〈Trace wakened grammar with its acquired mutex 605 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MSG__::" � From thread .thread no � "::" �

From thread .thread name ()� " −−−−−> after SIGNAL_COND_VAR() to waken grammar of " �
To thread .thread no � "::" � To thread .thread name ()� FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

This code is used in section 397.

606. TT 4c trace trying to acquire grammar’s mutex.

〈Trace trying to acquire grammar’s mutex 606 〉 ≡
if (yacco2 ::YACCO2_MU_GRAMMAR__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MU_GRAMMAR__::" � parser .thread no � "::" � parser .fsm tbl ~ id �

"::" � " trying to acquire mutex" � Text � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;
}

This code is used in sections 145 and 158.

607. TT 4d trace acquired grammar’s mutex.

〈Trace acquired grammar’s mutex 607 〉 ≡
if (yacco2 ::YACCO2_MU_GRAMMAR__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MU_GRAMMAR__::" � parser .thread no � "::" � parser .fsm tbl ~ id �

"::" � " acquired mutex" � Text � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;
}

This code is used in sections 145 and 158.

608. TT 4e trace trying to release grammar’s mutex.

〈Trace trying to release grammar’s mutex 608 〉 ≡
if (yacco2 ::YACCO2_MU_GRAMMAR__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MU_GRAMMAR__::" � parser .thread no � "::" � parser .fsm tbl ~ id �

"::" � " trying to release mutex" � Text � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;
}

This code is used in sections 147 and 160.

609. TT 4f trace released grammar’s mutex.

〈Trace released grammar’s mutex 609 〉 ≡
if (yacco2 ::YACCO2_MU_GRAMMAR__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MU_GRAMMAR__::" � parser .thread no � "::" � parser .fsm tbl ~ id �

"::" � " released mutex" � Text � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;
}

This code is used in sections 147 and 160.

270 TT_5 TRACE START THREAD WLIBRARY §610

610. TT_5 trace start thread.

〈Trace MSG start thread 610 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MSG__::" � thread no � "::" � fsm tbl ~ id �

" −−> start threads" � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;
}

This code is used in section 385.

611. TT_6 trace of found thread in thread pool waiting to be run.
The pool of threads is dynmically built by thread requests. When a thread finishes work, instead of stopping,
it goes into hibernation with an appropriate status indicating its availability. This is an optimization to speed
up parallel processing. There can be many threads of the same name waiting for work due to recursion.

〈Trace MSG found thread in thread pool waiting to be run 611 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MSG__::" � thread no �

"::−−> parallel thread worker fnd in thread table CALL WORKER: " �
tb~grammar s parser ~ thread name () � " thread obj*:" � tb~grammar s parser �
" parm*: " � tb~grammar s parser ~pp requesting parallelism � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

This code is used in section 383.

612. TT_7 due to recursion trace no thread available in thread pool.
This comes about when a thread calls a thread who calls a previous thread. I call this situation “nested
parallelism”. The grammar of Pascal’s railroad diagrams is an example of such situations. It is detected due
to the thread (thread id number) already has an entry in the thread pool but there are no available threads
ready to run so... launch another thread.

〈Trace MSG thread fnd but all busy, so launch another one 612 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MSG__::" � thread no � "::" � pe~ thread fnct name �

" −−> parallel thread fnd in thread table BUT ALL ARE BUSY " � FILE_LINE �
std ::endl ;

〈 release trace mu 390 〉;
}

This code is used in section 383.

613. TT_8 trace thread not found in global thread pool.

〈Trace MSG thread not found in global thread pool 613 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MSG__::" � thread no � "::" � pe~ thread fnct name �

" −−> parallel thread NOT fnd in thread table" � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;
}

This code is used in section 383.

§614 WLIBRARY TRACE START THREAD BY PROCEDURE CALL INSTEAD OF THREADING 271

614. Trace start thread by procedure call instead of threading.

〈Trace MSG start by procedure call 614 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MSG__::" � thread no � "::" � thread name ()� " calling PROC::"

/∗� pe~ thread fnct name ∗/
� " −−> before procedure call" � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;
}

This code is used in sections 375 and 384.

615. Trace return from procedure call instead of threading.

〈Trace MSG return from by procedure call 615 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MSG__::" � thread no � "::" � thread name () �

" returned from PROC::" /∗� pe~ thread fnct name ∗/
� " result: " � rslt � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;
}

This code is used in sections 375 and 384.

616. Trace thread idle before setting waiting for work.

〈Trace MSG thread idle before setting waiting for work 616 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MSG__::" � this~grammar s parser ~ thread no � "::" �

this~grammar s parser ~ thread name () � " th_blk*: " � this � "this pp*: " �
this~grammar s parser � "pp*: " � grammar s parser � "pp^th blk*: " �
&grammar s parser ~ th blk � " #: " � thd id � " st: " � status �
" before setting waiting for work" � ’ ’ � grammar s parser ~ thread no � "::" �
grammar s parser ~ fsm tbl ~ id � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

This code is used in section 179.

617. Trace thread idle after setting waiting for work.

〈Trace MSG thread idle after setting waiting for work 617 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MSG__::" � this~grammar s parser ~ thread no � "::" �

this~grammar s parser ~ thread name () � " th_blk*: " � this � "this pp*: " �
this~grammar s parser � "pp*: " � grammar s parser � "pp^th blk*: " �
&grammar s parser ~ th blk � " #: " � thd id � " st: " � status �
" after setting waiting for work " � grammar s parser ~ thread no � "::" �
grammar s parser ~ fsm tbl ~ id � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

This code is used in section 179.

272 TRACE THREAD BEING CREATED WLIBRARY §618

618. Trace thread being created.

〈Trace MSG thread being created 618 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MSG__::" � this~grammar s parser ~ thread no � "::" �

this~grammar s parser ~ thread name () � " th_blk*: " � this � " pp this: " �
this~grammar s parser � " this^pp^th_blk: " � &this~grammar s parser ~ th blk �
"pp*: " � grammar s parser � "pp^th blk*: " � &grammar s parser ~ th blk �
" #: " � thd id � " thread created " � grammar s parser ~ thread no � "::" �
grammar s parser ~ thread name ()� " of grammar: " � grammar s parser ~ fsm tbl ~ id �
FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

This code is used in section 178.

619. Trace threads in launched list.

〈Trace threads in launched list 619 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MSG__::" � tb~grammar s parser ~ thread no � "::" �

tb~grammar s parser ~ thread name () � " th_blk*: " � this � " th_blk*: " � tb �
" grammar parser: " � tb~grammar s parser � " #: " � tb~ thd id � " st: " �
tb~status � " thds in launched list " � FILE_LINE � std ::endl ;

yacco2 :: lrclog � "−−−−−−−>" � tb~grammar s parser ~ thread no � "::" �
tb~grammar s parser ~ fsm tbl ~ id � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

This code is used in section 382.

620. Trace thread to be launched.

〈Trace thread to be launched 620 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MSG__::" � "pe*: " � pe � " thread name: " �

pe~ thread fnct name � " thread proc*: " � pe~ thread fnct ptr � " thread id: " �
pe~ thd id � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

This code is used in section 384.

§621 WLIBRARY ALL THREADS REPORTED BACK 273

621. All threads reported back.

〈Trace MSG all threads reported back 621 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MSG__::" � thread no � "::" � thread name () �

" all threads reported back " � " Caller parser::" �
pp requesting parallelism ~ thread no � "::" � pp requesting parallelism ~ thread name () �
" # competing thds: " � pp requesting parallelism ~no requested ths to run �
" # active thds: " � pp requesting parallelism ~ th active cnt � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

This code is used in section 277.

622. NOT all threads reported back.

〈Trace MSG not all threads reported back 622 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MSG__::" � thread no � "::" � thread name () �

" NOT all threads reported back " � " Caller parser::" �
pp requesting parallelism ~ thread no � "::" � pp requesting parallelism ~ thread name () �
" # competing thds: " � pp requesting parallelism ~no requested ths to run �
" # active thds: " � pp requesting parallelism ~ th active cnt � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

This code is used in section 277.

623. Call procedure but in use.

〈Trace MSG proc call in use so call its thread 623 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MSG__::" � thread no � "::" � thread name () �

" PROC CALL ALREADY IN USE so call its thread " � " Caller parser::" �
pp requesting parallelism ~ thread no � "::" � pp requesting parallelism ~ thread name () �
FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

This code is used in section 384.

274 ARBITRATOR MACROS WLIBRARY §624

624. Arbitrator macros.
These are the syntax directed code directives within a grammar’s rules that arbitrate between the returned
results of that finite state’s configuration. They are gened as individual procedures per finite state configu-
ration due to parallelism. To refine this family of message traces, they test whether their grammar has the
debug switch turned on.

625. TAR_1 trace the starting of arbitration.

〈Trace AR trace the starting of arbitration 625 〉 ≡
〈pp accept queue AR 626 〉;

This code is used in section 189.

626.

〈pp accept queue AR 626 〉 ≡
if (yacco2 ::YACCO2_AR__) { /∗ trace parser env (Caller pp , FORCE_STK_TRACE); ∗/
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_AR__::" � Caller pp~ thread no � "::" � ar name �

" start arbitrating" � FILE_LINE � std ::endl ;
yacco2 :: lrclog � "YACCO2_AR__::" � "number of accept tokens: " �

Caller pp~ th accepting cnt � FILE_LINE � std ::endl ;

int ii = 1;

for (; ii ≤ Caller pp~ th accepting cnt ; ++ii) {
yacco2 :: lrclog � "YACCO2_AR__::" � "\t terminal in accept queue: " �

Caller pp~pp accept queue [ii].accept token ~ id � " token pos: " �
Caller pp~pp accept queue [ii].accept token pos � FILE_LINE � std ::endl ;

}
〈 release trace mu 390 〉;
}

This code is used in section 625.

627. TAR_2 trace no arbitration required.
This occurs when only 1 accept terminal is in the accept queue

〈Trace AR no arbitration required 627 〉 ≡
〈 trace AR pp accept queue no arbitration required 628 〉;

628. 〈 trace AR pp accept queue no arbitration required 628 〉 ≡
if (yacco2 ::YACCO2_AR__) { /∗ trace parser env (Caller pp , FORCE_STK_TRACE); ∗/
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_AR__::" � Caller pp~ thread no � "::" � ar name �

" No Arbitration required" � FILE_LINE � std ::endl ;
yacco2 :: lrclog � "YACCO2_AR__::" � "number of accept tokens: " �

Caller pp~ th accepting cnt � FILE_LINE � std ::endl ;

int ii = 1;

for (; ii ≤ Caller pp~ th accepting cnt ; ++ii) {
yacco2 :: lrclog � "\t YACCO2_AR__:: terminal in accept queue: " �

Caller pp~pp accept queue [ii].accept token ~ id � " token pos: " �
Caller pp~pp accept queue [ii].accept token pos � FILE_LINE � std ::endl ;

}
〈 release trace mu 390 〉;
}

This code is used in section 627.

§629 WLIBRARY TAR_3 TRACE STOPPED ARBITRATING 275

629. TAR_3 trace stopped arbitrating.
This occurs when only 1 accept terminal is in the accept queue

〈Trace AR stopped arbitrating 629 〉 ≡
if (yacco2 ::YACCO2_AR__) {

/∗bool to trace or no to = trace parser env (Caller pp , FORCE_STK_TRACE); ∗/
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_AR__::" � Caller pp~ thread no � "::" � ar name �

" stop arbitrating" � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;
}

This code is used in section 192.

276 TLEX MACROS — ROLL-YOUR-OWN TRACING MACROS WLIBRARY §630

630. TLEX macros — roll-your-own tracing macros.
These are “roll your own” macros for when the going get rough and tough, and you don’t have a bloody
clue. At least you can leave some tracks of your own originality. Good luck and this is said with sincerity as
I probably needed them once.

The grammar writer can put them inside the grammar’s syntax directed code directives. They basically
give the parallel details on the thread, critical region etc. The passed in parameter is what the grammar
writer wants to display. Basic, crude but may be helpful. Before going this route though, the other macro
traces should be adequate. Other forms of tracings using yacco2 :: lrclog or cout are rudimentary but also
effective.

〈 c macros 13 〉 +≡
#define sstrace parallel supportss (ssPROC NAME)

if (yacco2 ::YACCO2_TLEX__) {
Parser ∗ ap = parser of parallel support ();

yacco2 :: lrclog � "YACCO2_TLEX__::" � pthread self () � "::" � ap~ fsm tbl ~ id � "::" �
’ ’ � #ssPROC NAME � " this:: " � this � std ::endl ;

yacco2 :: lrclog � "\tYACCO2_TLEX__:: parser_of_parallel_support:: " � ap � FILE_LINE �
std ::endl ;

yacco2 :: lrclog � "\tself thread id:: " � thread no � FILE_LINE � std ::endl ;
yacco2 :: lrclog � "\tYACCO2_TLEX__:: embedded thread id:: " � embedded thread no() �

FILE_LINE � std ::endl ;
}

631. Print interplay between requesting grammar and launched thread. A roll your own
descriptor is passed to the macro.

〈 c macros 13 〉 +≡
#define sstrace parallel support envss (ssPROC NAME)

if (yacco2 ::YACCO2_TLEX__) {
yacco2 :: lrclog � "YACCO2_TLEX__::" � GetCurrentThreadid � "::" � fsm tbl ~ id � "::" �

’ ’ � #ssPROC NAME � " this:: " � this � FILE_LINE � std ::endl ;
yacco2 :: lrclog � "\tYACCO2_TLEX__:: self thread id:: " � thread no � FILE_LINE �

std ::endl ;
}

632. trace parser env traces the parsing stack.
It check whether the thread has its debug switch on. If it does, it does its own thing. It returns the thread’s
debug grammar switch for other trace macros to test whether they should do their trace dance.

〈External rtns and variables 22 〉 +≡
extern bool trace parser env (Parser ∗parser ,bool Trace type);

633. Print parse stack prefix.

〈Print parse stack prefix 633 〉 ≡
〈 acquire trace mu 389 〉;
for (UINT x = 1; x ≤ parser~parse stack .top sub ; ++x) yacco2 :: lrclog � ".";
yacco2 :: lrclog � parser~ thread no ;
yacco2 :: lrclog � "::";
yacco2 :: lrclog � parser~ fsm tbl ~ id � "::";
〈 release trace mu 390 〉;

This code is used in section 636.

§634 WLIBRARY PRINT ITEMS ON PARSE STACK IN FILO ORDER 277

634. Print items on parse stack in FILO order.

〈Print items on parse stack 634 〉 ≡
〈 acquire trace mu 389 〉;
Cparse record ∗i = parser~parse stack .first sf ;
Cparse record ∗ie = parser~parse stack .top ;

for (int xxx (1); i 6= ie ; i = parser~parse stack .sf by sub(++xxx)) {
yacco2 :: lrclog � i~state ~state no � "−−";

CAbs lr1 sym ∗sym = i~symbol ;

if (sym) yacco2 :: lrclog � sym~ id � "−> ";
else yacco2 :: lrclog � "ZEROED OUT SYMBOL" � "−> ";
}
yacco2 :: lrclog � ie~state ~state no ;
yacco2 :: lrclog � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;

This code is used in section 636.

635. Should grammar be traced?.
The debug switch supplied by the grammar is checked. If it’s turned on then allow tracing. This check
lowers the volume outputted. It’s a spot check on ‘what the hell is going wrong’ with my grammar.

〈Should grammar be traced? no ta ta 635 〉 ≡
if (Trace type ≡ COND_STK_TRACE) {

if (parser~ fsm tbl ~debug ≡ OFF) return NO;
}

This code is used in section 636.

636. trace parser env implementation.
There are 2 contexts that stack tracing can take place:

1) within the grammar controlled by YACCO2 TH trace variable
2) forced stack trace used by other trace variables

〈 accrue yacco2 code 33 〉 +≡
extern bool yacco2 :: trace parser env (Parser ∗parser ,bool Trace type)
{
〈Validate parser’s finite state table 550 〉;
〈Validate that parser stack is not empty 551 〉;
〈Should grammar be traced? no ta ta 635 〉;
〈Print parse stack prefix 633 〉;
〈Print items on parse stack 634 〉;
return YES;
}

278 TRACE PP START INFO WLIBRARY §637

637. Trace pp start info.
This is the tabloid giving all the gory details about the parallel thread, its requesting grammar, and the
starting token stream to-be-parsed.

〈Trace pp start info 637 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
sprintf (ma , pp start , pp parser .thread no , pp thread entry .thread fnct name);
yacco2 :: lrclog � ma ;

Parser ∗pp = pp parser .pp requesting parallelism ;

yacco2 :: lrclog � "YACCO2_MSG__::" � pp parser .thread no � "::" � pp parser .thread name ()�
" requesting parser*: " � pp � FILE_LINE � std ::endl ;

yacco2 :: lrclog � "\tYACCO2_MSG__::" � pp parser .thread no � "::" �
pp parser .thread name () � " Caller’s # threads to run:: " �
pp ~no requested ths to run � " Caller’s # active threads: " � pp ~ th active cnt �
" Self # competing threads: " � pp parser .no competing pp ths � FILE_LINE � std ::endl ;

yacco2 :: lrclog � "\tYACCO2_MSG__::" � pp parser .thread no � "::" �
pp parser .thread name () � " passed token*: " � pp ~current token () � ’"’ �
pp parser .current token ()~ id � ’"’ � " pos: " � pp parser .current token pos �
FILE_LINE � std ::endl ;

yacco2 :: lrclog � "\t\t::GPS FILE: ";
EXTERNAL GPSing (pp parser .current token)yacco2 :: lrclog � " GPS LINE: " �

pp parser .current token ~ tok co ords .line no � " GPS CHR POS: " �
pp parser .current token ~ tok co ords .pos in line � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}
if (yacco2 ::YACCO2_T__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_T__::" � pp parser .thread no � "::" �

pp parser .thread name () � " token*: " � pp parser .current token � " enum: " �
pp parser .current token ~enumerated id � " pos: " � pp parser .current token pos � ’ ’ �
’"’ � pp parser .current token ~ id � ’"’ � FILE_LINE � std ::endl ;

yacco2 :: lrclog � "\t\t::GPS FILE: ";
EXTERNAL GPSing (pp parser .current token)yacco2 :: lrclog � " GPS LINE: " �

pp parser .current token ~ tok co ords .line no � " GPS CHR POS: " �
pp parser .current token ~ tok co ords .pos in line � FILE_LINE � std ::endl ;

yacco2 :: lrclog � "\tGPS LINE: " � pp parser .current token ()~ tok co ords .line no �
" GPS CHR POS: " � pp parser .current token ()~ tok co ords .pos in line � FILE_LINE �
std ::endl ;

〈 release trace mu 390 〉;
}

This code is used in section 193.

§638 WLIBRARY TRACE PROCEDURE PP START INFO 279

638. Trace procedure pp start info.
This is the tabloid giving all the gory details about the parallel thread, its requesting grammar, and the
starting token stream to-be-parsed.

〈Trace procedure pp start info 638 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
sprintf (ma , pp start , proc parser~ thread no , called proc name);
yacco2 :: lrclog � ma ;

Parser ∗pp = proc parser~pp requesting parallelism ;

yacco2 :: lrclog � "YACCO2_MSG__::" � proc parser~ thread no � "::" �
proc parser~ thread name ()� " requesting parser*: " � pp � FILE_LINE � std ::endl ;

yacco2 :: lrclog � "\tYACCO2_MSG__::PROC::" � proc parser~ thread no �
"::" � proc parser~ thread name () � " Caller’s # threads to run:: " �
pp ~no requested ths to run � " Caller’s # active threads: " � pp ~ th active cnt �
" Self # competing threads: " � proc parser~no competing pp ths � FILE_LINE �
std ::endl ;

yacco2 :: lrclog � "\tYACCO2_MSG__::PROC::" � proc parser~ thread no � "::" �
proc parser~ thread name () � " passed token*: " � pp ~current token () � ’"’ �
proc parser~current token ()~ id � ’"’ � " pos: " � proc parser~current token pos �
FILE_LINE � std ::endl ;

yacco2 :: lrclog � "\t\t::GPS FILE: ";
EXTERNAL GPSing (proc parser~current token)yacco2 :: lrclog � " GPS LINE: " �

proc parser~current token ~ tok co ords .line no � " GPS CHR POS: " �
proc parser~current token ~ tok co ords .pos in line � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}
if (yacco2 ::YACCO2_T__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_T__::" � proc parser~ thread no � "::" �

proc parser~ thread name () � " token*: " � proc parser~current token � " enum: " �
proc parser~current token ~enumerated id � " pos: " � proc parser~current token pos �
’ ’ � ’"’ � proc parser~current token ~ id � ’"’ � FILE_LINE � std ::endl ;

yacco2 :: lrclog � "\t\t::GPS FILE: ";
EXTERNAL GPSing (proc parser~current token)yacco2 :: lrclog � " GPS LINE: " �

proc parser~current token ~ tok co ords .line no � " GPS CHR POS: " �
proc parser~current token ~ tok co ords .pos in line � FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

This code is used in section 203.

639. Trace stop of parallel parse message.

〈Trace stop of parallel parse message 639 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
sprintf (ma , pp stop , pp parser .thread no , pp thread entry .thread fnct name);
yacco2 :: lrclog � ma ;
〈 release trace mu 390 〉;
}

This code is used in section 193.

280 TRACE PP’S LAST SYMBOL ON STACK SET AS AUTODELETE WLIBRARY §640

640. Trace pp’s last symbol on stack set as autodelete.

〈Trace pp’s last symbol on stack set as autodelete 640 〉 ≡
if (yacco2 ::YACCO2_TH__) {

THREAD NO tid = pp parser .thread no ;

〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_TH__:: " � "sym to be deleted: " � tid � "::" �

pp parser .fsm tbl ~ id � "::" � sym~ id � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;
}

This code is used in section 197.

641. Trace procedure pp’s last symbol on stack set as autodelete.

〈Trace procedure pp’s last symbol on stack set as autodelete 641 〉 ≡
if (yacco2 ::YACCO2_TH__) {

THREAD NO tid = proc parser~ thread no ;

〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_TH__:: " � "sym to be deleted: " � tid � "::" �

proc parser~ fsm tbl ~ id � "::" � sym~ id � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;
}

This code is used in section 206.

642. Trace parallel thread waiting-to-do-work.

〈Trace parallel thread waiting-to-do-work 642 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MSG__::" � pp parser .thread no � "::" �

pp thread entry .thread fnct name � " ==>PP waiting for work: " � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;
}

This code is used in section 193.

643. Trace pp received go start working message.

〈Trace pp received go start working message 643 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MSG__::" � pp parser .thread no � "::" �

pp thread entry .thread fnct name � " ==>PP go process work: " � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;
}

This code is used in section 193.

§644 WLIBRARY TRACE PP FINISHED WORKING 281

644. Trace pp finished working.

〈Trace pp finished working 644 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MSG__::" � pp parser .thread no � "::" �

pp thread entry .thread fnct name � " ==>PP finished working" � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;
}

This code is used in section 193.

645. Trace procedure pp finished working.

〈Trace procedure pp finished working 645 〉 ≡
if (yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_MSG__::PROC::" � proc parser~ thread no � "::" � called proc name �

" ==>procedure finished working" � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;
}

This code is used in section 203.

646. Trace raw characters.

〈Trace raw characters 646 〉 ≡
if (yacco2 ::YACCO2_TLEX__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_TLEX__:: " � "chr: " � Char � " File: " � File no � " Pos: " �

Pos � FILE_LINE � std ::endl ;
〈 release trace mu 390 〉;
}

This code is used in section 56.

282 THREAD PERFORMANCE MACROS WLIBRARY §647

647. Thread performance macros.
They allow one to see how the thread library stops and starts the threads by their output.

648. Entered into waiting for an event.

〈 trace COND_WAIT entered 648 〉 ≡
if (yacco2 ::YACCO2_THP__ ∨ yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_THP__ || yacco2::YACCO2_MSG__::" � parser .thread no � "::" �

parser .thread name () � " COND_WAIT entered into Wait on event " � FILE_LINE �
std ::endl ;

〈 release trace mu 390 〉;
}

This code is used in sections 150 and 163.

649. Exit out of waiting for an event.

〈 trace COND_WAIT exit 649 〉 ≡
if (yacco2 ::YACCO2_THP__ ∨ yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_THP__ || yacco2::YACCO2_MSG__::" � parser .thread no � "::" �

parser .thread name ()� " COND_WAIT exit on event " � " cv_cond: " � parser .cv cond �
" no competing thds: " � parser .no competing pp ths � " no active thds: " �
parser .from thread ~ th active cnt � " from: " � parser .from thread ~ thread no � "::" �
parser .from thread ~ thread name ()� FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

This code is used in sections 150 and 163.

650. Before SIGNAL_COND_VAR.

〈 trace SIGNAL_COND_VAR before call 650 〉 ≡
clock t start ;

if (yacco2 ::YACCO2_THP__ ∨ yacco2 ::YACCO2_MSG__) {
start = clock ();
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_THP__ || yacco2::YACCO2_MSG__::" � parser .thread no � "::" �

parser .thread name ()� " to signal SIGNAL_COND_VAR: " � To thread .thread no � "::" �
To thread .thread name ()� FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

This code is used in sections 151 and 164.

§651 WLIBRARY AFTER SIGNAL_COND_VAR 283

651. After SIGNAL_COND_VAR.

〈 trace SIGNAL_COND_VAR after call 651 〉 ≡
if (yacco2 ::YACCO2_THP__ ∨ yacco2 ::YACCO2_MSG__) {
〈 acquire trace mu 389 〉;
clock t stop = clock ();

yacco2 :: lrclog � "YACCO2_THP__ || yacco2::YACCO2_MSG__::" � parser .thread no � "::" �
parser .thread name () � " after SIGNAL_COND_VAR : " � stop − start � " to: " �
To thread .thread no � "::" � To thread .thread name ()� FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

This code is used in sections 151 and 164.

652. Before CREATE_THREAD.

〈 trace CREATE_THREAD before call 652 〉 ≡
clock t start = clock ();

if (yacco2 ::YACCO2_THP__) {
〈 acquire trace mu 389 〉;
yacco2 :: lrclog � "YACCO2_THP__:: " � Parser requesting parallelism .thread no � "::" �

Parser requesting parallelism .thread name () � " before CREATE_THREAD" � FILE_LINE �
std ::endl ;

〈 release trace mu 390 〉;
}

This code is used in sections 153 and 166.

653. After CREATE_THREAD.

〈 trace CREATE_THREAD after call 653 〉 ≡
if (yacco2 ::YACCO2_THP__) {
〈 acquire trace mu 389 〉;
clock t stop = clock ();

yacco2 :: lrclog � "YACCO2_THP__:: " � Parser requesting parallelism .thread no � "::" �
Parser requesting parallelism .thread name ()� " after CREATE_THREAD: " � stop − start �
FILE_LINE � std ::endl ;

〈 release trace mu 390 〉;
}

This code is used in sections 153 and 166.

284 NOTES TO MYSELF WLIBRARY §654

654. Notes to myself . .. Decisions.

655. Evaluate if extern “C” should be used in Set element compare functor.
Cuz its a closed system, there is no need to make the C++ functor global for other languages. So remove
”C”.

656. Cleanup from failed parallel parse.
As the local parallel parse does not affect the parser requesting parallelism, there is no save/reset action
needed on its token stream variable current token and position. So remove the paranonia code.

657. Verfiy if all successful threads consume a token even if its....
just a remapper on the current token. For example in the Pascal translator, the lookahead token might
need a re-verification by the symbol table across all scopes. So call the thread who tries the remapping and
returns the result be it the same or remapped.

Now what. Is result in terms of processing the token stream and the new lookahead? I got it from the
grape vine that... yup. As per normal — consumption takes place!

658. Manual arbitrator how does it work?.
It’s a proxy just returning the 1st token in the accept queue. AR for manual thread spawning is a canned
proxy arbitrator for this purpose. There is no judging code. It’s a teflon special — nothing sticks to it; just
pass back the first item in the queue. spawn thread manually function sets up this default. Corrected the
call arbitrator who originally jamed the first parm into the accept queue. Now, call the arbitrator given for
both types normal and manual threads.

Though arbitrator function is a single procedure for that state configuration, it must service all the nested
threads with this configuration. I still use the msg as a parameter for calling the function. It makes things
simpler and consistent: generic parameter passed that needs casting to its real self. Note: arbitrator is
not multi-threaded as there is only 1 copy of itself but it is re-entrant. So when two or more competing
nested threads require its services, I leave it up to the operating system to deal with parallelism. It probably
throatles back to single process but how many situations are there that use nested competing parses of same
grammatical expressions?

659. Ccm to ar message needed?.
I ask the question in light that an arbitrator is a global procedure and not a thread. Yes it is needed as it
containes the info to arbitrate. Like what? The cm providing the accept queue for review. Should the parm
be a message type? No, but it keeps it simple Dave.

660. Why (CHARP) instead of Cparse record definition in....
the reduce rhs of rule function? Well back in time, u got it, Microsoft’s compiler was a honking. So if you
look at the generated code for a concrete reduce rhs of rule , you’ll see how it games itself down thru the
stack equating the subrule’s parameters in LIFO. Does it still hold this quirk? Don’t know until I retry. At
the moment, I have too many other things to complete.

Well I’m bitting the ??? to make things faster. Rewrote the stack and corrected for speed the emitted
code of the rhs subrules. eliminate (CHARP):
3 Oct. 2005
Added rule recycling to speed up parsing due to the rule’s birth-run-delete cycle.
June 2007

661. Why nil ptr test in T_11?.
Originally some symbols pushed onto the stack were zeroed out to protect from abort cleanups etc. This
situation does not exist anymore. So rid it ghost busters.

§662 WLIBRARY CLEAN UP PARALLEL PARSE IN CONTROL MONITOR INSTEAD OF GRAMMAR... 285

662. Clean up parallel parse in control monitor instead of grammar....
requesting parse. It’s just cleaner and closer to the action. Here are my original thoughts. Some house
keeping is done. The cleanup is to pop the ||| symbol from the attempted parallel parses. It could have
been done in the control monitor who was the creator of this but I felt that spreading this cleanup to the
control monitor was potentially spreading the mess.

Dictum: keep the effects’ cleanup as close to the affect. Is this an Occam?

663. Conversion of control monitor and parallel parse code.
This is the injection code included into the outputted grammar modules from Yacco2. Conversion cleaned
up dregs from cm handling of a |?| dynamic code request. A thought of minimal value where there are other
means better to cope with this type of situation. Now what is this situation? How do you cope with a
parsing situation like the syntax directed code that needs parsing? There is no assigned set of grammars to
properly parse the C++ code. So, do a dynamic parse looking for a dynamicly calculated lookahead token
to stop the parse-by-character situation.

Now the good stuff. The cweb worked first time both in the control monitors and parallel grammar
threads. Let the applause begin.

664. Why is there an abort attribute in the parse stack record?.
If there is a symbol on the parse stack with ‘affected by an abort parse’ turned on, the cleanup of an aborted
parse will delete the symbol like an “auto delete” when it pops the parse stack.

665. Make all yacco2’s types, structures etc housed within yacco2’s namespace.
The ‘INT’ type is also used by Microsoft. So, add ‘yacco2::’ qualifier to all definitions and implementations.
This way there is no conflict of interest when porting to other environments.

Correct also the implementations to be qualified by namespace yacco2. There are 2 ways to do this.
Firstly, be explicit per implementation. Secondly, enrobe the implementations with a namespace ‘{’ ... ‘}’
construct. To each their own ... you’ll see both approaches depending on my mood.

For the moment, files wcm core .h and wpp core .h are not explicitly qualified by yacco2::. This allows the
old current code that uses this to be compiled until the cweb version is completely finished. The current
system does not include everything within the yacco2 namespace.

666. Make enclosure of namespace yacco2 explicit in implementation part of code.
Eliminates assumptions. 〈bns 24 〉 and 〈 ens 25 〉 bracket the code to be housed within yacco2’s names-
pace. All implementation code contains this start/stop definition. The code wcm code .h, wpp core .h,
war begin code .h, and war end code .h are just that snippets and so are contained within another imple-
mentation. They still use 〈uns 23 〉.

286 THE OLD VERSION OF TERMINAL ENUMERATION: WLIBRARY §667

667. The old version of terminal enumeration:.
The terminal alphabet is represented by the whole numbers both positive and negative. Both errors and
regular terminals are open ended in their expansion capabilities as they are the left and right end points in
the terminal enumeration scheme. Error terminals grow towards minus infinity while the regular terminals
expand positively. The balance or pivot point of the terminal alphabet is ‘eog’ that starts the meta terminals.
Meta terminals are indicators of parsing situations like end-of-token stream reached, parallel parsing to take
place, to different wild type shifts. None of these meta-terminals are found within the input language being
parsed.

The Base enum of T parameter of ‘fsm’ is the starting point of the enumerated terminals. Due to the
current enumeration scheme, its value is required to map a terminal’s enumeration id into a set’s co-ordinates.
This is a bit of a hack as each grammar contains this starting point. The hack comes about from an out-
of-sync condition when new errors affecting this start point has been defined and all grammars have not
been recompiled and passed thru Yacco2’s linker. The consequence is the parser when run will have strange
things happen because of the wrong enumeration mapping to the terminals that are buried in the old finite
automaton’s tables. Trust me, I’m the guinea pig. Regenerate all the grammars.

Raw characters represent the mapping from the 8 bit ASCII character into its raw character terminal.
Error terminals are internally generated situations produced by the parsing grammars manufactured by the
grammar writer. They indicate the appropriate faulty situation detected. Regular terminals are composites.
They get created by the grammars from streams of other raw character terminals or composite terminals.
They are evolutionary and come into existance from various passes made on the token streams: lexical to
syntactic to semantic.

Reason to change:
Why this type of mapping instead of the positive integers? Reality is there is no difference apart from using
the range of numbers and how they expand. Both meta and raw character terminals are constant in size.
It is the other two types that expand or evolve as one is developing the language recognizer. Either way of
enumerating the terminals, when an error or a new regular terminal is created, all the grammars need to
be regenerated due to the change in the lookahead sets. Hindsight critiques that a start seed buried in the
grammar’s finite state automaton definition is required. So get rid of it! The better design is to enumeration
from 0. This eliminates the mapping from the negative space into the positive space of the set co-ordinates.

Take 2: Here is the new mapping: meta-terminals, raw characters, errors, and finally the regular terminals.
There is no need to map into the positive space before calculating a terminal’s lookahead set co-ordinates.
Just use the enumerate value to translate to the set’s partition and element!

668. Tree token template container.
Well let’s try passing references instead of pointers. I hope that the compilers are kinder to me within the
threaded environment. This certainly saves alot of constraint checking. 14 Oct. 2004.

669. Add in Yacco2 arbitration requiring code on the possibility of....
2 or more terminals in the accept queue with no arbitration taking place. That is, it defaults to the first
terminal in the queue. The compilation check requires the checking of their first sets for the common prefix
condition. At the moment, this does not take place due to the yacco2 / linker loop. Yacco2’s linker generates
the transitive first sets for the threads that call other threads. So this check is is a post condition beyond
the compiler/compiler. At present, Yacco2 issues a warning and use at your own risk.

At runtime, there still needs a look-over-your-shoulder throw condition. This will be implemented in the
arbitration code. This is done — 26 Oct. 2004 in Yacco2 generator. There is an optimization done before
the throw code is appended to the arbitration thread:

1) more than 1 thread must be dispatched — thread with a name: NULL name bypassed
2)no arbitration code supplied by the grammar writer

670. Rework of thread management.
At present it is spread between the global implementation of independent methods and the table of spawned
threads, and the worker thread record structure.

§671 WLIBRARY TO CHECK: DOES STOP MSG HAVE WAIT/REPLY MECHANISM? 287

671. To check: does stop msg have wait/reply mechanism?.
In the shutdown? no.

672. Change tree container to a specialized version of tok can〈AST ∗〉.
This makes things more consistent. Now, all u see are specialization containers. So why did u not do it in the
beginning? This container was an after thought. It was written to support a Pascal translator to re-target a
preprocessed Pascal variant using Oregon Software’s compiler to Dec aka Compac aka HP Pascal. As there
were special extensions to the Oregon Pascal, a complete front end compiler was needed to build a source tree
of the program so that the source code could be morphed. There were lots of sinning go on. Well the outcome
was this family of tree walkers and container. So what! Why did u not write a template specialization?
Probably too deep into getting it done without the thought to whether it has any generalization. The other
containers using string and ifstream did specialize but... 11 Nov. 2004. Now to correct the grammars that
use the old container tok can ast .

673. Eliminate the control monitor.
The middleman is too expensive as a thread due to the current threading model. This helps in optimizing the
run performance of Yacco2. To do this meant moving all the responsiblities of the control monitor into the
grammar requesting parallelism. This plumbing is within Parser. Part of the demolition meant throwing
out the messages between the various components — pp between cm between th. Now the message is the
media or is it the Parser? The requesting Parser just passes itself to the grammar threads. It contains the
pertinent token stream variable: token and position (current values) within the stream, and all the token
containers — supplier, producer, recycling bin, and the error container (refuge shelter). Also removed was
the distinction between the containers — parallel versus monolithic. As parallel grammars just graft onto
the current token scene, there is no need to make the distinction except at their start up time that grabs
their containers’ addresses from the spawning parser. They are just readers of the tokens and not writers.
Now what about error tokens? They should not be added to the error queue but should be passed back to
the calling grammars within the Caccept parse object. The arbitrator of the calling grammar determines
what should be done. If u need to add to it then use the guard dog approach or is it the drake? “i get no
respect” so choose your mutex before doing your thing.

Done 23 Nov. 2004. Performance gain: 30 percent.

674. Eliminate pp support as a thread optimization.
All info in now contained in Parser. Depending on how the thread is started — monolithic or parallel, the
appropriate parse containers are imported either thru the contructor or via the passed parameter.

675. Another thread optimization.
If only 1 parallel thread asked to perform, one does not need to acquire / release the lock of the requesting
grammar to report success or failure.

Look I’m trying to make threading closer to recursive descent in performance. Date: 3 Dec. 2004. Well
I’m crawling out of the swamp... darwinism? If there is just one thread to be run, why not call it as a
recursive descent procedure instead of the thread route. We’ll see what the cost of thread modulation is
against the procedure call approach and its object creation / destruction overhead. Take 200.1... 9 percent
run improvement of procedure call over threads.

288 A N * 2 WLIBRARY §676

676. a N * 2.
Eliminate the number of times that the token container is read does miracles. Now let’s look at my myopia.
There was a single pass, call it P1, to break up the character stream into line segments followed by the lexical
segment called P3. Why? I was lazy and wanted all down stream tokens to be properly tagged in file no -
line number pairings. Why lazy? The P1 pass ensured that the tokens where properly GPSed. I did not
have to deal with the vagaries of “how is a line delimited?”. It was handled in one place: the “eol” thread,
and could be retargeted to other dealings. Now the logic is hardwired for now to the “line-feed” definition
based on Ascii encoding. By combining the 2 passes (P1 + P3), the number of reads on a N character stream
is halved.

Now lets look at the raw character to symbol translation. Again this is a 2 traverse mechanism that reads
from a file its characters that are translated into symbols. It should have been a just-in-time read like the tree
traversals. Each character request fetches the character from the file and then calls the character translator
to do the cosmetic make over. This definitely improves the “file include” process. This is a reduction from
37 seconds to 15 seconds. Not bad: a 2.something zinger.

Now for the overhead of raw caharcters to symbol objects. Judging from the cursor winking, this could
be another 10 second improvement. Wait and see... Ladies and gentlemen and the winner is ... 37 seconds
down to ??? Maestro the envelope please. 15 seconds! A 22 percent improvement against the 100 second
starting point but 2.something faster against the 37 seconds. Slimefast ain’t got nothing on us. As the song
says — looking for xxx in all the wrong places.

Now what about the cost of symbol creates and std::map usuage in the thread library and the garbage
collector? I’ll see what I can do. I must approach the recursive descent speed zone or this thought experiment
on parallel parsing is just that — religated to the empirical sidelines. A second string something and excuse
the pun.

677. Remove unique id from CAbs lr1 sym.
It’s original purpose was a birthing number to give a count to the number of symbols produced and as a
partial order. Never used so out damn thoughts! Dieting and speed is in.

678. Okay guys Yacco2 is starting to smoke.
Here’s another improvement. Firstly I was looking in the wrong places: String copy was thought to be a
major cause but it turns out that its a minor overhead. Globalization of the character storage is good at the
cost of saftey but not a really really big stopper.

So here’s the scoop: First set evaluation goes thru INDIVIDUALLY each potential thread contained in
the state’s configuration list.
If there are many potential threads to-be-run assessed on a per character basis — ouch. All one has to do is
gather the threads into a consolidation thread to have only attempted pass on the first set of the consolidation
thread. Yacco2’s linker consolidates this first set of referenced threads. If the threads are orthogonal to one
another (there is no common prefix), then the single first test lowers the cholestoral levels.

With this insight, now to modify the grammars like: pass3, lint, syntax directed code gatherer etc. Jan.
1/2005. Well this had limited improvement. Not what was expected so see Global Parallel tableentry where
it explains how Yacco2’s linker became involved. Jan. 6/2005. Speed improvement — ???.

679. Slim down the CAbs lr1 sym space.
This is the base component to all other symbols. Originally I had associated the parser across all symbols:
Terminals and Rules. This fattened the space by 4 bytes. With a shrinking of some variables to short integer
and unionizing the rule’s variables, I brought down the space bloat from 36 bytes to...24 bytes. So what?
Well, this allows more raw characters to be stored in a prefixed array rather than a template container.
3 Jan. 2005.

§680 WLIBRARY GRAMMAR AS A LOGIC SEQUENCER: ALLOW NO TOKEN CONTAINERS 289

680. Grammar as a logic sequencer: Allow no token containers.
What type of improvement is this? By passing in pointers to the parser, does this not open up more
programming mistakes? Could but hear my reasons please. This lets the grammar writer program grammars
as logic sequencers using epsilon rules and related syntax directed code. If the writer is very creative,
behavioural terminals could be defined and put into a token container for parsing: each to their own. See
enumerate T alphabet .lex as an example of this use.
15 Aug. 2005

681. Logic bug: same accept token added to accept queue more than once.
Help the needy, the grammar has launched multiple threads and these threads have returned the same token.
This condition is caught by the number of accept tokens in queue is not equal to the number of threads
reporting success. The needy? well i was caught with this logic bug. See Arbitrator codegenerator where
logic check resides.
13 Dec. 2005

682. Porting of cweb code.
Make sure the the @i include construct uses quoted file names. Without the quotes, the mac version of
cweave has a slight stammer. The Microsoft flavour works.

See Generated finite stateautomaton macros for more stumblings from within. The c macro definition
workaround works but the references to the macros are not placed into the Index.
16 Dec. 2005

683. cweave C++ code.
Removed ending semi-colon from RSVP macro to have cweave print out these type of token macros onto its
own line. So make sure u add a “;” following their use.
8 Jan. 2006

684. failed directive added in the fsm construct.
I felt the grammar writer should be given a last-chance to deal with failed parses. Why? For example, my
yacco2 lcl option needs to deal with options having multiple letters. Now how do u program these options
whose via prefix is faulty? For example, option -err has -e and -er as the potential option but are in error.
One could explode on the combinatorial code within a grammar to deal with each evolving prefixe or force
the calling thread to handle the failed thread with some form of epsilon in the grammar code. This is crude
so why not field a returned error terminal? To do this i needed a directive of last-chance to be tried in the
parallel parse unsuccessful procedure. For the moment, it is only supported in a thread grammar. Possibly
i’ll look at the monolithic grammar and what it means in particular for error correction.
8 Mar. 2006

Verified that failed directive works in a monolithic grammar. 2 thumbs up for consistency. Just make
sure that a “failed” directive within a monolithic grammar places the Error T in the “Error queue” via the
ADD_TOKEN_TO_ERROR_QUEUE_FSM macro and not RSVP_FSM macro: this places the error into the “accept
queue” which is wrong.
15 Jun. 2014

685. More token info for tracing.
Added to token trace macros the GPS of the source. This allows one to see where within the source things
are occurring.
22 Mar. 2006

290 ADDED TO THE CABS LR1 SYM DEFINITION A “WHO CREATED” GPS WLIBRARY §686

686. Added to the CAbs lr1 sym definition a “who created” GPS.
Comes in handy when errors are throw but from where? Errors are directed to the source file with no
fingering as who the grammar was that generated it. So it’s up to the grammar writer to tell it as it is. Now
the O2 err hdlr grammar can spread the word so to speak... if it is available. See set who created , who file ,
and who line no .
22 Mar. 2006

687. Rewrote tok can〈AST ∗〉 due to global functor firing.
Originally i had the filter mechanism within the tok can〈AST ∗〉 container. This lead to the functor being
fired by the advance routine regardless of whether the tree node was rejected or not. Why the oversight? i
did this to quickly knockoff the tree container. Now it’s in the tree walker where it should be. This way the
functor only gets fired if the tree node fetched is accepted by the filter or there is no filter.
17 Apr. 2006

688. Adjusted array of “[]” declaration.
Originally i defined arrays of unknown size as type variable-name[]. Porting to Sun did not like this. So
my delimma was “how to define a base table structure for each table for threads, shifting, reducing etc?”.
The emitted cpp tables were explicitly sized in their definitions for the “bsearch” function to act on but my
generic search code was open-ended having no knowledge of each table’s size.
Solution:
Create a base definition of only 1 entry:

// array_def.txt solution to open-ended array definition

struct Shift_tbl {

yacco2::USINT no_entries__;

yacco2::Shift_entry first_entry__[1];

};

22 Dec. 2006

§689 WLIBRARY MORE PORTING ISSUES DEALING WITH THREADS AND SYNCING SIGNALS 291

689. More porting issues dealing with threads and syncing signals.
When there was only 1 thread requested to run, i optimized out the mutex acquire / release cycle and left
the Caller parser and the Called thread to complete their launch cycle by a) Caller parser goes into a wait
state by pthread cond wait and b) the Called thread signaling the Caller parser by pthread cond signal .

What happens when:
A calls only 1 thread B and B completes before A puts itself into a Wait stupor. IE, B will be signalling A
to wake up. It depends on the Pthread implementation. Some will queue it up for the wait signal to happen
and then pass it back immediately to the Caller while Sun drops the signal and so hear the zzzzzs from
the sleeping beast and the anxiety from the compiler writer while waiting and wait....

Conclusion: Remove the optimization and just use proper acquire / release hygiene to deal with sync-
ing between friends. As procedure calls are slower then thread calls due to “oo” variable initialization and
destructor clean up , I’ll just remove completely the conditional THREAD_VS_PROC_CALL__. My tracing works
VERY WELL to diagnose this problem. Here here.

Dregs of past thoughts:
THREAD_VS_PROC_CALL__ thread versus procedure call performance.
It must be defined as it is a preprocessor conditional symbol! There is a cost of calling a thread
versus a procedure call. What is it is the reason for this symbol. When there is only one thread to be
launched, this becomes a procedure call instead of a thread. Where I’m the doubting Thomas, is the cost of
objects birthing and dying greater than having a thread startup and put on reserve for other calls?
THREAD_VS_PROC_CALL__ of 0 calls threads and 1 calls procedures. The winner is procedure-call by 9

percent. NOT ANY MORE! It’s threads cuz of oo’s overhead in those damn objects and their rights of
passage.

16 Jan. 2007

690. Changed back to passing Parser as a pointer for tracing purposes.
When the going get debugged, it a hell-of-lot-better to see what the pointer is pointing to in the debug
session rather than just an address. Maybe a weakness in the Sun Studio debugger but so what. This will
allow me to see if i’m clobbering memory by the data per parser environment.
29 June 2007

691. Some more optimizations.
The grammar suite takes 1:50 minutes. Now to improve.

692. 1) precalculates a compressed set key from a terminal’s enumerate id.
This eliminates everytime a reduce takes place mapping the terminal’s enumerate id into a compressed set
key format so that the lookahead set can be searched. Its a tradeoff towards space for speed. Adjusted
CAbs lr1 sym to contain and manufacture the compressed set key. The performance improvement is
approximately 20% — 35 seconds on grammar suite.

693. 2) eliminate passing shift’s element enumerate value.
Split the find shift entry into 2 contexts:

1) current T context
2) Rule or returned T from parallelism context

The 2 routines are find R or paralleled T shift entry and find cur T shift entry . 5 seconds improvement
on grammar suite.

292 3) ELIMINATING THE TOK CAN READER MUTEX — NOPE WLIBRARY §694

694. 3) eliminating the tok can reader mutex — nope.
Well here’s the scoop. The tok can templates are “just in time” (jit) in accessing their contents. What
does this mean? For example, tok can〈ifstream 〉 container is a wrapper to access raw characters of a file
returning the raw character transformed into raw character token placed into its secondary container for
possible reuse. If the read request has the token in its internal container — container inside a wrapper
container, then it returns it via the inside template container’s operator[xxx]. Now for the “jit”, if the [xxx]
request is not inside its internal container, tok can〈ifstream 〉 calls the ifstream object to fetch the next
character. For far so good but put this into a multithreaded context where there are 2 or more cpus running
at-the-same-time. Now the tok can〈ifstream 〉 ifstream object becomes a critical region. What is the critical
region part?: its subscript. Even though my get next token request is reader only against the tok can〈 〉
container, this container itself is a reader/writer depending on the context — reader if it has the request
squirelled away in its token container, but a writer when it does not contain the request and must access
the ifstream object. An optimization test was conducted, no “jit” character accessing by the tok can〈 〉 (all
the characters were read at time of open before any read requests were done) versus the ”jit” with guarded
mutex. Though the winner was no “jit” by only 3 seconds over 80 compiles, it was not worth the gain over a
slighlty unsafe attitude. I would have needed to adjust all tok can〈xxx 〉 variants to remove the “jit” unsafe
condition.
August 2007

695. Elimination of reader mutex for optimization reasons.
The Ides of nagging made me do it for speed. So mutex control has been eliminated from the “jit” containers
that are now not “jit”. These template containers now do a double read across their input as the cost of the
read mutex is tooooo slow: 3/80%. I’m putting into my subconsious the problem to find a better silicon /
hardware solution to critical region control. I’ll have a look at the overhead using Sun’s “dtrace” facility not
only for mutex overhead but also other optimizations that can be done to O2 to approach top-down parsing
speeds — ie O2batch versus O2: O2 is approximately 4 times slower. Don’t know if this is an accumulation
of c++ and templates etc against a bare bones O2batch “c” language approach?
Sept. 2007

696. Parallel thread reduction should be lr(0).
Here’s the scoop: if a thread’s lookahead boundry is a superset of what should follow, the returned lookahead
token could be in error. As O2’s reduce operation looks to find its boundry dependent of the faulty lookahead,
guess what it throwns an error due to the lookahead token not found in the reduce table of the calling
grammar. So create a new find parallel reduce procedure that just returns the first Reduce entry to
complete the reduce. It effectively is lr(0): no concern for the following token context!

Now the error can be dealt with by programming the shift operation within the grammar using either
|+| or |.| to capture the faulty parse point and to report a specific error against the GPS of the returned
lookahead token.
Oct. 2007

697. Make accept queue more efficient.
Make it a fixed array of local Caccept parse for 2 reasons:

1) eliminate the new / use / delete cycle: malloc is too slow
2) don’t need a map but just a sequential queue

This gives a 13 percent inprovement.
Nov. 2007

§698 WLIBRARY USE PROCEDURE CALL WHEN ONLY 1 THREAD NEEDS TO BE RUN 293

698. Use Procedure call when only 1 thread needs to be run.
The mutex / thread paraphrenalia is tooooo slow compared to a procedure call. This thought was nagging
me since my 1st O2 compiler written by recursive descent. It became my bench mark that thread parsing
was measured against. Yes i’m aware of the bottom-up optimization by Ullman but i’m not there yet in
digesting the optimized requirements to lower the push / pop overhead by consolidation of subrules and their
syntax directed code that need some form of sequential sequencer when the consolidation consequence must
get exercised.

Now why come back to this subject anyway? Those nagging optimization muses! I eliminated the mutex
controlls due to threads and my critical regions; there is a 1:1 activity taking place whereby the calling of the
procedure by the requesting grammar passes the right to the called procedure to enter its critical region when
needed without the paranoia of duality destructive conditions. By making the Parser and its evil grammar
fsm twin global and by mallocing them within the called procedure, the overhead should be lessened. Mastro
the envelop please. And the winner is: 25% faster. How was this measured? My Apple laptop where running
times between threads only against the hybrid approach where taken using the o2grammars .bat script.
Dec. 28, 2007

699. Thread’s start-up attributes for stack size and system scope?.
I played with pthread attr setstacksize and pthread attr setscope attributes to improve possibly speed and
fat deposits. Well the pthread attr setscope ’s setting of PTHREAD_SCOPE_SYSTEM made things worse as this
was an aggregate of all things considered. Procedure calls of threads by threads made the run environment
too sensitive to this unknown size mix. The result can produce a SIGSEGV. Experimenting by increasing
the stack size delayed the problem but bloated the run size. As always the cure was easy: just remove this
fiddling and default to the runtime attributes of the local pthread implementation. On the Sun Solaris, the
stack size for all threads is 1 megabyte — more than enough.
Apr. 2008

700. Error detection within a grammar: new |?| symbol introduced.
|?| was created to handle questionable situations like error detection points within a grammar. It can be
expressed as a normal shift terminal or within the returned T of a ||| thread expression. As the lookahead
symbol is questionable, using the |+| or |.| symbol to handle error detection has one weakness: its subrule
reduce operation depends on the lookahead set which the current T could be not in this LA set. Consequently
the reduction could possibly will not action. Introducting the new symbol draws the reader’s eye to the error
point with the grammar. The reduce is a lr(0) context which means no dependency on the current symbol
and so the subrule always reduces! This allows the grammar writer to coerse the parser’s behaviour by the
subrule reducing syntax directed code.
Warning:
The current token is not advanced so perpetual motion on the same token spot could occur if one is using
the |?| to act like a |+|. 〈 Invalid |?|instead of |+|use 543 〉 has been created to detect and stop the parse
process. So be warned.
June 2008

294 SPEED WONDERFUL SPEED IN “OLIVER TWIST” AND NOT WILLIAM BURROUGHSWLIBRARY §701

701. Speed wonderful speed in “Oliver Twist” and not William Burroughs.
Well the rule recycling works now. No more new(s)... Just recycle them grammar rules. The envelope please
... 25% speed improvement from 32 to 24 seconds against all them grammars. As time shrinks there seems
to be an asymtotic return on performance improvements. But this one is good; no really very good. I’m
only 4–5 seconds away from the recursive descent bench mark. It’s malloc! and its mutual exclusion that is
very very expensive by the following “dtrace” outpout.

0 57766 lmutex lock:entry
libc.so.1‘lmutex lock
libc.so.1‘malloc+0x25
libCrun.so.1‘void*operator new(unsigned long)+0x2e
o2‘void NS o2 sdc::Co2 sdc::reduce rhs of rule(...*)+0x282

The above trace also brought out my sloppiness in proper code emmissions per grammar’s reduce rhs of rule
routine. I never stored the newed rule so each time the grammar was run the used rules were recreated —
uck.

Dec. 2008

702. Improve dumped data when Shift T not found in parse table.
See where it is thrown. Though this is a grammar writer’s lack of error catching in his grammar, at least
dump out the info on T: its enumerated id and literal. Now the info dump contains the grammar in question,
its current parse state, and the T details. Why isn’t it using a Error class T and to use O2’s generic error
queue dump facility? Cuz this is below the user’s language: remember this is a generic interface without
any knowledge of what’s being built on top of it. And I didn’t want to force yet another canned set of T
definitions like lr constant and rc.

Feb. 2009

703. VMS spits core dumps when its thread stack is exceeded.
Ahh recursion is sometimes devine but not when the stack limit is exceeded thinking its a runaway re-
cursion call when A recurses on itself without any stop recursion detection. So U must increase the
VMS_PTHREAD_STACK_SIZE__ symbol in the yacco2 compile symbols .h file and rebuild the O2 library. The
allocated thread stack size was 128k before the Pascal translator starting to choke due to better symbol ta-
ble management that increased the pas variable grammar run size when dynmically creating the statement
variable’s symbol table components. double ugh but this is reality.

Feb. 2009

704. Caught by your short and curly — local variables in grammar rule.
The short of it is the recycling of rules to new once reuse forever. The consequence is the rule gets recycled
and if u have not reinitialized the variable aka an array or table then the past dregs of invocation will haunt
u. Either crate the variable in the “fsm” grammar construct or reinitialize in the rule’s construct directive.
Better yet do it in the rule’s “op” directive before the variable is being used. Do u really want the curly
part? Of course not so where did it grab u Dave? Grammar la express to calculate the lookahead expression.
Rule reuse happens on “+”, “-” expressions: eolr - ”.”.

Feb. 2009

§705 WLIBRARY ADD A COMPLETE TRACE ON FETCHING A T WHEN SYMBOL FUNCTOR IN USE 295

705. Add a complete trace on fetching a T when symbol functor in use.
When the tble lkup type token fetching in its various forms attempts to remap the raw T, i just traced the
fetched T before the potential remapping took place. If the symbol table functor is in place and turned on
then the after attempt is now also traced. This was highlighted when i wrote a Pascal translator with a
syntax directed symbol table scope handling and my myopic test was the problem as i put an externally
defined function within a local procedure. Boy my misfits never cease to entertain. This seems to be my
problem where the original test item was faulty. I guess u could say my grammars should have caught this
faux-pas but they were not written to catch all sins but to remap one correct Pascal program into another
correct Pascal variant. Some error reporting is being done but the more others use it the more retrofitting
of error reporting is taking place. More for the weary when problems prevail.

Feb. 2009

706. Add right recursion support for rule recycling.
Well how did i treat this? I detected full rule use consumption and outputted a message to the grammar
writer that all the allocated rules were in use and exited with a message. Please see grammar rules use cnt .lex
as to how it counts number of rules in a left recursion scenario. Well this was not good as right recursion
has its place in parsing though it hits hard on the parse stack. How so? Before the rule can be reduced it
keeps pushing aka shifting until its lookahead boundary is met. So if the parse exceeds the fixed stack size
it will still honk with an abrupt message and quick stage exit. Staying within the stack allocation is fine.
See MAX_LR_STK_ITEMS as to the parse stack allocation: adjust accordingly.

Feb. 2009

296 CHANGED INPUT ORDER OF T VOCABULARY — EXCHANGED T WITH ERROR T WLIBRARY §707

707. Changed input order of T Vocabulary — exchanged T with Error T.
Why the change? This allows the grammar writer to write independent compiler/grammar combos — Eg
front end lexing of Unicode, so that the front-end creates the external token container for the other com-
piler/parser combo to digest. Currently all token containers are memory only template derived. With this
change the parser/grammar(s) T Vocabulary now appends the Errors at the end of T Vocabulary enu-
meration scheme. The second parser/grammars combo must include the first T definitions in their own T
Vocabulary in the exact order defined by the first parser. From there it can build its own T Vocabulary of
additional Tes and Error symbols. Another way is to remap the enumerated ids of the first parser’s tokens
into the ordering scheme of the second parser. Use of the token read functor associated with a read token
container to remap Tes at read time. It could just change the “enumerate id” value of the old token into
the current parser’s T Vocabulary mapping. It could also create a new token but this itself is overkill unless
one is remapping the token into another different token type: for example remapping an “identifier” token
into a keyword by use of a symbol table lookup.
Caveat.
Currently the O2 library has globally defined symbols that get resolved at linker time. So one cannot run
mutiply defined independent threads of parsers with having exclusive use of O2. O2’s implementation con-
tains multiple independent parsers sharing the same O2 library and only 1 super set of Tes defined for all
parse stages. For example, the command line to O2 gets parsed by its own grammars and their outputted
tokens become downstream fodder for the suite of grammars used to parse the inputted grammar file.

There is still work to be done to consolidate O2’s external symbols into a structure containing indirect
pointers to these symbols that are currently resolved by the linker (ld). 1st thought:
1) have a local structure initialized to these pointers.
2) register this structure of pointers with the runtime library of O2 before any parsing begins.
3) each independent parser can run in its own thread
2nd Thought:
1) use a fork process where the token containers are passed somehow as input to the subprocess that fills its
booty. This thought is similar to the spawning of a grammar as a thread or its optimized procedure call.

May. 2009

§708 WLIBRARY TREE CONTAINER IS OUT-OF-SORTS FROM SELF MODIFYING TREES 297

708. Tree container is out-of-sorts from self modifying trees.
Well its back to just-in-time (JIT) reading of the tree tok can〈AST ∗〉 as the following example outlines
why:
Given a grammar that reads a specific T type like “call-stmt” and u want to change its younger brother
to a different T. What happens during the parse? The current T is shifted onto the parse stack and the
lookahead T is fetched becoming the current token. This LA T will be a “call-stmt” possibly used to reduce
the shifted T “rhs” subrule. The problem is the container has the unmodified reference of the lookahead T.
Now within the grammar’s syntax-directed-code u process the younger brother nodes to which u changed
some of the tree’s content. If u are unlucky, the LA T’s id gets changed. Irrational behaviour could occur:
the parser doesn’t reduce properly or possiblely as the T type is different from the parse stack frame entry
of “call-stmt”, this acts like an uninitialized object having random behaviour.

So what can one do? i corrected the tok can〈AST ∗〉 container to JIT reading of its Tes and imple-
mented the remove method that pops the last entry from the container. If u are modifying the T type of the
tree: ie replacing the tree node’s content with another T type, now the grammar writer must add syntax-
directed-code to remove the LA T from the container, re-align the current token position to the shifted T
position, and do a “get next token” to fetch the proper LA T thus maintaining the integrity of the parser.
All this sounds like a lot of work but here is an example of such coding:
An example:

1: /*

2: file: /yacco2/diagrams+etc/treemodify.txt

3: Example of re-aligning the parser’s LA T when dynamically modifying the tree

4: */

5: tok_can<yacco2::AST*>* ct

6: = (tok_can<yacco2::AST*>*)parser()->token_supplier();

7: ct->remove();//drop the la T as i could have morphed this into a comment

8: parser()->override_current_token_pos(parser()->current_token_pos()-1);

9: parser()->get_next_token();

10:

The code above is taken from a grammar’s “rule” syntax-directed-code. The rule has a reference to the
parser environment and doesn’t have to go thru the “fsm” route to get at the token supplier. lines 5–6
gets the tree token container from the parser and casts it to a tree container. Lines 7–8 removes the last
T from the container and re-aligns the parser’s current token position to the shifted T position. Note: All
token containers have subscripted token access starting from 0. Line 9 fetches the new LA T for the parser
to continue merrily along its way. There are other ways to re-align the LA T: Please see 〈Parser’s token
defs 229 〉. All this for dynamic modifying of trees: good stuff!

May 2009

298 MULTIPLE READER/WRITER IMPROVEMENT TO SUPPLIER CONTAINER WLIBRARY §709

709. Multiple Reader/Writer improvement to supplier container.
Historics: JIT fetching of tokens from an “ifstream” container demanded locking when the request was not
in the container. Consider 2 parallel threads A and B competing where their read requests to the container
are simultaneous: A on cpu 1 and B on cpu 2 and their requests are not in the container. The critical region
becomes the physical i/o to the “ifstream” object when the request was not within the container. So what
did i do? experiment 1 was remove the JIT attitude and read all the “ifstream” characters into the container
at file open time. Now the container becomes a read-only with no need to use locking. So “ifstream” issue is
solved but what about a tree container with T filtering? It is a JIT container that requires locking protection
as u do not want to walk the complete tree filling it up before the first read request. Also consider a self
modifying tree. What? The Pascal translator required the following:
The HP “delete” call statement had to be removed and replaced with a raised signal variable so that its
future close statement could deal with it using a “delete disposition” clause within a modified close. This
future close tree node was morphed into a conditional subtree dealing with “to delete or not to delete” issue.
Without the JIT attitude the tree walker has remnants of the before tree surgery. The container could
contain items that are no longer valid due to this modification.

Back to the JIT and Quick overview of mutual exclusion.
When a writer in introduced, locking protection is required if there is more than one simultaneous accessor to
the container. If there are only readers JIT still demands writing to the container before the read request can
be satified. No lock protection is required when only one suitor is active. Within the parsing environment,
all threads are co-operative and must house clean when completing their task even though they might abort.
By keeping a reader/writer count against the container and per parser, the supplier container lock usage can
be optimized according to the simultaneous number of accessors.

What about the other containers: recycle-bin, error, and producer? Do they require lock protection? Yes
they do when they are being filled and yes when they are acting as a supplier container. As they are
more infrequently used, i leave the locking mechanism with the “add token to xxx” procedures where xxx
is one of “error queue”, “producer”, or “recycle bin”. For occassional back door T adding to the supplier,
the “add token to supplier” procedure is lock optimized on simulatneous accessors as the supplier container
maintains its suitor count.

June 2009

710. Removed grammar stk state no from the CAbs lr1 sym definition.
The original thought was to capture the parse stack number at time of T creation for error tracing. The
thought was half baked as what happens when a T is created outside of the parsing environment — no parse
stack? So out half-baked! If the grammar writer needs this information, it can be programmed explicitly by
the grammar writer by adding the appropriate attributes to the error T being logged.

June 2009

711. Note on what’s in the token container and its size.
The “end-of-grammar” condition signaled by the PTR LR1 eog T is not an element of the container. Why?
It acts as a conditional being only-the-lonely as only the Tes in the token stream are contained. So u are
warned. If u are testing the token container for size — for example u walked a tree container with filtering
and u are testing whether the 2 Tes and the “end-of-grammar” condition are there, u should test the con-
tainer’s size for 2 elements and not 3. Why all this verbage? whispers to myself.

June 2009

§712 WLIBRARY SETS: SEQUENTIAL VERSUS BINARY SEARCH OPTIMIZATION 299

712. Sets: Sequential versus binary search optimization.
Well what is the break-over point when to use a sequential search on an ordered table versus a binary search?
This question came up when i wanted to improve set handling: aka shift, reduce operations within the fsa
state. Try to paper out the result! I finally wrote a simple program to gather stats on the break-out point.
Surprizingly it was 72 elements. The test used a table of elements having a multiple of 3 as 1*3, 2*3, etc. The
population went from 1 to 128 elements, and for each element in the table, a spanned search key of +,-, and =
the element key was done. This was run against each search type to find out the break-over point on instruc-
tion costs. Now all state searches have a dual strategy tested against the SEQ_SRCH_VS_BIN_SRCH_LIMIT

constant as to what search type to use.

July 2009

713. Change T containers’s subscripting to unsigned integer or my subtle stupidities.
Why the change from signed to unsigned integers for size, subscripting? Depending on the stl template
library, there will be unresolved references to method like “size” that returns unsigned.

Stupidity number 1: overloading the subscript range: subscript < 0 ⇒ have not accessed container for T,
before first time access, etc. U get the notion. Due to this, “first-time-accessed”, and “end-of-container-
reached” attributes were needed. Tree walking with filtering needed special attention in the “do i already
have a T in the container?” and “end-of-tree-reached”. That is, a request could be asked to fetch a specific
T after the “end-of-tree” has already been reached.

2nd stupidity: not commenting / documenting that a Parser expects that the T is already been fetched
before it requests it. This showed up in my haha finetuning of my logic on tree containers and the discrete
logic grammars getting nada input: dead end T.

Cost to my overloading, about 8 hours of work to farret out these subtleties. I know its rather simple
but this is my twilight zone of stupidity.

Nov. 2009

300 PORTING TO MICROSOFT: VISUAL STUDIO 8 WLIBRARY §714

714. Porting to Microsoft: Visual Studio 8.
Some not so happy comments on 32 bit console application:
1) They got it wrong when it comes to C runtime (CRT) and their different calling types: cdecl, stdcall
and how their libraries static or dynamic were built. The threaded library needs stdcall, while the main
program needs cdecl. Each library draws from its own memory pool depending on what library type u are
using. So build everthing using cdecl and fine-tune the call to “ beginthredex” with stdcall.
2) U better choose the right type of multi-threading “/MT” or “/MD” or Klack-klack-klack? Well trial-by-
error discovered “/MT” is the right one and not their choosen default.
3) Forums are thin on quality but lots of verbage on multi-threading: Try looking up exit code (255).
4) U better use “/force:multiple” to allow all those common c++ rtns to coalesce.
5) Last, their Release libraries don’t work! its blows up before the program “main” is entered into. So the
port has the porky version but it works!

Alas poor fool for thinking they improved on this from Visual Studio 5 to 8. It was trial-by-the-blind
using the various combinations to get it going. Better cosmetic documents but of same software quality ilk.
Well my tea reading is this: cica 2003 was move to the CLR / C sharp development and leave as is the
32 bit console application code. Let the street hawkers spin their new tails of enchantment to follow them.
Anyway the port is done but tooth mashing ain’t fun.

Nov. 2009

715. Mutexing the containers.
A review:
1) All containers start with one owner. Therefore the 1st fetch is safe.
2) All sequential reads from a container is safe.
3) After a T is delivered from its container, the container checks nto see if the request was for its last T
inside it. If so the container will do a future request by itself and not by the consumer. That is it is pushing
the race condition ahead to maintain saftey to the consumer.
4) This future read i call lookahead. It contains the mutex mechanism to protect from 2 or more suitors.
So what happens when 2 consumers request the same last T? Well there could be 2 potential lookaheads
attempted. Only 1 lookahead T added to the T pool. What happens if the lookahead request hits the
end-of-T-stream? The mutex protect checks for this.

Nov. 2009

716. Some refinements to source file/line tracings.
External file print sourcing improved, added source file/line to dynamic tracing. Cleaned up “Generated
finite state automaton macros” from “c type macros” back to cweb macro.
See EXTERNAL GPSing and FILE_LINE macros with appropriate comments.

Jun. 20014

§717 WLIBRARY BUGS IN ALL THEIR SPLENDER 301

717. Bugs in all their splender.

718. Error on “file-overrun”.
Where the meta terminals ‘eog’ or ‘eof’ have no co-ordinates assigned to them and the error token being
generated needs a real co-ordinte assigned to it. The tok can〈ifstream 〉 operator[] did not respect the
requested token subscript when the end-of-file was reached. It always returned the ‘eog’ token.

Now if the requested subscript ≤ the container’s pos the appropriate token is returned from that the
associated error terminal will associate to the previous real terminal returned. The container is walked
backwards looking for Mr. Right.
Jan. 1/2005.

June 2008
“eof” has been end-of-the-line for |?|.

719. Parallel parse assumed that the grammar would do more....
than just parse and accept a single |||phrase. This showed up when I implemented a consolidated grammar
to reduce the First set testing to launch threads.
Fix: replace reduce with 〈 try reduce 264 〉.
Jan. 1/2005.

720. Parallel thread table aborts when program winds down.
This is a Microsoft problem as it’s a simple template of map of thread strings and list of current threads
available.
Jan. 1/2005.

721. |+|and end-of-container.
Ahh the Ides of March — what do u do when the “all shift” facility is on and u reached the “eog” or “eof”
token: the end of the container? Originally I turned off the “all shift” facility and returned without executing
the all shift procedure if present in the configuration state. Overruns in any context are not liked. Well an
improvement to this situation is to turn off the facility and still execute the all shift if its present in the
state’s configuration. This allows the grammar writer to use this facility as an error handler.
Mar. 15/2005.

722. Test availability of BIT_MAPS_FOR_SALE__.
Finally getting around to refining the constraints by adding an extern indicating the total number of words
for sale. When bit maps need generating — just-in-time manufacture per fsm state calling threads, the
global BIT_MAP_IDX__ is the accrued number of maps already created. It is this value that is measured for
overflow against TOTAL_NO_BIT_WORDS__. See 〈determine if there is a bit map gened for state. no do it 213 〉
for implementation. A thrown error will be generated.
Apr. 10/2005.

723. Monolithic grammar’s start token should be set in constructor.
This error showed up when a standalone grammar was calling out of its first set a thread that should have
run and didn’t. The grammar highlighting the error was properly programmed but used the start token
procedure as a reference to set the error token co-ordinates. This type of error means either Yacco2’s Linker
did not generate properly its first sets, or the grammar writer did not regen the first sets using Linker after
adding or subtracting terminals from the Terminal vocabulary.

Now one can set it 2 ways: by calling one of these procedures start token or current token .
May 10/2005.

302 MISMATCHED FILE NUMBER ASSOCIATED WITH ERROR TOKEN CO-ORDINATES WLIBRARY §724

724. Mismatched file number associated with error token co-ordinates.
Well this is just a dumb error! Like all others.
History:
To support nested file includes, 2 globals were used: FILE_CNT__ and NESTED_FILE_CNT__ to be efficiently
clever. How so? I did not want to push, pop, and pant a stack. As new files were being processed, their
literal names were kept in a map: file number and its description. Of course this could be a vector but my
file number starts from one due to my bias on counting; I’ll stick with the bias but fiddle the vector after
this.

Now FILE_CNT__ is an incrementing number while NESTED_FILE_CNT__ is the nested level of includes.
U guessed it the file number being associated with the error was the nested level and not FILE_CNT__. So
just stack the FILE_CNT__ at time of file processing and use the stack depth to guard against run away file
recursion.
19 May, 2005.

725. Validate accept message against the new lookahead token position.
With experience, this reality check is not needed. Why? Error tokens can be returned from a thread with no
consumption of the token stream occuring. The check came about when threads were being developed with
the assumption that tokens returned consumed the current token stream which is not the case as one could
post process tokens and forward post an error past the current token position or re-align the error outside
of the token stream being read.

Now with a more creative approach to error handling and threads working properly, this check is too
restraining. So beware as it can still happen.
26 May, 2005.

726. Linux bug — dropping namespace yacco2 :: on extern ”C” referenced objects.
The yacco2 namespace wrapped the below globals to manage threads. They get defined by Yacco2’s linker.
Now the shaker: originally I referenced these globals by using ”C” extern. I used this approach to indicate
that other languages could get a hold of them though the real use of extern ”C” is for functions and the order
of parameters pushed onto the calling stack. Unfortunately when porting yacco2 to Linux these globals
were not resolved by the regular language linker. The wthread .cpp code that referenced them compiled but
emitted object code without the yacco2 :: prefix.

1) extern ”C” void* THDS_STABLE__;
2) extern ”C” void* T_ARRAY_HAVING_THD_IDS__;
3) extern ”C” void* BIT_MAPS_FOR_SALE__;
4) extern ”C” int TOTAL_NO_BIT_WORDS__;
5) extern ”C” int BIT_MAP_IDX__;
6) extern ”C” CAbs lr1 sym* PTR LR1 eog ;

The fix: drop the ”C” from the above extern statements. The object code now contains the yacco2 ::
prefix to these globals.
25 July, 2005.

727. Why me the ginea pig using other C++ compiler foibles?.
Linux ugh what’s it good for? absolutely... as the song goes. The out-of-the-box C++ compiler generates
unreolved references that are due to its template processing. Going thru g++ to assembler output only and
looking for the undefined references from their STL and using the “nm” facility to see an object’s symbols
just doesn’t help.

So the moral of this story is to try another compiler like Intel C++? or should I become involved with the
free-open-source movement. For now my time is limited and so I will take the first option.
31 July 2005

§728 WLIBRARY MS C++ PROBLEMS 303

728. MS C++ problems.
While converting to the dynamic approach to tracing, MS C++ compile hit the wall. It’s symbol table
management got confused in symbols that had common prefixes. Enough of my rants — detour no: xxx. At
least I can still keep going instead of the more fundlemental problem posted about Linux and the unresolved
ctors from template instantiation.
5 Aug. 2005

729. Regular parse and no input container: just parsed the empty language.
To support grammars as logic sequencers, i forgot to force a current token = yacco2 ::PTR LR1 eog ;
against the current token within the parser ctor when no input token container inputted. Even though there
is no token consumption taking place, the parser starts things off by fetching the first token. If there is no
token present, the ctor of the parser does not set up for parsing: parse stack etc, but exits as if an empty
language had been parsed.

Correction:
In this case there is no token so i force the meta terminal eog to indicate the end-of-the-token-stream: a
bit of a hack as regular parsing expects to receive its input from a token container but works as there is
no token consumption by this particular grammar. This approach represents properly the empty language
string when the grammar / parser consumes the token stream.

Observation:
As this is a very simple correction, why wasn’t it programmed properly? Again the forest versus the trees
situation. Local patch without overall assessment of how parsing requires a token. Now i’m being hard on
myself as it was caught with my 1st test try but the observation still holds.
16 Aug. 2005

730. MS 7.0 heap delete bug....
I commented out the delete statement so that things at least work.
31 Oct. 2005 Goulish wonders...

731. MS 7.0 bug pranks.
For now bypass the delete tokens request by returning immediately out of the routine.
31 Oct. 2005 wonders never cease...

304 INTEL C++ RELEASE 9 WLIBRARY §732

732. Intel C++ release 9.
History:
Well, Intel’s VTune is an excellent product that works first time. So from this experience and my problems
with Red Hat’s gcc compiler weaknesses of not compiling proper code, MS compiler 7.0 having little displays
of irregularity lead me to try out Intel’s compiler products particularly when Apple is endorsing their chips
— chip wars with salt and vinegar? Well the install was easy and the anticipation high as to performance,
optimization, and space. Crunch crunch crunch — that’s the sound of the man ... Enough of my mental
droppings... mumblings in karaoke. Hear’s the scoup (intended): The compiler is approximately 3 times
slower than MS compiler.
Code bloat is in fat city — 5.5 times bigger. My program is 675k using MS versus 3350k for Intel

The killer, the code produced does not handle a multi-threaded program and its contexts. It loses its
proper thread run context. This did take place in Visual Studio 6.0 but they corrected this in release 7.
As O2 starts with no threads — on demand, the thread table of workers grows dynamically according to
jit source context. Now the lost context, when a thread finishes it work, it sets its working status back to
waiting-for-work. This setting does not happen with Intel’s version of O2. So the thread table keeps growing
to approximately 2k threads created and then the program goes into a deadly wait state where all parties
are politely nodding.

Upon debugging this in 2 ways: log all the events textually (let’s hear it for my tracings: all events turned
on — messaging between events, arbitration, tokens fetched, etc) and use of Intel’s source code debugger, 2
things came out: the Intel debugger gets lost upon single stepping the source code for set waiting for work
and the smoking gun displayed its evidence as more common threads got created like eol where they were
always busy even after their completion.

All this in 3 hours of high expectations to the sobering truth that C++ compilers are gum and shoe laced
together in a top-down affair. Now Sunday 4 December, my clean up to bring me back to living with MS
C++ and its little tantrums. At least it compiles fast, and my program runs in release mode. In debug mode,
MS C++ has a bit of a problem with its memory re-cycling at program-exit time but this is now tolerated as
there is nowhere to go for me at present. Hey what about Apple? i’ll see how they do regarding top-down
compiling. What about HP/Compaq/Dec? It worked 2 years ago so my porting of the Pascal translator will
be the test with HP’s new STL.

Alas i’m becoming more convinced of formal methods to compiling. This certainly saddens me a lot in year
end 2005... about the Intel’s state of affairs regarding compiling? or was it just their C++ implementation?
I just don’t know as the song goes but C++ certainly is a dog of a language to get right particularly when
porting to different platforms exposes different compiler weaknesses. Wait till the meta-language crew start
exhorting their virtues. Just try single stepping those songs!
4 Dec. 2005

733. Apple’s cough in handling template definition.
See Sour Appleontemplate definition for an explanation of why the slight arberation and work around.
13 Dec. 2005

Apple’s response was fast and polite. They quoted the C++ Standard showing that this was left to the
implementors and that their interpretation was appropriate. Upon reading Standard, they are right. The
others (Microsoft, Intel, HP) use a more general approach and in my opinion would be the direction i would
take dealing with glorified macros but kukos to the Open Source implementation. My correction was minimal
to place all referenced variables before the defining template shell.
Feb. 2006

§734 WLIBRARY HP ALPHA C++ “THIS” OBJECT MIS-ADDRESS 305

734. HP Alpha C++ “this” object mis-address.
See worker thread blk initialization : threaded grammar .
The launched thread places the worker thread blk “this” pointer within the Parallel thread table for
thread reuse. Unfortunately the address of this object is not the same as the address within the containing
grammar’s parser object. Apple and Microsoft got it right!

The fix:
As the parser object containing it is also passed for tracing purposes, i now fetch its address thru the parser’s
object.
10 May 2006.

Take 1.329...
The problem was ctor () producing a temporary variable that became ctor (ctor (x) &)) in the initialization
list of a defining ctor. Eg, box A contains box B where box B has only B(x) ctor. A ::A() : b (B(x)) { } ; is
the problem.
The ctor of box B in the list produces a temporary variable and C++ creates an implicit default ctor of
B() and an implicit copy ctor (B &). Why did u not just program A ::A() : . . . b (x) { } ;? where the
argument to the b variable in the list is a regular ctor declaration? U got it, this is circa code of 1998 where
the C++ compilers were not so good and that was the only way to initialize the variable in the list. Now 3
flavors of MS C++ compilers, 1 old Alpha compiler, and Apple’s compiler morphed the code seeing that a
temporary variable is not needed and respected the old way of compiling. Alas the vagaries of the past the
present the future.
20 July, 2006

735. Rule reuse but forgot to remove the “AD” from each grammar.
For speed, the mallocing of rules is too expensive so i calculated its re-use count. See rules use cnt grammar
on how it’s done. The push / pop of the parse stack’s symbols having each rule’s “AD” auto delete attribute
turned on got deleted every time it was popped. Consequence: any reference to the rule became a ghost
reference.

Solution: just remove the attribute declaration from each rule within their grammars.
Nov. 2007

736. Recursion on “Procedure call” of a thread.
Ugly things happen as the thread’s cloned “procedure call” is not re-entrant due to ctor / run / dtor
overhead. Its fsm table is global and can only support 1 call at a time. This is a design decision for speed
reasons. Needed is a recursion detection table Parallel thread proc call table to register call attempts for all
threads. When called as a procedure turn on the use and remove the registered use after it has return from
the call. This table is mutex protected unfortunately but necessary due to parallelism.
Apr. 2008

306 VMS MISQUEUE ON MUTEX RECURSION AND PTHREAD STACKSIZE WLIBRARY §737

737. VMS misqueue on Mutex Recursion and Pthread stacksize.
Ugly things happen as the thread is activated. The pthread’s default stack size pthread attr t variable
does not set the stack size properly. causes the pthread library to throw up. So explicitly set it using the
pthread attr setstacksize procedure before the pthread create.

The second more serious issue is its detection of what it thinks is recursion on a single use mutex. It’s
reaction is down right violent — spews of core dump and attempts at calming the hoard with information
messages of potential inaccuracies. This reaction is illussionary as this is not so. Each thread or its singular
procedure partner has their own private copy for the control message Mutex and Conditional variables. This
was tested on Unix out-of-the-box Pthread library variants (Sun and Apple) without this hacking or is it
gagging? So just remove the “procedure call” optimization for VMS and make it a thread call.
Aug. 2008

738. |?| used instead of |+| making it a perpetual motion machine.
Guard against |?|as it does not advance get next token so the parse keeps on going dancing at the same
token spot: this is perpetual motion machine — swap file eventually fills up and Boom Ca Boom. Sometimes
the grammar writer is using improperly the |?|instead of an epsilon rule. So how to detect this? Well if
the has questionable shift occured has been previous set, then stop parsing instead of aborting. Should i
message or not to message that is the question. I’ll message the errant grammar and parse stack state where
the problem was detected. The grammar writer should use the |+| symbol.
Patched 〈 try various shift types. if executed go to process next token in token stream 253 〉.
Sept. 2008

739. Rule reuse Code emmission did not store the newed rule in its recycle table.
I did not store the newed grammar rule in its recycle table. This was brought out using a marvellous tool
call dtrace from Sun. Well the thought was right but my details were wrong — like the kid who runs ahead
in thought while learning to crawl.

The other part to rule recycling is making sure local grammar rule’s variables are re-initialized as the
past dribbles will effect the present. Speak clearly boy! Example, in la expr grammar Ra and Rt rules
contain the local set fset variable. This holds the terminal in the lookahead expression so that set “union
and difference” expressions can take place. Having a recycled rule with this set not cleared will contain its
past history. This is the cost of an optimization: 25% improvement so be forewarned.

Dec. 2008

740. String template container did not set the eof pos variable and random boom.
The sky is falling. As the string container didn’t set this variable, random droppings other than EOF meant
that at least a first read on the string container would take place. Well u guessed it. As it was never read
the eof symbol was not set and so nil pointer on the returned token. At least the file container set eof pos
properly. Alas just sloppiness Dave and a swill to u.
Mar. 2009

§741 WLIBRARYTOKEN GAGGLE’S VIRTUAL TABLE ACCESS [] OPERATOR NOT RESPECTED 307

741. TOKEN GAGGLE’s virtual table access [] operator not respected.
This showed up in an xml/message dispatcher system written for VMS/Alpha. The “Error queue” be-
ing parsed was getting an array out-of-bounds error when the end-of-token stream was reached. THE
TOKEN GAGGLE’S ACCESS [] PROTECTS AGAINST THIS. But the internal container used aka
STL’s array container was being called directly. This problem only occured in c++ VMS/Alpha port. Sun,
Apple, Linux flavours all worked by respecting the virtual table of the abstracted tok base. So tighter
checks within the get next token Parse method is done ensuring the current token is always set on an
empty container or any of the overflow checks.

Originally current token was set only when the overflow was first detected. As a post evaluation, the
Parser “Error queue” which was originally declared as a TOKEN GAGGLE is now declared as an ab-
stract tok base just like the other containers Supplier, Producer, and Recycle bin. This allows the language
designer to use a different Error container like trees. In conclusion, though not a bug but a porting weakness,
this modification makes the Parser more flexible. So Dave your fixed Error thoughts are virtualized.
Oct. 2010

742. Procedure calls in VMS revisited: thread versus procedure.
Revisited the optimization on procedure calling of grammars when only 1 grammar is to be called. This is
a major improvement over thread calls. Well this is the scoop. Make sure that the stack paramater to the
VMS linker is adequate or not fun abortive things happen within a called thread that u know works. This
happened to a command that was parsed properly using the same called thead while the other command to
be parsed aborted.

Second, make sure thare are no overruns in a std type container happening. Somehow VMS only has a
problem guarding against an overrun which is properly guarded against within O2’s library. For now the
code in 〈 request threads to work 384 〉 has renamed the conditional variable VMS_ to VMS111__ so that it is
not used. I’m keeping it there as a reminder to possible future reguritations.
Nov. 2010

743. Size of tree container — number of items in container.
What is the size of the tree container? It depends whether its end-of-tree has been reached. So put a
conditional test in its size method: return MAX_UINT if tree walk is still in process. End-of-tree reached then
return the size of its internal container.
Feb. 2011

744. Find reduce entry current token not found.
My to my stupidity. The searching for the subrule reducing was optimized. Not to get into my stupidity
but the meta symbols were found before the next subrule’s LA set was searched. The correct search is 2.5
passes — find the current tok against the potential subrules. Followed by meta symbols against a new round
of potental subrules list , and then the last gasp |?|is search if the previous passes not met.
Nov. 2012

308 DATE MACRO USE — APPLE LLVM C++ COMPILER WLIBRARY §745

745. Date macro use — Apple LLVM C++ compiler.
Version 5.1 (clang-503.0.40) (based on LLVM 3.4svn).
This is caused when the version literal per O2linker and O2 is built. See “runtime env.w” file for details.
Must split lines or delimit by spaces when concatenating the macro ’ DATE ’ by bounded literals.
Example: ”xxx” DATE ”yyy” //works cuz spaces
Without the spaces the compiler thinks its a template mistake with this error:
No matching literal operator for call to ’operator”’ DATE with arguments of types ’const char*’ and
’unsigned long’, and no matching literal operator template.
Apr. 2014

746. Eog symbol not gpsing on external file and internal line no.
Here’s the stik. I was playing around with the Pager 1.lex grammar. To make it interesting, the T vocabulary
files were changed. By mistake the Error T vocabulary file did not have a close off brace: }. So the right
error was thrown but the file co-ordinates were 0 and did not reference the external file!

Looking at the tok can〈std :: ifstream 〉 container, the end-of-file indicator was passing the appropriate file
references. So what the heck? Well to the rescue, yacco2::YACCO2 T tracing of Tes. In all the gory details
and low and behold the “eog” had no external references. Well the culprit was map char to raw char sym
that draws from its premade raw character pool and makes a T symbol. It was passed the appropriate
external file’s co-ordinates but...

To quicken raw character mapping to a CAbs lr1 sym symbol a premade PTR LR1 eog symbol was
just returned without setting the passed-in file co-ordinates.

Man Dave you sure r a winner!
May 2014

747. Cleaned up Arbitrator’s YACCO2_AR__ tracings.
2 items corrected:

1) misplaced 〈 release trace mu 390 〉; in TAR_2 walking accept-queue. The 5 computer nerds waiting
2) commented out for TAR_1 − 3 macros use of trace parser env

Oct 2014

§748 WLIBRARY ERROR DETECTION AND HANDLING 309

748. Error detection and handling.
Let’s review how this can be done. Within a grammar’s production there are points where an invalid symbol
could arrive. If one does not program for it, the parser will go kapout. So what are the options open to
a grammar writer? First there is a “failed” directive in the “fsm” construct that will field aborted parses.
It is the last chance to deal with errors in a rather insensitive way. If there are many contexts within the
grammar that could go wrong then this approach is too insensitive to be specific about the context’s error
point. Though the errant current token is available to report on, what was the inapproproiate context that
threw it? Well u could try to figure it out from the remnants on the parse stack.

To deal with specific error points, the |?|, |+|, and |.| symbols can catch errant tokens, or one can be
very specific in specifiying the errant T to catch. This last option can be very daunting when one has 500+
T to deal with and lets be honest not really appropriate. This was why i introduced the meta-terminals |?|
and |+|. To catch a rogue and associate syntax directed code to handle the situation, these symbols MUST
be within prefix subrules where they are the last symbol in the subrule’s symbol string. What does this
mean? Having a string of symbols where these catch T symbols are burried within a larger symbol string
means the subrule’s containing these symbols will not be executed as its sentence has not been completely
recognized. For example:

→ a |?| b — will not handle the error at the |?| point
→ a Rqueshift b — will catch the problem

Rule Rqueshift → |?|...
will catch the error with appropriate syntax directed code directive

Caution: The ranking of meta-terminal shifts: 1 and a 2 and a 3 —|?|, |.|, |+|
The |?| symbol is checked first for its presence within the current parse state followed by the |.| symbol as
it is normally used to get out of a quasi-ambigous parse. The |+| aka wild shifter is the last to be checked
in the parse state. It is their presence within the parse state that activates their use. The |?| is an error
statement and was my reason to put it at the head of the conditional shifts. So watch your shifts as this
could catch u like me. Remove 1 of the 2 competing shift symbols: |+|or |.|. For the moment i have not
issued an error message on this situation.

Dictate no 1: Last symbol in subrule’s symbol string must be the catcher in the Error
Make sure your error catch point has |?| or |+| as its last symbol within the symbol string and let your
syntax directed code decree the error escape route to be taken. Yeah that’s fine but what if the symbol
string to be recognized contains many catch points? Just make each symbol string segment a separate rule
with the error code catch point being the last symbol in the string competing with its legitimate accepted T
symbols and use these rules within another rule’s subrule as part of its symbol string to be recognized! The
lr algorithm is a collection of various symbol string configurations per state in various accepted T points
along their parsing. So by transitive closure these prefix rules get included in the state to be recognized along
with the other similar prefix symbols. When the prefix rule’s “‘rhs” boundary is recognized, depending on
the error catcher used, the reduce will fire either in good form or as an error.

What to do when an error is detected?
For now i have not thought out error correction strategies though i am marginally aware of the backtracking
techniques. I will now discuss current programming options open to the grammar writer. Depending on
the context, the thread could abort which is the most drastic. This takes place when no error catching is
programmed and O2 issues a runtime message on the aborted grammar with its run stack goodies. This
might be okay to get things going but isn’t too appropriate within a production environment. Well the catch
points have 2 programming options available:

1) return an error token back to the calling grammar and stop parsing of the active grammar
2) abort the parse and field it using the “failed” directive to return an error T

Point 1 should be your main course of action. That is both macros RSVP and RSVP_FSM return a T back
to the calling grammar through the accept queue facility as if the parse was successfull. This is what point
2 does using the RSVP_FSM macro as its execution is within the “fsm” context of the grammar and not the

310 ERROR DETECTION AND HANDLING WLIBRARY §748

reducing rule. The calling grammar can then field this returned T specifically or use the two meta-terminal
|?| or |+| to deal with them. They are allowed in any subrule symbol string context: thread calls where
its returned T can be one of these symbols, and the regular subrule symbol string.

Pinpointing where the error occured in the source file
Built into O2 is the facility to tag each T with its approriate source file’s GPS — filename, line number, and
character position. These co-ordinates are used to print out the errant source line with an arrow underlining
the errant source token. So when an error T is created, use of the set rc and variants allows one to pinpoint
the error T against the GPS’s source file T. Have a read on “Abstract symbol class for all symbols” —
CAbs lr1 sym.

Some subtleties on making the errant T fire off the error catching syntact directed code.
Let me pose a question: What happens when the errant T is not in the lookahead set to reduce that subrule?
Well it will not get executed! Ugh. This is just not acceptable Dave. Well to the rescue is the |?| symbol.
It is not in the token stream but represents an errant situation. So where is this errant T placed? When one
enters the subrule’s syntact directed code segment, all its subrule’s elements have been shifted onto the parse
stack where this last errant symbol is represented by |?|. But the |?| symbol does not advance past
the errant T as in regular parsing. So what does this mean? The current errant T is also the lookahead
symbol for the reduction. But wait what if this T is not in the lookahead set to reduce this subrule. Well i
made this type of reduce a lr(0) context: no lookahead symbol required to reduce the subrule.

To get at the current elements on the parse stack, O2 emits within each subrule’s c++ code the stack
frame with each subrule’s symbol string assigned to “sf~pxx ” where xx is the symbol’s string position.
This is the difference to |+|: |+| depends on the lookahead set to reduce. Now what then is the advantage
to using |+|? One can test its under-its-hood T’s enumerate value and then take error action or stop use of
the |+| facility that allows the grammar to continue parsing up to the “start rule”. As it’s a wild symbol
shifter, it really lowers the grammar’s parse tables sizes and eases the grammar writer’s typing.

Dictate no 2: Games on returning the new lookahead T back to the calling grammar
U can play games with resetting the new lookahead T that is passed back with its RSVP T companion within
the accept queue. This is what happens when just 1 T is returned: the lookahead T is the parse stream
continue point and also its contents to set the calling parser’s current token to continue with. As an aside
why use the returned lookahead’s T contents instead of just resetting the continue T from the token stream’s
container using the lookahead token position? Well u could also remap the current token into another T
type due to say a symbol table remapping — like Pascal and its “const-id”, ”function-id” as described in the
railroad diagrams of “The Pascal Reference Manual”. The remapping facility is open for use via the “Table
lookup functor” facility. The following methods adjust the parser’s token stream:

override current token pos (symbol , position)
override current token (symbol)
reset current token (position)

In a dual competing threads situation where each grammar have accepted their parse and are returning
their booty to the calling grammar, the calling grammar must use arbitration to select the T gift and sets its
parse stream accordingly and the balance in the “accept queue” are so-to-speak thrown away. Of course the
arbitration facility is programmed by the compiler writer when 2 or more successfull threads are returning
their booty back to the calling grammar. Normally this does not occur as there is just one thread that will
report its findings but this city is built on rock and nondeterminism. So a subset / superset competition, or
an accept and error combo is quite acceptable and for the arbitrator’s choosing. Forgotten arbitration code
will be regurgitated by the O2 library in message form for your fixing.

The one caveat to watch for is: What is the current token and its position in the parse stream when it
enters the subrule’s syntax directed code? |?| still has the errant T as its current T and to reset back to the
previous T u only subtract 1 from the current token position. |+| demands 2 be subtracted as the current
T is the new lookahead T. So u’ve been warned.

§748 WLIBRARY ERROR DETECTION AND HANDLING 311

Some comments on stopping a parse by syntax directed code:
Apart from the don’t do anything approach, the grammar writer can talk to the parser and dictate his
intentions. The 2 methods open are abort-the-parse or stop-parsing. The abort-the-parse action allows the
thread to stop without any T returned to the caller grammar or use the failed directive to last-chance return
an error T back to the caller. The stop-parsing approach returns a T back to the user but does not want to
continue the complete parse through to its “start rule”. It just short-circuits the overall grammar’s parsing
action. Remember that if the parse has been successfull “why complete the parsing thru to start-rule?”.
Depending on your local grammar logic this might be the most expedient way to program. Here are the 2
methods to do this:

set abort parse (true)
set stop parse (true)

What about the reducing of this subrule? Well it occurs, as entry into the syntax directed code that contains
the grammar writer’s code to execute these statements are kosher reducing conditions. So why the “abort-
parse” versus “stop-parse” difference. “stop-parse” should contain the RSVP macro that enters the returned
T into the calling grammar’s “accept-queue”. The “abort-parse” normally does not contain this action.

Warning no 3: if |+| being used, don’t forget to turn it off.
This symbol is voracious: eats and eats everything in its path. So u can arrive at trying to
eat the “end-of-the-parse-stream” “eog ” symbol forever... O2 guards against this but is rather
abrupt in its message to the grammar writer and stopping of the parse immediately. So u’ll see
in some the suggested grammars set use all shift off method being called to get out of this per-
petual motion and possiblely continue up the parse chain to the “start rule”. Here is a list
of some O2 grammars having error handling and premature stopping of a parse to learn from.

1) o2 lcl opts .lex and called thread o2 lcl opt .lex — command line parser
2) la express .lex — set abort parse (true) thread’s la expression parser
3) c string .lex — semantic example stopping a parse and programmed fsa

Point 1 gives an example of how the “failed” directive in the called thread o2 lcl opt .lex is programmed
and “set stop parse (true)” use in the calling grammar o2 lcl opts .lex of a monolitic grammar. pass3 .lex
and point 2 give more examples on monolithic use to aborting. Point 3 also shows programming use of
the “set abort parse (true)”. For the really curious, why not use the find/grep/xargs combo to settle your
appetite against O2’s grammars.

The last word, amen and happy parsing.
Remember that the normal flow of errors should be placed into the “error queue” and then post processed
to report its findings. ADD_TOKEN_TO_ERROR_QUEUE and its variant FSM_ADD_TOKEN_TO_ERROR_QUEUE allow
u to do this. pass3 .lex gives lots of examples and O2’s program shows its way of post-verbing the troubles.
And with all this error stutter, each grammar does a post-execution grammar cleanup on current parsing
for the next round of their calling. Again what does this mean? A semi-abort was done just to stop its
execution leaving the grammar in an abort state. But each grammar does a resetting to a clean slate for its
next round of calling either by “procedure call” if no nesting calls of itself is occuring or by the heavy thread
call. Hygiene is important so the cat washes itself for the next eating.

312 INDEX WLIBRARY §749

749. Index.

To do - parsing stack dump. canonize output
trace!: 632.

To do canonize the traced output: 578.
To do error message conditional shift |.| takes

precedence over |+|: 748.
To do error message conditional shift ranking both

|+| and |.| in state: 748.
To do RETHINK parse stack macros rel 1 +

0: 337.
To do writeup overview of cr and msg events: 137.
To revisit - rel 0, 1 attitude on parse stack.

currently rel. ZERO: 340.
To think out - rel. 1 terminal not zero!: 230.
asm : 220.

__DATE__: 428.
__FILE__: 58, 90, 96, 130, 131, 132, 163, 176, 182,

183, 199, 213, 376, 401, 402, 429, 430, 483, 495,
496, 497, 498, 499, 501, 502, 503, 504, 505, 509,
513, 514, 543, 544, 545, 546, 547, 548, 549,
550, 551, 552, 553, 554, 555, 556, 557, 558,
559, 560, 561, 562, 563, 567, 577.

__LINE__: 58, 90, 96, 130, 131, 132, 163, 176, 182,
183, 199, 213, 376, 401, 402, 429, 430, 483, 495,
496, 497, 498, 499, 501, 502, 503, 504, 505, 509,
513, 514, 543, 544, 545, 546, 547, 548, 549,
550, 551, 552, 553, 554, 555, 556, 557, 558,
559, 560, 561, 562, 563, 567, 577.

stdcall : 188.
ap : 630.
_AR__: 10.
beginthreadex : 153.
_MSG__: 10.
_YACCO2_CALL_TYPE: 139, 173, 175, 188.
A: 117, 121, 516, 734.
a: 90, 130, 131, 132, 176, 199, 213, 376, 401, 402,

543, 554, 556, 558, 559, 560, 562, 563.
a funct : 531, 540.
AB: 573.
Abort : 225, 311.
abort accept queue irregularites : 224, 334, 401.
abort no selected accept parse in arbitrator : 192,

224, 402.
abort parse : 225, 310.
abort parse : 196, 223, 230, 232, 233, 251, 264,

271, 310, 311.
aborted : 124, 133.
aborted : 124, 126, 127, 131, 132, 133, 354, 359.
abs : 473.
accept filter : 435, 436.
ACCEPT_FILTER: 15, 476.

accept node : 81, 439, 474, 534, 535, 536, 539,
540, 541.

accept node level : 83, 103.
accept node level : 83, 95, 102, 103.
Accept opt : 81, 83, 443, 444, 445, 446, 447, 448,

449, 452, 454, 457, 460, 463, 466, 469, 472.
accept opt : 81, 436, 452.
Accept parallel parse : 38, 277.
Accept parse : 184, 185.
accept queue : 184, 697.
accept queue : 406.
accept queue tokens : 401, 402.
accept t : 435, 438.
Accept terminal : 226, 265, 266, 267, 268.
Accept token : 184, 185.
accept token : 184, 185, 401, 402, 408, 411, 414,

418, 421, 592, 595, 626, 628.
Accept token pos : 184, 185.
accept token pos : 184, 185, 401, 402, 411, 561,

592, 595, 626, 628.
accepted : 222, 245, 249, 250, 264, 272, 282.
act : 81, 435, 452, 456, 459, 462, 465, 468, 471,

534, 535, 539, 541.
Action : 81, 443, 444, 445, 446, 447, 448, 452,

454, 457, 460, 463, 466, 469.
action : 81, 439, 452.
add : 220.
add child at end : 82, 508.
add set to map : 286.
add son to tree : 82, 507.
add to stack : 228, 348.
add token to error queue : 227, 332, 576.
ADD_TOKEN_TO_ERROR_QUEUE: 576, 748.
ADD_TOKEN_TO_ERROR_QUEUE_FSM: 576, 684.
add token to producer : 227, 324, 575.
ADD_TOKEN_TO_PRODUCER_QUEUE: 575.
add token to recycle bin : 227, 328, 572.
ADD_TOKEN_TO_RECYCLE_BIN: 572.
add token to supplier : 227, 320.
address : 178.
adj prev caller : 535.
advance : 81, 435, 443, 444, 445, 446, 447, 448,

456, 459, 462, 465, 468, 471.
affected by abort : 58, 67, 133, 497.
Affected by abort : 58, 60.
affected by abort : 58, 60, 67, 360, 587.
ai : 516.
aie : 516.
all shift : 226, 241, 253, 721.
all shift : 106, 253, 265, 267.
ALL_THREADS_BUSY: 15, 382, 383.

§749 WLIBRARY INDEX 313

Alpha : 178.
alpha attr : 166.
Alphabets : 568.
amongst brothers : 517, 518.
ancestor list : 449, 472, 474, 476.
Ancestors : 449.
Ancestors list : 472.
Apple : 733.
AR_: 188.
ar fnct ptr : 114, 421.
AR for manual thread spawning : 173, 175, 386,

658.
ar name : 175, 176, 626, 628, 629.
AR Rtok : 188.
arbitrated parameter : 191, 192.
arbitrated token : 192, 223, 230, 232, 233, 386,

387, 406, 408, 410, 411, 418, 421, 422, 561, 592.
Arbitrator : 681.
arbitrator : 186.
array chr sym : 53, 54, 57.
ASCII_8_BIT: 15, 53, 54.
AST: 76, 81, 82, 83, 95, 96, 97, 102, 103, 434,

435, 443, 444, 445, 446, 447, 448, 449, 452, 454,
456, 457, 459, 460, 462, 463, 465, 466, 468, 469,
471, 472, 473, 474, 475, 476, 479, 480, 481, 482,
483, 484, 485, 486, 487, 488, 489, 490, 491, 492,
493, 494, 495, 496, 497, 498, 499, 501, 502, 503,
504, 505, 507, 508, 509, 510, 511, 512, 513,
514, 515, 516, 517, 525, 526, 530, 531, 532,
533, 534, 535, 538, 672, 687, 708.

ast : 83, 103.
ast accept node type: 81, 83.
ast base stack: 81, 82, 96, 435, 452, 454, 456,

457, 459, 460, 462, 463, 465, 466, 468, 469, 471,
473, 525, 526, 527, 528, 529, 530, 531, 532, 533,
534, 535, 536, 537, 538, 539, 540, 541.

ast breadth only: 447, 466, 467, 468.
ast delete : 82, 497.
Ast env : 81.
ast functor: 81.
ast moonwalk looking for ancestors: 449,

472, 473, 474, 475, 476.
ast postfix: 443, 454, 455, 456.
ast postfix 1forest: 445, 460, 461, 462.
ast prefix: 444, 457, 458, 459.
ast prefix wbreadth only: 448, 469, 470, 471.
ast prefix 1forest: 446, 463, 464, 465.
ast stack: 81, 83, 95, 103, 443, 444, 445, 446,

447, 448, 452, 454, 457, 460, 463, 466, 469.
ast vector type: 81, 83.
auto delete : 58, 68, 357, 414.
Auto delete : 58, 60.

auto delete : 58, 60, 68, 197, 206, 358, 586.
automaton : 682.
B: 516.
b : 734.
back : 92.
Base enum of T : 667.
base idx for thd id calc : 217, 219, 220.
base stk : 81, 99, 101, 102, 435, 436, 439, 440,

441, 442, 452, 454, 456, 457, 459, 460, 462,
463, 465, 466, 468, 469, 471.

bat : 698.
Before : 504.
begin : 79, 182, 183, 382, 384, 401, 402, 432, 516.
bi : 516.
bie : 516.
BIG_BUFFER_32K: 15.
bin srch : 284, 285.
bin srch cur tok : 293.
bin srch meta : 296.
bit : 218.
bit map : 217, 218, 220.
BIT_MAP_IDX__: 19, 213, 722, 726.
BIT_MAPS_FOR_SALE__: 19, 213, 722, 726.
bit pos : 218, 219.
bit pos value : 213.
BITS_PER_WORD: 15, 213, 217.
BITS_PER_WORD_REL_0: 15, 218.
bk cnt : 71.
bpr : 517, 518, 520, 521, 523.
brother : 82, 456, 459, 462, 465, 468, 471, 492, 534.
brt : 517, 520, 521, 522, 523.
bsf : 220.
btr : 220.
BUFFER_SIZE: 15, 90, 130, 131, 132, 176, 199,

213, 376, 401, 402, 543, 554, 556, 558, 559,
560, 562, 563.

By : 505.
BYPASS_FILTER: 15, 476, 526.
bypass node : 81, 439, 474, 534, 535, 538.
B2: 284, 285, 293.
B2 eolr : 284, 285.
B2 meta : 296.
B2 que : 288.
B3: 284, 285, 293.
B4: 284, 285, 293.
B4 eolr : 284, 285.
B4 meta : 296.
B4 que : 288.
B5: 284, 285, 293.
B5 eolr : 284, 285.
B5 meta : 296.
B5 que : 288.

314 INDEX WLIBRARY §749

c: 85, 90, 92.

C_MAX_LR_STK_ITEMS: 15, 125.

c str : 90, 92, 176, 558, 566.

c string : 748.

CAbs fsm: 117, 120, 121, 122, 222, 223, 230,
232, 233, 315.

CAbs lr1 sym: 15, 16, 19, 35, 50, 52, 53, 56, 57,
58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
72, 73, 74, 75, 79, 80, 81, 82, 83, 84, 85, 87, 90,
92, 94, 96, 103, 104, 124, 125, 126, 136, 184,
185, 197, 206, 223, 226, 227, 228, 229, 265, 267,
300, 301, 320, 324, 328, 332, 335, 336, 337, 338,
364, 366, 431, 432, 435, 476, 481, 486, 488, 494,
497, 498, 499, 534, 535, 538, 558, 568, 569, 634,
677, 679, 686, 692, 710, 726, 746, 748.

Caccept parse: 184, 185, 223, 224, 316, 334,
401, 408, 574, 673, 697.

call arbitrator : 224, 386, 421, 422, 658.

call prt func : 539, 540, 541.

CALLED_AS_PROC: 15, 384.

CALLED_AS_THREAD: 15, 384, 407.

called proc entry: 170.

called proc name : 638, 645.

Caller pp : 173, 175, 176, 188, 189, 190, 192, 201,
202, 208, 210, 626, 628, 629.

Calling node : 82, 525.

Calling parm : 224, 334, 401.

Calling parser : 171, 178, 222, 232, 233.

can : 83.

Ccm to ar : 659.

ce : 289.

chained proc call parsing : 226, 259, 415, 418.

Char : 53, 56, 57, 562, 646.

CHAR: 16.

CHARP: 16.

Child : 82, 495, 508, 513, 514.

chr literal : 53, 54, 57.

clean up : 125, 126, 127, 224, 272, 279, 282, 283,
405, 406, 414, 418, 421.

cleanup stack due to abort : 228, 249, 251, 264,
271, 279, 283, 341, 342.

clear : 79, 80, 83, 87, 94, 95, 183, 376, 378,
433, 541.

clear parse stack : 194, 204, 228, 234, 362.

Clear yacco2 opened files dictionary : 427, 433.

clock : 650, 651, 652, 653.

clone tree : 82, 525.

close : 88, 93.

close file : 80, 93.

CloseHandle : 148, 152.

cnode : 475, 515, 538.

cnode : 526, 530, 531, 532, 533, 534, 535, 539,
540, 541.

Cnt : 82, 509.
cnt : 284, 285, 513, 514.
cnt : 530, 539.
cnt of reducing subrules : 288, 289, 291, 294.
code : 186, 272, 681.
coding : 20.
Comments : 117, 120.
comments : 117, 121.
comments : 117, 120, 121.
common ancestor : 82, 516.
compare : 655.
COND_STK_TRACE: 38, 581, 582, 583, 584, 585,

586, 587, 588, 589, 590, 591, 592, 593, 594,
595, 596, 597, 635.

COND VAR: 139, 140, 149, 150, 152, 162,
163, 165, 223.

COND_WAIT: 140, 150, 163, 394, 395.
const iterator: 79.
const pointer: 79.
const reference: 79.
const reverse iterator: 79.
constant : 3.
constructor : 110, 244.
container : 79, 80, 83, 87, 94, 103.
Container: 79.
container : 79, 80, 85, 87, 90, 92, 94.
containers : 316.
content : 82, 97, 102, 435, 476, 481, 525, 534,

535, 538.
continue waldo : 475.
convert char to unsigned value : 85, 90, 92.
cout : 430, 630.
cp : 289.
Cparse record: 124, 125, 130, 133, 134, 135, 136,

208, 228, 244, 336, 345, 346, 352, 361, 634, 660.
CPLUSPLUS: 178.
cpp : 2, 36, 42, 53, 79, 137, 186, 726.
CREATE_COND_VAR: 140, 149, 162, 230, 232, 233.
CREATE_MUTEX: 140, 143, 156, 177, 230, 232, 233.
create set entry : 46, 47, 48, 49, 50.
CREATE_THREAD: 110, 140, 153, 166, 383, 652, 653.
CreateMutex : 143.
CreateSemaphore : 149.
crt tree of 1son : 82, 480.
crt tree of 2sons : 82, 479, 480.
crt tree of 3sons : 82, 480.
crt tree of 4sons : 82, 480.
crt tree of 5sons : 82, 480.
crt tree of 6sons : 82, 480.
crt tree of 7sons : 82, 480.

§749 WLIBRARY INDEX 315

crt tree of 8sons : 82, 480.
crt tree of 9sons : 82, 480.
ct : 509, 511.
ctor : 734.
CTOR: 568.
cur bit word idx : 217.
cur state : 251, 253, 254, 255, 256, 259, 271.
cur stk index : 81, 452.
cur stk rec : 81, 452.
cur stk rec : 81, 99, 101, 102, 435, 439, 452,

456, 459, 462, 465, 468, 471, 534, 535, 538,
539, 540, 541.

cur youngest child : 508.
current rc malloc sub : 53, 54, 57.
current stack pos : 208, 228, 343.
Current T id : 211, 212, 216.
Current token : 229.
current token : 199, 208, 229, 363, 364, 558, 588,

589, 590, 595, 596, 597, 637, 638, 723.
current token : 223, 230, 231, 232, 233, 242, 250,

253, 270, 284, 289, 337, 364, 365, 366, 412, 544,
560, 574, 588, 589, 593, 637, 638, 656, 729, 741.

current token pos : 83, 229, 368.
current token pos : 199, 208, 223, 230, 232, 233,

337, 365, 366, 367, 368, 560, 574, 588, 589,
590, 593, 595, 596, 597, 637, 638.

Cv : 140, 149, 150, 152, 162, 163, 165.
cv : 151, 164, 223, 230, 232, 233, 234, 394, 395.
cv cond : 223, 230, 232, 233, 394, 395, 649.
cweave : 577, 682, 683.
cweb : 2, 3, 6, 12, 15, 34, 37, 39, 110, 124, 309,

335, 542, 564, 577, 663, 665, 682.
date : 117, 121.
Date : 117, 120.
date : 117, 120, 121.
dd : 213.
deal with functor : 449, 474, 476.
deal with parent : 449, 475, 476.
Debug : 117, 120.
debug : 117, 121.
debug : 117, 120, 121, 579, 580, 635.
definition : 733.
definitions : 2.
DELETE_T_SYM: 573.
delete tokens : 731.
Delete tokens : 427, 432.
deleted syms : 432.
DESTROY_COND_VAR: 140, 152, 165, 234.
DESTROY_MUTEX: 140, 148, 161, 180, 234.
destructor : 69, 573.
determine where t is : 96.
difference type: 79.

Directory of variable variables controlling various
macros: 8.

dispatch disposition : 382, 384.
div : 213.
divorce node from tree : 82, 517.
Do delete : 427, 432.
dont delete syms : 432.
down : 456, 462.
dtor : 58, 69.
Dtor : 58, 60.
dtor : 58, 60, 69, 358, 360, 573.
dtor T labeled stmt : 568.
Due to abort : 82, 497.
eax : 220.
ebx : 220.
edi : 220.
edx : 220.
Elder sibling : 82, 496.
Element : 286.
element : 288, 289, 292, 293, 655.
elements : 45, 47, 48, 49, 50, 61, 288, 289,

292, 293, 295, 296.
embedded thread no : 630.
empty : 79, 80, 83, 84, 88, 92, 95, 125, 126, 128,

337, 339, 379, 382, 452.
end : 79, 182, 183, 286, 382, 384, 401, 402, 432,

440, 441, 476, 516.
END_OF_LRK_ENUMERATE: 15.
END_OF_RC_ENUMERATE: 15, 573.
end of scan : 220.
endl : 79, 96, 97, 99, 101, 102, 163, 182, 183, 230,

337, 338, 365, 380, 381, 389, 390, 401, 402, 430,
497, 577, 579, 580, 582, 583, 584, 585, 586, 587,
588, 589, 590, 591, 592, 593, 594, 595, 596, 597,
598, 599, 601, 602, 603, 604, 605, 606, 607, 608,
609, 610, 611, 612, 613, 614, 615, 616, 617, 618,
619, 620, 621, 622, 623, 626, 628, 629, 630, 631,
634, 637, 638, 640, 641, 642, 643, 644, 645,
646, 648, 649, 650, 651, 652, 653.

entry : 678.
Enum : 82, 498, 499.
Enum id : 46, 47, 48, 50, 58, 60, 226, 284, 285.
enum id set member : 58, 61.
enum id set partition no : 58, 61.
enumerate T alphabet : 680.
enumerated id : 58, 65, 476, 558.
enumerated id : 49, 53, 57, 58, 60, 65, 66, 79, 97,

230, 248, 253, 265, 267, 284, 337, 338, 365, 412,
442, 498, 499, 559, 573, 596, 597, 637, 638.

Enumeration : 568.
eoc : 81, 456, 459, 462, 465, 468, 471, 534.
EOF: 85, 88, 90, 92, 94.

316 INDEX WLIBRARY §749

eof : 90, 92, 203.
EOF_CHAR_SUB: 15, 56, 85, 90, 92.
eof pos : 80, 84, 85, 87, 88, 90, 92, 94, 740.
eof sym : 80, 84, 85, 87.
eog : 70, 83, 203, 729, 748.
eog t : 83.
eol : 732.
eolr seq : 284, 285.
eolr srch : 284, 285.
eoroad : 92.
erase : 84.
Err ast_delete recursion to sel...: 497.
Err ast_delete Right recursion ...: 497.
Err Bad char mapping chr value: ...: 562.
Err caller pp addr |!=| in calle...: 199.
Err Can’t find symbol to shift i...: 558,

702.
Err Cant find parallel sym reduc...: 560.
Err Cant find rule shift in stat...: 559.
Err current token ptr zero. Cann...: 544.
Err File_no not 1 or greater: 548.
Err find_breadth Left recursion...: 499.
Err find_breadth Right recursio...: 499.
Err find_breadth Tree’s object ...: 499.
Err find_depth Left recursion t...: 498.
Err find_depth Right recursion ...: 498.
Err find_depth Tree’s oject is ...: 498.
Err FSM id: ... parse stack empt...: 556.
Err get_older_sibling Pos >= 0: 514.
Err get_spec_child Node Cnt is...: 509.
Err get_younger_sibling Pos <=...: 513.
Err Invalid |?| instead of |+| : 543.
Err join_pts Parent and child n...: 495.
Err join_pts Parent lt ptr not ...: 495.
Err join_sts Elder_sibling rt ...: 496.
Err join_sts Left and Right nod...: 496.
Err Line_no not 1 or greater: 545.
Err lr_stk − push overflow stac...: 131,

132.
Err lr_stk − sf_by_sub invali...: 130.
Err lr_stk − sf_by_top underf...: 130.
Err no arbitration code present ...: 176.
Err no more bit maps: in Linker : 213.
Err No selected accept parse T n...: 402.
Err no supplier symbol found to ...: 549.
Err Overflow on Accept queue no ...: 401.
Err Parallel token boundry same ...: 561.
Err parse stack number of remova...: 555.
Err parser’s finite state table ...: 550.
Err parser’s stack is empty: 551.
Err parser’s supplier is zero ptr: 552.
Err parser’s thd blk’s pp addr !...: 199.

Err Pos not 1 or greater: 546.
Err Pos out of bounds against su...: 553.
Err Pos_in_line not 1 or great...: 547.
Err relink Old ptr == New ptr: 501.
Err relink Previous ptr == New p...: 501.
Err relink Previous ptr == Old p...: 501.
Err relink_after Previous Node ...: 503.
Err relink_after Previous ptr==...: 503.
Err relink_before Before node d...: 504.
Err relink_before Before ptr ==...: 504.
Err relink_between Old ptr == N...: 502.
Err relink_between Previous nod...: 502.
Err relink_between Previous ptr...: 502.
Err replace_node Old ptr == By ...: 505.
Err Sorry run out of raw charact...: 563.
Err spawn_thread_manually thre...: 376.
Err Subcript Pos value < ...: 554.
Err tok_can<ifstream>operator[]...: 90.
Err Trying to add to Parser erro...: 557.
Err Underflow FSM id: ...: 556.
Err zero_2nd_son 2nd son’s 1st...: 483.
erred : 222, 249, 259, 279, 283, 405.
error queue : 227, 331.
Error queue : 222, 227, 230, 330.
error queue : 199, 208, 223, 230, 330, 331,

332, 557.
esi : 220.
EVENT_RECEIVED: 15, 232, 233, 394, 395.
exec : 81, 100, 443, 444, 445, 446, 447, 448, 455,

458, 461, 464, 467, 470.
exit : 90, 130, 131, 132, 176, 199, 213, 376, 401,

402, 483, 495, 496, 497, 498, 499, 501, 502, 503,
504, 505, 509, 513, 514, 543, 544, 545, 546, 547,
548, 549, 550, 551, 552, 553, 554, 555, 556,
557, 558, 559, 560, 561, 562, 563.

Ext file no : 58, 60.
external file id : 58, 73.
external file id : 56, 57, 58, 60, 70, 73, 84, 534,

538, 558, 566.
EXTERNAL GPSing : 79, 97, 230, 337, 338,

365, 566, 588, 589, 590, 592, 593, 595, 596,
597, 637, 638, 716.

fail : 92.
failed : 117, 249, 281, 684.
false : 15, 58, 82, 84, 85, 87, 88, 90, 93, 94, 95, 96,

126, 128, 133, 213, 230, 232, 384, 494.
fetch char : 85, 90.
File : 53, 58, 75, 429, 430.
file : 80, 88, 90, 92, 93, 429, 430.
FILE_CNT__: 92, 423, 424, 428, 433, 568, 724.
FILE_LINE: 79, 97, 99, 101, 102, 230, 337, 338,

365, 380, 381, 389, 390, 401, 402, 567, 577, 579,

§749 WLIBRARY INDEX 317

580, 582, 583, 584, 585, 586, 587, 588, 589, 590,
591, 592, 593, 594, 595, 596, 597, 598, 599, 601,
602, 603, 604, 605, 606, 607, 608, 609, 610, 611,
612, 613, 614, 615, 616, 617, 618, 619, 620,
621, 622, 623, 626, 628, 629, 630, 631, 634,
637, 638, 640, 641, 642, 643, 644, 645, 646,
648, 649, 650, 651, 652, 653, 716.

file name : 80, 94.
File name : 80, 88, 94.
file name : 80, 88, 90, 92, 94.
File no : 56, 57, 73, 548, 646.
file no : 80, 84, 85, 87, 90, 92.
File ok : 89.
file ok : 80, 89.
file ok : 80, 88, 89, 90, 92, 93, 94.
FILE_TBL__: 92, 423, 424, 428, 433, 558, 566, 568.
filename bad : 92.
filename opened : 92.
fill it : 184, 185, 334, 574.
Filter : 81, 443, 444, 445, 446, 447, 448, 449, 452,

454, 457, 460, 463, 466, 469, 472.
filter : 81, 435, 440, 441, 442, 449, 452, 472, 476.
filter node : 435.
filter provided : 449, 472, 477.
filter type : 449, 472, 476.
filtered Tes : 476, 477.
filters : 83.
find : 286, 432, 442, 476.
find a recycled rule : 117, 122.
find breadth : 82, 499.
find cur T shift entry : 226, 237, 284, 693.
find depth : 82, 498.
find legitimate terminal : 71.
find parallel reduce : 696.
find parallel reduce entry : 226, 257, 297.
find proc call reduce entry : 226, 261, 298.
find questionable sym in reduce lookahead : 226,

288, 289, 426.
find R or paralleled T shift entry : 226, 248, 265,

267, 285, 693.
find reduce entry : 226, 263, 289, 425.
Find reduce entry : 744.
find shift entry : 693.
find threads by first set : 211, 212, 378.
finished working : 193, 203.
finite : 682.
fire a func ast functor: 531, 540.
fire a func functor : 526.
fire off error functor : 279, 283.
first : 211.
first entry : 45, 107, 108, 113, 114, 115, 215,

216, 219, 220, 284, 285, 288, 289, 291, 294,

297, 298, 376.
first sf : 125, 126, 127, 634.
first state : 125, 126, 127.
first thd id : 115, 216, 217.
first time accessed : 96.
first tok tree : 83.
FN_DTOR: 16, 58, 60, 69.
fnd rrl : 122.
for use list : 104, 122.
FORCE_STK_TRACE: 38, 577, 626, 628, 629.
forest : 517, 518.
Forest : 443, 444, 445, 446, 447, 448, 454, 457,

460, 463, 466, 469.
from thread : 224.
From thread : 224, 396, 398, 603, 604, 605.
from thread : 153, 156, 199, 201, 208, 210, 223,

230, 232, 233, 383, 398, 594, 602, 649.
fset : 739.
fsm : 122, 684.
FSM_ADD_TOKEN_TO_ERROR_QUEUE: 748.
Fsm rules reuse table: 104.
Fsm tbl : 222, 230, 232, 233.
fsm tbl : 222, 315.
fsm tbl : 163, 197, 206, 223, 230, 232, 233, 244,

249, 252, 281, 315, 358, 360, 401, 402, 543, 550,
556, 558, 559, 560, 577, 579, 580, 582, 583, 584,
585, 586, 587, 588, 589, 590, 594, 595, 596, 597,
598, 599, 606, 607, 608, 609, 610, 616, 617, 618,
619, 630, 631, 633, 635, 640, 641.

ful : 122.
Func : 51, 530, 531, 532, 539, 540, 541.
Functor : 51, 449, 472.
functor: 51, 655.
functor : 449, 472, 473, 474.
functor result : 473, 474, 475.
functor result type: 81, 439, 449, 473, 474,

475, 526, 527, 528, 529, 530, 531, 532, 533, 534,
535, 536, 537, 538, 539, 540, 541.

functor2: 51.
GAGGLE: 80.
GAGGLE ITER: 80.
game : 20.
gbl file map type: 423, 424, 428.
Gened date : 117, 120.
gened date : 117, 121.
gened date : 117, 120, 121.
Generated : 682.
generator : 681.
get child at end : 82, 508, 511.
get next token : 229, 236, 241, 337, 369, 694,

738, 741.
get older sibling : 82, 493, 514.

318 INDEX WLIBRARY §749

get parent : 82, 475, 515.
get shift s next token : 229, 369.
get spec child : 82, 509, 510.
get spec stack token : 228, 336.
get spec token : 229, 230, 335, 338.
get stack record : 208, 228, 346.
get tree rec : 96.
get younger sibling : 82, 513.
get youngest sibling : 82, 512.
get 1st son : 82, 456, 459, 462, 465, 471, 479, 510.
get 2nd son : 82, 510.
get 3rd son : 82, 510.
get 4th son : 82, 510.
get 5th son : 82, 510.
get 6th son : 82, 510.
get 7th son : 82, 510.
get 8th son : 82, 510.
get 9th son : 82, 510.
GetCurrentThreadId : 154.
GetCurrentThreadid : 631.
Global : 2, 678.
Goal : 449, 472.
goal : 449, 472, 476.
good : 90, 92.
goto : 107, 236, 238, 240, 241, 245, 266, 268,

417, 420.
Goto state : 132, 236, 238, 240, 241, 245, 266,

268, 417, 420, 421.
GPS: 80, 84.
Gps : 80.
gps : 80, 84, 85, 87.
GPS_FILE: 58, 70.
GPS_LINE: 58, 70.
gps used : 80, 84.
grammar : 734.
grammar having logic bug : 401, 402.
Grammar s parser : 171, 178.
grammar s parser : 171, 177, 178, 182, 183, 199,

383, 611, 616, 617, 618, 619.
grammar stk state no : 710.
HANDLE: 139.
handling : 41, 108.
has questionable shift occured : 196, 205, 223,

230, 232, 233, 240, 253, 289, 738.
have all threads reported back : 224, 277, 399.
have 1st rec : 79, 80, 83, 84, 85, 87, 88, 90,

92, 94, 95, 96.
how : 530, 532, 539, 541.
how thread called : 407, 413, 422.
HP: 178.
I: 81, 452.

i: 178, 183, 189, 382, 384, 401, 402, 432, 435,
476, 634.

id : 58, 64, 117, 121, 476, 558.
Id : 58, 60, 66, 117, 120.
id : 53, 57, 58, 60, 64, 79, 97, 102, 107, 117, 120,

121, 163, 230, 233, 284, 285, 337, 338, 365, 401,
402, 497, 543, 556, 558, 559, 560, 577, 579, 580,
582, 583, 584, 585, 586, 587, 588, 589, 590, 592,
593, 594, 595, 596, 597, 598, 599, 606, 607, 608,
609, 610, 616, 617, 618, 619, 626, 628, 630,
631, 633, 634, 637, 638, 640, 641.

id of T : 378, 412.
identifier : 578.
idx : 81, 102, 452, 462, 465, 471, 526, 530, 531,

532, 533, 534, 535, 539, 540, 541.
ie : 183, 189, 384, 401, 402, 432, 634.
ifstream : 76, 80, 88, 89, 90, 91, 92, 93, 94, 566,

694, 718, 746.
ii : 401, 402, 626, 628.
iie : 401, 402.
in : 92.
in bnds : 96.
in use list : 104, 122.
INFINITE: 144, 145, 150.
init : 81, 82, 454, 456, 457, 459, 460, 462, 463, 465,

466, 468, 469, 471, 473, 525, 534.
init gbl : 177.
initialization : 734.
initialize it : 184, 185, 230, 232, 233, 414.
Inode : 526, 535.
insert : 432.
insert back recycled items functor: 526,

535.
insert before : 526, 535.
insert node : 526, 535.
insert node : 526, 535.
INT: 16, 47, 48, 49, 50, 53, 81, 82, 83, 103, 223,

224, 228, 288, 289, 342, 343, 346, 347, 350, 362,
396, 429, 452, 498, 499, 509, 513, 514, 526, 530,
531, 532, 533, 534, 535, 539, 540, 541.

INT_MAX: 91.
int set iter type: 81, 435, 476.
int set type: 81, 83, 443, 444, 445, 446, 447,

448, 449, 452, 454, 457, 460, 463, 466, 469, 472.
int type : 80.
inv shift : 106, 253.
invisible shift : 226, 238, 253.
ios : 80, 92.
is open : 92, 93.
is pos within bnds : 336.
is there a token supplier : 337.
iterator: 44, 79, 80, 81, 139, 170, 431, 516.

§749 WLIBRARY INDEX 319

ITH eol : 112, 213.
its linked list : 104, 122.
iul : 122.
j: 183, 382, 432.
je : 183, 382.
jmp : 220.
join pts : 82, 480, 495, 508, 525, 535.
join sts : 82, 480, 496, 508, 525, 535.
jz : 220.
k: 182, 432.
k entry : 284, 285, 288, 289, 292, 293, 295, 296.
KCHARP: 16, 53, 54, 58, 60, 64, 70, 75, 90, 112,

117, 120, 121, 130, 131, 132, 176, 199, 213, 223,
224, 371, 376, 401, 402, 424, 428, 429, 430, 483,
495, 496, 497, 498, 499, 501, 502, 503, 504,
505, 509, 513, 514, 543, 544, 545, 546, 547,
548, 549, 550, 551, 552, 553, 554, 555, 556,
557, 558, 559, 560, 561, 562, 563.

ke : 182, 432.
KVOIDP: 16.
la expr : 739.
la express : 704, 748.
la set : 48, 290.
la set : 108, 288, 291, 294.
LA set ptr: 16.
LA set type: 16.
La token : 184, 185.
la token : 184, 185, 410, 592, 595.
La token pos : 184, 185.
la token pos : 184, 185, 410, 561, 592, 595.
LAPOS: 574.
LATOK: 574.
launched as procedure : 210, 223, 230, 232,

233, 272, 279.
left : 81, 456, 459, 462, 465, 468, 471, 525, 534,

535, 539, 541.
let s functor : 449, 473, 474.
let s moonwalk : 449, 475.
lex : 19, 415, 568, 578, 680, 706, 748.
lhs : 244.
Line : 429, 430.
line : 429, 430.
LINE_FEED: 15, 56.
Line no : 53, 56, 58, 74, 75, 545.
line no : 58, 74.
line no : 58, 60, 70, 74, 79, 80, 84, 85, 87, 88, 90,

92, 94, 97, 230, 337, 338, 365, 558, 588, 589,
590, 592, 593, 595, 596, 597, 637, 638.

list: 170, 424, 428.
ListA: 82, 516.
ListB : 82, 516.
lkup : 51.

lkup : 51, 335, 337, 338.
LOCK_MUTEX: 10, 78, 140, 144, 157, 380, 389, 391.
LOCK_MUTEX_OF_CALLED_PARSER: 10, 78, 140, 145,

150, 158, 183, 230, 232, 233, 275, 383.
lower : 284, 285, 288, 289, 293, 296.
LPVOID: 139.
lr stk: 125, 126, 127, 128, 129, 130, 131, 132,

223, 228, 344.
lr stk : 125, 126, 130.
lr stk init : 125, 126, 197, 206, 230, 232, 233.
lrclog : 79, 96, 97, 99, 101, 102, 163, 180, 182, 183,

230, 337, 338, 365, 380, 381, 389, 390, 401, 402,
424, 428, 430, 497, 539, 566, 577, 579, 580, 582,
583, 584, 585, 586, 587, 588, 589, 590, 591, 592,
593, 594, 595, 596, 597, 598, 599, 601, 602, 603,
604, 605, 606, 607, 608, 609, 610, 611, 612,
613, 614, 615, 616, 617, 618, 619, 620, 621,
622, 623, 626, 628, 629, 630, 631, 633, 634,
637, 638, 639, 640, 641, 642, 643, 644, 645,
646, 648, 649, 650, 651, 652, 653.

lrerrors : 424, 428.
LRk : 203.
LRK_LA_EOLR_SET: 295, 296, 425, 428.
LRK_LA_QUE_SET: 288, 426, 428.
LR1 All shift operator : 38.
LR1 Eog : 38, 253.
LR1 eog : 434.
LR1 Eolr : 38, 42, 284, 285.
LR1 FSET transience operator : 38.
LR1 Invisible shift operator : 38.
LR1 Parallel operator : 38.
LR1 Procedure call operator : 37, 38.
LR1 Questionable operator : 37, 38.
LR1 Reduce operator : 38.
Lr1 VERSION : 424, 428, 430.
lt : 459, 465, 471, 483.
lt : 81, 82, 482, 483, 494, 495, 497, 498, 499, 501,

502, 504, 505, 507, 509, 511, 518, 520, 521, 525.
m: 182.
ma : 200, 209, 637, 638, 639.
macro : 2.
macros : 3, 682.
Map : 286.
map: 44.
map char to raw char sym : 53, 56, 85, 90, 92, 746.
map char to symbol : 56.
maps : 213.
MAX_LR_STK_ITEMS: 15, 130, 131, 132, 336,

556, 706.
MAX_NO_THDS: 15, 172, 174.
MAX_UINT: 15, 103, 743.
MAX_USINT: 15, 84, 87, 558.

320 INDEX WLIBRARY §749

me : 182.
Message : 429, 430.
Message id : 224, 396, 398.
Meta srch : 296.
mid pt : 284, 285, 288, 289, 293, 296.
mid pt rel0 : 284, 285, 288, 289, 293, 296.
mis : 178.
monolithic : 684.
Moonchild : 449, 472.
moonchild : 449, 472, 475.
mov : 220.
mpost : 6.
msg : 90, 130, 131, 132, 176, 199, 213, 376, 401,

402, 483, 495, 496, 497, 498, 499, 501, 502, 503,
504, 505, 509, 513, 514, 543, 544, 545, 546, 547,
548, 549, 550, 551, 552, 553, 554, 555, 556,
557, 558, 559, 560, 561, 562, 563.

msg id : 223, 230, 232, 233, 398.
msg2 : 558.
MSN bug pranks.: 431.
MSN heap delete bug...: 358.
Mu : 78, 140, 143, 144, 145, 146, 147, 148, 150,

156, 157, 158, 159, 160, 161, 163.
mu : 183, 193, 223, 230, 232, 233, 234, 275,

276, 383, 394, 395.
MUTEX: 78, 139, 140, 143, 144, 145, 146, 147,

148, 150, 156, 157, 158, 159, 160, 161, 163,
223, 423, 424, 428.

myself : 2, 78, 109.
n action: 81, 82, 452, 525.
n action : 81.
NESTED_FILE_CNT__: 724.
new pos : 208.
new r w cnt : 384.
new root : 526, 535.
new root : 526, 535.
new t : 525.
New to : 82, 501, 502, 504.
next stack element to remove : 357, 358, 359,

360, 361.
next t : 435, 437, 439.
NIL: 512.
nil : 372.
No : 125, 130.
NO: 15, 84, 88, 90, 92, 94, 399, 472, 474, 475,

476, 477, 635.
no bit mapped words : 213, 217.
NO CAbs lr1 sym ENTRIES : 15.
no competing pp ths : 153, 156, 199, 201, 208,

210, 223, 230, 232, 233, 276, 373, 383, 414,
601, 637, 638, 649.

no entries : 45, 107, 108, 113, 114, 213, 215, 284,
285, 288, 289, 291, 294, 376.

no filter so accept all Tes : 476, 477.
no items on stack : 228, 347.
no lt : 539.
no of accept tokens in queue : 401, 402.
no of gbl thds : 213.
no of T : 115.
no requested ths to run : 153, 156, 201, 210, 223,

230, 232, 233, 373, 375, 383, 384, 594, 601,
621, 622, 637, 638.

no rules entries : 104.
no set pairs : 288, 289, 291, 292, 293, 294, 295, 296.
no thds : 376.
no thds to run : 222, 255, 259, 379.
no thds to shutdown : 180, 182, 183.
NO_THREAD_AT_ALL: 15, 382, 383.
no ths exited : 180, 183.
No to remove : 228, 350, 351, 361, 555, 556, 579.
No Token start pos : 15, 103, 452.
Node : 81, 82, 83, 103, 452, 481, 482, 483, 484,

485, 486, 487, 488, 489, 490, 491, 492, 493,
497, 498, 499, 510, 517, 518, 524.

node : 81, 102, 435, 452, 456, 459, 462, 465, 468,
471, 534, 535, 538, 539, 540, 541.

node sym : 535.
Node to copy : 82, 525.
nodes visited : 83, 103.
nodes visited : 83, 95, 97, 102, 103.
noskipws : 92.
Notes : 2, 78, 109.
NS pass3 : 188.
NS yacco2 characters: 55, 76.
NS yacco2 k symbols: 35, 239, 417, 420, 432.
null : 166.
Obj : 82, 494.
obj : 82, 481, 485, 486, 488, 494, 497, 498, 499.
object : 178.
of : 568.
OFF: 15, 51, 143, 177, 196, 205, 230, 232, 233, 253,

306, 335, 342, 360, 427, 432, 570, 635.
Ofile : 530, 539.
ofile : 530, 539.
ofstream : 424, 428, 530, 539.
Old : 505.
Old to : 82, 501, 502.
older : 104, 122.
older rrl : 122.
older sibling : 514, 515.
on : 733.
ON: 15, 51, 177, 196, 197, 206, 222, 240, 251, 253,

264, 271, 289, 305, 337, 338, 358, 432, 579, 580.

§749 WLIBRARY INDEX 321

one time : 213.
onetime : 432.
op : 117, 252.
open : 92.
open file : 80, 88, 92.
oracle : 3.
out bnds : 96.
overlay : 535.
override current token : 199, 208, 229, 366, 410,

411, 748.
override current token pos : 229, 367, 748.
O2 err hdlr : 686.
o2 lcl opt : 748.
o2 lcl opts : 748.
O2_LOGICALS__: 424, 428.
o2grammars : 698.
O2linker VERSION : 424, 428.
P : 58, 60.
p lt : 507.
P tbl : 211, 212, 213, 214, 215, 217.
Parallel : 272, 678.
parallel parse : 198, 207, 226, 269.
parallel parse successful : 179, 193, 222, 269,

272, 281.
parallel parse unsuccessful : 179, 193, 222, 269,

272, 279, 684.
parallel parsing : 251, 254, 271.
parallel shift : 226, 265, 421.
parallel shift : 106, 254, 420.
Parallel thread list iterator type: 170, 182,

183, 382.
Parallel thread list type: 170, 178, 382.
Parallel thread proc call table : 172, 174, 384, 736.
Parallel thread proc call table type: 170,

172, 174.
Parallel thread table : 110, 171, 172, 174, 178,

182, 183, 233, 382, 734.
Parallel thread tbl iterator type: 170, 182,

183.
Parallel thread tbl type: 170, 172, 174.
Parallel threads shutdown : 110, 141, 173, 180.
paralleled : 222, 256, 259, 260, 406, 418, 421.
parallelism successful : 409, 421, 422.
parallelism unsuccessful : 409, 421, 422.
parent : 475.
Parent : 82, 449, 473, 474, 476, 480, 495, 507.
parental guidance : 517, 518.
Parm : 224.
parse : 226, 249.
Parse env : 577.
parse record : 123.

parse result: 222, 226, 243, 249, 269, 272, 279,
282, 283, 421, 422.

parse stack : 228, 344.
parse stack : 132, 197, 206, 223, 230, 232, 233,

247, 248, 256, 257, 261, 263, 336, 342, 343, 344,
345, 346, 347, 348, 352, 353, 355, 362, 543, 551,
556, 559, 585, 586, 587, 633, 634.

parse successful : 249, 251, 264, 269, 271.
parse unsuccessful : 249, 251, 264, 269, 270, 271.
parser : 58, 63, 78, 83, 117, 121, 140, 145, 147,

150, 151, 158, 160, 163, 164, 230, 232, 233,
550, 551, 595, 606, 607, 608, 609, 632, 633,
634, 635, 636, 648, 649, 650, 651.

Parser: 16, 58, 60, 63, 78, 110, 117, 121, 139,
140, 145, 147, 150, 151, 153, 158, 160, 163, 164,
166, 171, 173, 175, 177, 178, 180, 184, 185, 202,
222, 223, 224, 230, 232, 233, 234, 236, 238, 240,
241, 243, 245, 249, 250, 264, 265, 267, 269, 272,
279, 282, 283, 284, 285, 288, 289, 297, 298, 300,
301, 302, 303, 305, 306, 307, 309, 310, 311, 312,
313, 315, 318, 319, 320, 322, 323, 324, 326, 327,
328, 330, 331, 332, 334, 336, 337, 338, 342, 343,
344, 345, 346, 347, 348, 350, 362, 364, 365, 366,
367, 368, 369, 371, 372, 375, 376, 379, 385, 386,
393, 396, 399, 401, 402, 405, 406, 414, 418, 421,
422, 630, 632, 636, 637, 638, 673, 674, 698.

parser : 58, 60, 63, 70, 117, 120, 121, 568, 572,
574, 575, 576, 577.

parser of parallel support : 630.
Parser requesting parallelism : 140, 153, 166,

652, 653.
partition : 45, 288, 289, 292, 293.
Partition : 286.
partition : 45, 47, 48, 49, 50, 61, 288, 289,

292, 293, 295, 296.
pas variable : 703.
Pass1 reduce : 291.
pass3 : 415, 748.
pasxlator : 166.
pct : 511.
pcur rec : 535.
pdftex : 577.
pe : 376, 382, 383, 384, 401, 402, 591, 612, 613,

614, 615, 620.
Per rule s reuse table: 104, 117, 122.
per rule s table : 104.
per rule tbl ptr : 104, 122.
PF: 530, 531, 532, 539, 540, 541.
pi : 535.
pidx : 534, 539, 540, 541.
pla set : 288, 289, 291, 294.
pnode : 535.

322 INDEX WLIBRARY §749

pointer: 79.
pop : 81, 125, 126, 129, 452, 456, 459, 462,

465, 468, 471.
pop back : 103, 452.
popad : 220.
Porting - cr on global thread table: 377.
Pos : 53, 56, 57, 58, 72, 79, 80, 82, 83, 85, 90, 96,

97, 98, 102, 103, 228, 229, 303, 336, 338, 346,
365, 366, 367, 513, 514, 546, 553, 554, 646.

pos : 79, 80, 83, 87, 94, 103, 509.
pos : 80, 83, 84, 85, 87, 88, 90, 92, 94, 95, 96,

98, 99, 101, 102, 103, 718.
pos : 79.
pos in line : 58, 74.
Pos in line : 53, 56, 58, 74, 547.
pos in line : 58, 60, 70, 74, 79, 80, 84, 85, 87, 88,

90, 92, 94, 97, 230, 337, 338, 365, 558, 588,
589, 590, 592, 593, 595, 596, 597, 637, 638.

position : 748.
possible delete : 533, 534.
post event to requesting grammar : 183, 224,

277, 396.
pp : 373.
PP: 173, 180, 183.
pp : 637, 638.
pp accept queue : 187.
pp accept queue : 176, 190, 192, 223, 230, 232,

233, 334, 386, 387, 401, 402, 414, 421,
422, 626, 628.

pp accept queue idx : 192, 223, 230, 232, 233,
386, 387, 414, 421, 422.

pp accept queue size : 230, 232, 233, 316, 334.
pp accept queue type: 223, 316.
pp parser : 193, 194, 195, 196, 197, 198, 199, 201,

202, 637, 639, 640, 642, 643, 644.
pp requesting parallelism : 110, 153, 156, 199,

201, 208, 210, 223, 230, 232, 233, 275, 276,
277, 278, 280, 334, 383, 399, 598, 599, 611,
621, 622, 623, 637, 638.

PP requestor : 139.
pp rsvp : 223, 278, 574, 595.
pp start : 200, 209, 637, 638.
pp stop : 200, 209, 639.
pp support : 674.
pp thread entry : 202, 637, 639, 642, 643, 644.
pr : 208, 237, 239, 242, 251, 265, 266, 267, 268,

271, 284, 285, 288, 289, 297, 298, 336, 345,
352, 353, 354, 357, 358, 359, 360, 361, 362,
504, 558, 560, 583.

pr : 81, 82, 487, 489, 493, 494, 495, 496, 501,
502, 503, 504, 505, 507, 514, 515, 517, 521,
522, 523, 524.

preprocessor : 20.
prev : 505.
prev pos : 71.
Previous : 82, 501, 502, 503.
previous : 82, 493.
Previous node : 82, 489.
proc call addr : 106, 208, 375.
proc call funct : 203.
proc call in use : 170, 384.
proc call parse : 226.
proc call parse successful : 222, 282.
proc call parse unsuccessful : 222, 283.
proc call parsing : 251, 254, 256, 271.
proc call shift : 226, 267, 418.
proc call shift : 106, 254, 256, 417.
proc call successful : 416, 418.
proc call unsuccessful : 416, 418.
proc parser : 204, 205, 206, 207, 208, 210, 638,

641, 645.
PROC TH lhs phrase : 106.
proc thread fnct ptr : 112, 384.
procedure call : 384.
prt ast functor: 526, 530, 539.
prt funct : 530, 532, 539, 541.
prt prefix : 539, 541.
psnode : 534.
psrec : 534, 539, 541.
pt : 71, 549.
pte : 220.
Pthread : 9.
pthread : 110, 699.
pthread attr init : 166.
pthread attr setscope : 699.
pthread attr setstacksize : 166, 699, 737.
pthread attr t : 166, 384, 737.
pthread cond destroy : 165.
pthread cond init : 162.
pthread cond signal : 164, 689.
pthread cond t: 139.
pthread cond wait : 163, 689.
pthread create : 166.
pthread detach : 166.
pthread mutex destroy : 161.
pthread mutex init : 156.
pthread mutex lock : 157, 158.
pthread mutex t: 139.
pthread mutex unlock : 159, 160.
PTHREAD_SCOPE_SYSTEM: 699.
pthread self : 167, 630.
pthread t: 139.
PTR AR for manual thread spawning : 173, 422,

428.

§749 WLIBRARY INDEX 323

PTR LR1 all shift operator : 35, 432.
PTR LR1 eog : 746.
PTR LR1 eog : 19, 35, 56, 78, 79, 83, 95, 96, 99,

101, 230, 337, 432, 711, 726, 729.
PTR LR1 eolr : 35, 432.
PTR LR1 fset transience operator : 35, 417, 432.
PTR LR1 invisible shift operator : 35, 239, 432.
PTR LR1 parallel operator : 35, 420, 432.
PTR LR1 questionable shift operator : 35, 432.
push : 81, 452, 454, 456, 457, 459, 460, 462, 463,

465, 466, 468, 469, 471, 473, 535.
push back : 79, 80, 83, 85, 87, 90, 92, 94, 102,

103, 110, 178, 219, 220, 320, 324, 328, 332,
376, 452, 474, 476.

push state : 125, 131, 132, 348.
push symbol : 125, 126.
pushad : 220.
put T into accept queue : 224, 278, 333, 334.
pxx : 748.
QUE srch : 288.
questionable shift : 226, 240, 253.
questionable shift : 106, 253, 265, 267.
quot : 213.
R: 47, 48, 49, 50.
r w cnt : 79, 85, 90, 96, 98, 230, 280, 320, 384.
Ra : 739.
Rc : 58, 70, 74.
RC: 49.
RC__: 85, 90, 92, 424, 428.
rc map: 53, 54, 56, 57, 424, 428.
rc pos : 58, 70, 72.
Rc pos : 58, 60.
rc pos : 56, 57, 58, 60, 70, 71, 72, 535, 574.
rc size: 53.
rc size : 53, 56.
rc sub : 57.
Rdispatch lhs : 106.
re : 257, 261, 263, 264, 288, 289, 291, 292, 293,

294, 295, 296, 297, 298, 560.
RE: 226, 243, 244.
read token stream : 249, 253, 264, 269, 270.
read xxx : 6.
real start pos in line : 80, 84, 85, 87.
Recursion count : 17.
RECURSION_INDEX__: 17.
recycle bin : 227, 326.
Recycle bin : 222, 227, 230, 327.
recycle bin : 199, 208, 223, 230, 232, 233,

326, 327, 328.
recycle rule : 117, 122, 358, 360.
Recycled rule : 117.
Recycled rule struct: 16, 244.

reduce : 226, 243, 264, 719.
Reduce entry: 108, 226, 243, 257, 261, 263, 288,

289, 291, 294, 297, 298, 696.
reduce rhs of rule : 117, 122, 123, 244, 660, 701.
Reduce tbl: 16, 105, 106, 108, 288, 289, 297, 298.
reduce tbl ptr : 106, 257, 261, 263, 288, 289,

297, 298.
reduced : 222, 245, 264.
reference: 79.
reject filter : 435, 436.
Relation : 82, 525.
ReleaseMutex : 146, 147.
ReleaseSemaphore : 151.
relink : 82, 501, 534.
relink after : 82, 503.
relink before : 82, 504.
relink between : 82, 502.
rem : 213.
Remap return result : 335, 338.
Remap set result and return : 335, 337, 364.
Remap token : 335, 337, 338, 364.
remove : 79, 80, 83, 87, 94, 103, 708.
remove from stack : 197, 206, 228, 246, 342,

350, 351, 362.
remove unwanted ast functor: 533, 534.
replace node : 82, 505.
reset cnt : 530, 539.
reset current token : 229, 363, 365, 748.
restructure 2trees into 1tree : 82, 479.
result : 153, 156, 157, 158, 159, 160, 161, 166, 249,

255, 256, 259, 260, 264, 269, 383, 416, 418.
Reuse rule entry : 117, 122.
reuse rule entry : 104, 122.
reuse rule list: 104, 122.
Reuse rule table : 117, 122.
reuse string : 80, 84.
reuse tbl : 122.
reverse iterator: 79.
rhs id : 108, 244.
rhs no of parms : 58, 62.
rhs no of parms : 58, 62, 246.
right : 81, 456, 459, 462, 465, 468, 471, 525,

534, 535.
root change : 535.
rr : 439.
rrl : 122.
rslt : 203, 207, 259, 375, 384, 615.
RSVP: 313, 333, 574, 683, 748.
RSVP_FSM: 333, 574, 684, 748.
RSVP_WLA: 333, 574.
rt : 288, 289, 291, 294, 297, 298, 456, 459, 462,

465, 468, 471, 503, 505.

324 INDEX WLIBRARY §749

Rt : 739.
rt : 81, 82, 483, 484, 492, 494, 496, 497, 498, 499,

501, 502, 503, 504, 505, 507, 509, 511, 512,
513, 515, 517, 518, 523, 524, 525.

rtn : 498, 499.
rtn fnd T : 96, 101.
rule : 104, 246, 247, 248, 559.
rule def phrase : 578.
rule info: 58.
rule info : 58, 60, 62, 63, 246, 572, 574, 575,

576, 577.
rule rec : 244, 246, 247, 248, 559.
rule rec1 : 244.
Rule s reuse : 124, 134.
Rule s reuse entry: 16, 104, 117, 122, 123,

124, 134, 244.
rule s reuse entry : 124, 134.
rule s reuse entry ptr : 124, 126, 127, 131, 132,

134, 354, 358, 360, 362.
Rule to recycle : 117, 122.
rules reuse table : 134.
rules use cnt : 104, 706, 735.
run cnt : 171, 177, 178, 182, 383.
RW: 79.
S: 224, 226, 375, 418, 421.
s: 130, 362.
S cur thd id map : 214, 217.
S cur thread entry ptr : 213, 215.
S no thd entries : 213, 215.
s rec: 81, 96, 452, 526, 530, 531, 532, 533, 534,

535, 538, 539, 541.
S thd id : 213.
scn bits : 220.
se : 237, 245, 248, 253, 265, 266, 267, 268,

286, 558, 559.
SE: 226, 236, 238, 240, 241.
second : 286.
seg ln : 284, 285, 288, 289, 293, 296.
seq meta : 295.
SEQ_SRCH_VS_BIN_SRCH_LIMIT: 15, 284, 285,

288, 291, 294, 712.
Set : 41, 46, 47, 108, 655.
set: 45, 81, 211, 431.
set abort parse : 205, 225, 311, 342, 748.
set aborted : 124, 133.
set affected by abort : 58, 67.
set auto delete : 58, 68.
set co ordinates : 71.
set content : 82, 486.
set content wdelete : 82, 488.
set dont skip any chars : 92.
SET_ELEM_NO_BITS: 42, 45, 47, 48, 49, 50.

Set entry: 16, 45, 46, 47, 58, 288, 289, 290,
425, 426, 428.

set entry : 49, 50, 58, 61, 289.
set entry array : 288, 291, 292, 293, 294, 295, 296.
Set entry array type: 16, 288, 291, 294.
set enumerated id : 58, 66.
set error queue : 227, 330.
set external file id : 58, 73.
set file name : 80, 92, 94.
set gps : 80, 84.
set line no : 58, 74.
set line no and pos in line : 56, 58, 74.
set of objs iter type: 431, 432.
set of objs type: 431, 432.
set pos in line : 58, 74.
set previous : 82, 489.
set rc : 58, 70, 748.
set rc pos : 58, 70, 72.
set recycle bin : 227, 327.
set rule s reuse entr : 134.
set rule s reuse entry : 124, 134, 247.
set stack to symbol being shifted : 265, 267.
set start token : 199, 208, 229, 301.
set start token pos : 199, 208, 229, 303.
set state : 124, 135.
set stop parse : 205, 225, 313, 342, 748.
set string : 80, 87.
set symbol : 124, 136, 197, 199, 206, 208, 247,

417, 420.
Set tbl: 45, 108, 288, 289.
set token producer : 227, 323.
set token supplier : 227, 319.
set use all shift off : 225, 306, 748.
set use all shift on : 205, 225, 305.
set waiting for work : 171, 179, 273, 732.
set who created : 58, 70, 75, 686.
set xxx : 6.
sf : 748.
sf by sub : 125, 130, 336, 346, 634.
sf by top : 125, 130.
shft entry array : 284, 285.
shift : 226, 236, 253.
shift entry : 107.
Shift entry: 16, 106, 107, 226, 236, 237, 238,

240, 241, 248, 265, 267, 284, 285.
Shift entry array type: 16, 284, 285.
Shift tbl: 16, 105, 106, 107, 284, 285.
shift tbl ptr : 106, 237, 248, 265, 267, 284, 285.
Shutdown : 38, 183.
Sibling : 82.
SIGNAL_COND_VAR: 110, 140, 151, 164, 383, 394,

395, 396, 397, 650, 651.

§749 WLIBRARY INDEX 325

SIGSEGV: 699.
SINT: 16.
size : 79, 80, 83, 85, 86, 91, 103, 337, 384, 516,

553, 566, 699.
SIZE CAbs lr1 sym : 15, 57.
SIZE_RC_MALLOC: 15, 53, 54, 57, 563.
size type: 79.
Sleep : 181.
sleep : 181.
slno : 85.
SMALL_BUFFER_4K: 15, 200, 209.
sobj : 534.
Son : 82, 507.
Sour : 733.
Source info: 429, 430.
source str : 532, 541.
spawn thread manually : 112, 222, 376, 422, 658.
sprintf : 90, 130, 131, 132, 176, 199, 213, 376,

401, 402, 543, 554, 556, 558, 559, 560, 562,
563, 637, 638, 639.

srch end cur tok : 293.
srec : 96, 99, 101, 538.
srec : 526, 530, 531, 532, 533, 534, 535, 539,

540, 541.
srt : 534.
ssNEW TRACEss : 577.
ssP TRACEss : 577.
ssPARSE TABLE : 202.
ssPROC NAME : 630, 631.
ssPss : 577.
ssQss : 577.
sstrace parallel support envss : 631.
sstrace parallel supportss : 630.
sstrace rulesss : 577.
sstrace stack rtnsss : 577.
sstrace sub rulesss : 577.
sstrace terminalsss : 577.
st : 284, 285.
stack : 699.
stack items to process : 342.
start : 347, 512.
start : 650, 651, 652, 653.
START_CHAR_POS: 15, 56, 84, 87, 88, 94.
START_LINE_NO: 15, 84, 87, 88, 94.
start manually parallel parsing : 226, 422.
START_OF_ERROR_ENUMERATE: 15.
START_OF_LRK_ENUMERATE: 15.
START_OF_RC_ENUM: 15, 57.
START_OF_RC_ENUMERATE: 15.
start parallel parsing : 226, 255, 419, 421.
start procedure call : 224, 375, 418.
start state : 117, 121.

Start state : 117, 120.
start state : 117, 120, 121, 197, 206, 230, 232, 233.
start threads : 224, 376, 377, 385, 413.
Start tok : 229.
start token : 229, 300, 723.
start token : 223, 230, 232, 233, 300, 301.
start token pos : 229, 302.
start token pos : 223, 230, 232, 233, 302, 303.
State: 16, 106, 107, 117, 120, 121, 124, 125, 126,

131, 135, 224, 226, 228, 236, 238, 240, 241,
245, 251, 266, 268, 271, 284, 285, 288, 289,
297, 298, 348, 375, 417, 418, 421.

state : 124, 135, 347, 682.
state : 124, 126, 127, 131, 132, 135, 208, 237,

248, 251, 256, 257, 261, 263, 265, 267, 271,
284, 285, 288, 289, 297, 298, 401, 402, 543,
558, 559, 560, 583, 634.

State no : 124, 228.
state no : 106, 245, 401, 402, 543, 558, 559,

560, 583, 634.
State ptr : 135, 284, 285, 288, 289, 297, 298.
State s thread tbl: 16, 105, 106, 112, 114,

211, 212.
state s thread tbl : 106, 378, 421.
status : 171, 177, 178, 179, 182, 183, 193, 382,

383, 616, 617, 619.
std: 44, 51, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89,

90, 91, 92, 93, 94, 96, 97, 99, 101, 102, 103,
139, 163, 170, 175, 182, 183, 230, 337, 338, 365,
380, 381, 389, 390, 401, 402, 423, 424, 428, 430,
431, 452, 497, 530, 532, 539, 577, 579, 580, 582,
583, 584, 585, 586, 587, 588, 589, 590, 591, 592,
593, 594, 595, 596, 597, 598, 599, 601, 602,
603, 604, 605, 606, 607, 608, 609, 610, 611,
612, 613, 614, 615, 616, 617, 618, 619, 620,
621, 622, 623, 626, 628, 629, 630, 631, 634,
637, 638, 640, 641, 642, 643, 644, 645, 646,
648, 649, 650, 651, 652, 653, 746.

stdcall : 139.
stk : 81, 452.
Stk env : 526, 527, 528, 529, 530, 531, 532, 533,

534, 535, 536, 537, 538, 539, 540, 541.
stk env : 526, 530, 531, 532, 533, 534, 535,

539, 540, 541.
STK_FILE_NOS__: 92, 423, 424, 428, 433.
stk rec : 81, 452, 534, 535, 539, 541.
Stop : 225, 313.
stop : 651, 653.
stop parse : 225, 312.
stop parse : 196, 223, 230, 232, 233, 251, 264,

271, 312, 313.
stop walking : 81, 439, 474, 537.

326 INDEX WLIBRARY §749

Str : 84.
str ast functor: 526, 532, 541.
straight parsing : 251, 254, 255, 258, 259, 262, 271.
string : 76, 80, 84, 85, 86, 87, 88, 92, 94, 175,

423, 424, 428, 532.
String : 80, 84, 87.
string : 80, 84, 85, 86, 87.
string used : 80, 87.
structure : 123.
Sub : 125, 130.
Sub rule no : 117.
supplier r w cnt : 199, 223, 230, 232, 233,

280, 384.
Sym : 82, 125, 126, 486, 488.
sym : 49, 56, 57, 85, 90, 92, 96, 101, 102, 197, 206,

432, 435, 442, 497, 498, 499, 538, 634, 640, 641.
sym lookup functor : 222, 309.
Sym lookup functor : 222, 230.
sym lookup functor : 199, 208, 223, 230, 232,

233, 309, 335, 337, 338.
SYM_TBL_MU: 109, 177, 180, 423, 424, 428.
symbol : 124, 136, 748.
Symbol : 124, 136.
symbol : 124, 126, 127, 131, 132, 136, 197, 206,

208, 239, 242, 266, 268, 336, 354, 357, 358,
360, 585, 586, 587, 634.

S1: 82, 125, 126, 131, 479, 480.
S2: 82, 479, 480.
s2lt : 479.
S3: 82, 480.
S4: 82, 480.
S5: 82, 480.
S6: 82, 480.
S7: 82, 480.
S8: 82, 480.
S9: 82, 480.
T : 51.
t: 83, 96.
T_: 568.
T array having thd ids: 16, 115, 216.
t array having thd ids : 216.
T_ARRAY_HAVING_THD_IDS__: 19, 216, 726.
T_CTOR: 568, 569.
T_CTOR_RW: 568, 569.
T cur thd id having T ptr : 216, 217.
T cur thd id map : 216, 217.
T T labeled stmt : 568.
T_0: 579.
T 0a : 580.
T_1: 581.
T_11: 590, 661.
T_14: 591.

T_17: 592.
T_18: 594.
T_2: 582.
T_22: 595.
T 22a : 595.
T_23: 596, 597.
T_24: 598.
T_25: 599.
T_3: 583.
T_4: 584.
T_5: 585.
T_6: 586.
T 6a : 587.
T_7: 588, 589.
table : 678.
TAR_1: 625, 747.
TAR_2: 627, 747.
TAR_3: 629.
tb : 182, 183, 382, 383, 611, 619.
tble lkup: 51, 52.
tble lkup type : 52, 222, 223, 230, 309, 705.
te : 220.
Text : 78, 140, 145, 147, 158, 160, 606, 607,

608, 609.
th accepting cnt : 176, 189, 223, 230, 232, 233,

334, 373, 386, 387, 401, 402, 409, 414, 416,
574, 626, 628.

th active cnt : 223, 230, 232, 233, 280, 373,
375, 384, 399, 414, 598, 599, 601, 621, 622,
637, 638, 649.

th blk : 178, 193, 199, 223, 230, 232, 233, 273,
616, 617, 618.

TH eol : 112.
TH id : 106.
Th list : 211, 212, 219, 220.
th lst : 223, 230, 232, 233, 376, 378, 379, 384,

401, 402.
Th reporting success : 184, 185.
th reporting success : 184, 185.
TH_TBL_MU: 109, 110, 177, 180, 380, 381, 423,

424, 428.
thd id : 219.
thd id : 112, 171, 177, 178, 213, 382, 384, 616,

617, 618, 619, 620.
thd id bit map : 114, 213, 214, 217.
thd ids having T: 115, 216.
thd stable : 376.
thd tbl : 376.
thds : 212, 213, 219, 220.
THDS_FSET_BY_T__: 423.
THDS_STABLE__: 19, 212, 376, 423, 726.
The : 20.

§749 WLIBRARY INDEX 327

The judge : 224, 386, 387.
This : 16.
THR: 139, 153, 173, 175, 192, 193.
THR result: 139, 140, 153, 166, 207, 224, 226,

259, 375, 383, 384, 418.
thread : 2, 272.
Thread : 140, 153, 166.
THREAD: 139.
thread array record: 112, 113, 212, 376.
thread call : 384.
thread disposition : 382, 383.
Thread entry: 16, 112, 113, 114, 139, 213, 215,

220, 222, 223, 224, 232, 372, 376, 384, 401, 402.
thread entry : 218, 220, 224, 372.
thread entry : 178, 223, 230, 232, 233, 372.
thread fnct name : 112, 232, 401, 402, 591, 612,

613, 614, 615, 620, 637, 639, 642, 643, 644.
thread fnct ptr : 112, 383, 620.
Thread id : 222, 226, 376, 422.
thread in launched list : 401, 402.
THREAD_LIBRARY_TO_USE__: 8, 9, 138, 139, 142,

155, 181, 393.
thread name : 182, 183, 199, 224, 230, 337, 338,

365, 371, 591, 594, 601, 602, 603, 604, 605, 611,
614, 615, 616, 617, 618, 619, 621, 622, 623, 637,
638, 648, 649, 650, 651, 652, 653.

thread name : 223, 230, 232, 233, 371.
thread no : 153, 166.
THREAD NO: 139, 140, 153, 154, 166, 167,

223, 640, 641.
thread no : 163, 182, 183, 199, 223, 230, 232, 233,

337, 338, 365, 577, 579, 580, 582, 583, 584, 585,
586, 587, 588, 589, 590, 591, 592, 593, 594, 595,
596, 597, 598, 599, 601, 602, 603, 604, 605, 606,
607, 608, 609, 610, 611, 612, 613, 614, 615, 616,
617, 618, 619, 621, 622, 623, 626, 628, 629, 630,
631, 633, 637, 638, 639, 640, 641, 642, 643, 644,
645, 648, 649, 650, 651, 652, 653.

THREAD_SELF: 140, 154, 167, 230, 232, 233, 383.
THREAD_TO_EXIT: 15, 141, 171, 182, 183, 193.
THREAD_VS_PROC_CALL__: 8, 689.
THREAD_WAITING_FOR_WORK: 15, 171, 178, 179,

182, 183, 382, 383.
THREAD_WORKING: 15, 171, 178, 182, 383.
threaded : 734.
tid : 640, 641.
Tks : 427, 432.
to : 2, 78, 109.
To : 503.
To thread : 140, 151, 164, 224, 396, 397, 398,

603, 604, 605, 650, 651.
to trace or no to : 629.

to trace or not to : 577, 581, 582, 583, 584, 585,
586, 587, 588, 589, 590, 591, 592, 593, 594,
595, 596, 597.

Tok : 79, 80, 87, 94.
tok : 79.
TOK__: 566.
Tok ast : 103.
tok base: 79, 80, 83, 84, 88, 95, 337, 741.
Tok can : 78, 79, 85, 86, 90, 91.
tok can: 76, 77, 79, 80, 83, 84, 85, 86, 87, 88, 89,

90, 91, 92, 93, 94, 95, 96, 103, 316, 423, 566,
568, 672, 687, 694, 708, 718, 746.

tok can ast : 672.
tok can ast bypass functor: 529, 538.
tok can ast functor: 527, 536.
tok can ast no stop functor: 528, 537.
tok co ordinates: 58.
tok co ords : 49, 50, 56, 57, 58, 60, 61, 70, 71, 72,

73, 74, 75, 79, 84, 97, 230, 289, 337, 338, 365,
534, 535, 538, 558, 566, 568, 574, 588, 589, 590,
592, 593, 595, 596, 597, 637, 638.

TOKEN: 575, 576.
Token : 227, 301, 320, 324, 328, 332, 335, 366,

572, 574.
token : 338.
token container type: 80, 222, 223, 227, 230,

316, 318, 319, 322, 323, 326, 327, 330, 331.
TOKEN GAGGLE: 80, 87, 94, 316, 337,

427, 432, 741.
TOKEN GAGGLE ITER: 80, 432.
TOKEN_MU: 109, 177, 180, 391, 392, 424, 428.
Token producer : 222, 227, 230, 323.
token producer : 227, 322.
token producer : 199, 208, 223, 230, 232, 233,

322, 323, 324.
Token start pos : 15, 222, 554.
Token supplier : 222, 227, 230, 319.
token supplier : 83, 227, 318.
token supplier : 199, 208, 223, 230, 232, 233, 280,

318, 319, 320, 337, 338, 339, 365, 384, 552, 553.
Token supplier key pos : 222, 230.
top : 125, 126, 127, 129, 131, 132, 247, 248,

256, 257, 261, 263, 352, 353, 355, 543, 559,
585, 586, 587, 634.

top node sym : 535.
top stack record : 197, 199, 206, 208, 228, 345,

401, 402, 417, 420.
top sub : 125, 126, 127, 128, 129, 130, 131,

132, 197, 206, 342, 343, 345, 346, 347, 355,
362, 551, 556, 633.

TOTAL_NO_BIT_WORDS__: 19, 213, 722, 726.
TRACE_MU: 109, 177, 180, 389, 390, 423, 424, 428.

328 INDEX WLIBRARY §749

trace parser env : 577, 581, 582, 583, 584, 585,
586, 587, 588, 589, 590, 591, 592, 593, 594, 595,
596, 597, 626, 628, 629, 632, 636, 747.

Trace type : 632, 635, 636.
traverse : 83, 95, 99, 100, 101, 102, 103.
tree : 316.
Tree : 82, 508, 509, 511, 512, 515.
tree end reached : 83, 95, 96, 98, 99, 101, 103.
tree traverse : 435.
tree walker : 83.
true : 15, 81, 84, 85, 90, 92, 96, 98, 99, 101, 103,

126, 128, 133, 210, 213, 233, 272, 279, 281,
337, 382, 384, 436, 443, 444, 445, 446, 447,
448, 449, 488, 494, 497, 577, 748.

tsym : 96, 97, 98, 476.
TT_1: 601.
TT_2: 602.
TT_4: 603.
TT 4a : 604.
TT 4b : 605.
TT 4c : 606.
TT 4d : 607.
TT 4e : 608.
TT 4f : 609.
TT_5: 610.
TT_6: 611.
TT_7: 612.
TT_8: 613.
turn off lkup : 51.
turn on lkup : 51.
Type AST ancestor list : 81, 82, 449, 472, 516.
Type AST functor: 81, 443, 444, 445, 446, 447,

448, 449, 452, 454, 457, 460, 463, 466, 469, 472,
526, 527, 528, 529, 530, 531, 532, 533.

Type pc fnct ptr : 106, 112, 139.
Type pp fnct ptr : 112, 114, 139, 140, 153, 166,

173, 224, 386, 428.
Type pp fnct ptr voidp : 139, 153, 166.
Typedef : 2.
typedefs : 3.
uc : 85, 90, 92.
UCHAR: 16, 45, 58, 61, 288, 289.
UCHARP: 16.
UINT: 16, 53, 56, 58, 60, 70, 72, 73, 74, 75, 79,

80, 83, 85, 86, 87, 90, 91, 94, 96, 103, 106, 117,
125, 130, 184, 185, 222, 223, 228, 229, 230,
288, 291, 294, 302, 303, 336, 338, 365, 366,
367, 368, 424, 428, 429, 430, 633.

uintptr t: 139.
ULINT: 16, 114, 115, 213, 214, 216, 217, 218.
UN: 10.
unary function : 51.

unique id : 677.
UNLOCK_MUTEX: 10, 78, 140, 146, 159, 381,

390, 392.
UNLOCK_MUTEX_OF_CALLED_PARSER: 78, 140, 147,

150, 160, 193, 276, 383.
upper : 284, 285, 288, 289, 293, 296.
use all shift : 225, 307.
Use all shift : 222, 230.
use all shift : 196, 223, 230, 232, 233, 253,

305, 306, 307.
USINT: 16, 44, 46, 47, 58, 60, 62, 65, 66, 79,

107, 108, 112, 113, 114, 115, 211, 212, 213,
215, 219, 222, 223, 226, 284, 285, 288, 289,
376, 384, 412, 422, 449, 472, 476.

v: 286.
value type : 79.
vector: 80, 81, 83, 85, 90, 103, 139, 170, 423,

424, 428, 452.
Version : 117, 120.
version : 117, 121.
version : 117, 120, 121.
visit : 81, 435, 456, 459, 462, 465, 468, 471, 535.
VMS_: 742.
VMS__: 8, 166, 384.
VMS_PTHREAD_STACK_SIZE__: 8, 166, 703.
VMS111__: 384, 742.
vnode : 96, 102.
void: 16, 530, 531, 532.
VOIDP: 16.
w info : 429, 430.
wait for event : 195, 224, 393, 395, 407.
WAIT_FOR_EVENT: 15, 230, 394, 395.
wait for response : 421.
WaitForSingleObject : 144, 145, 150.
Walker : 83, 95.
war begin code : 2, 186, 666.
war end code : 2, 186, 666.
war xxx code : 187.
wcm code : 666.
wcm core : 665.
Wdelete : 82, 491.
wdelete : 82, 490, 491.
wdelete : 82, 488, 490, 491, 494.
who file : 58, 75, 686.
who file : 58, 60, 70, 75.
who line no : 58, 75, 686.
who line no : 58, 60, 70, 75.
wlibrary : 2.
worker status : 170.
worker thread blk: 110, 170, 171, 177, 178,

179, 182, 183, 223, 382, 734.
wpp core : 2, 153, 156, 186, 193, 383, 665, 666.

§749 WLIBRARY INDEX 329

wproc pp core : 2, 203.

wrc : 2, 53.

wset : 2, 42.

wthread : 2, 137, 726.

wtok can : 2, 79.

wtree : 2.

X: 58, 67, 68, 124, 133.

x: 213, 230, 232, 233, 284, 285, 288, 291, 294,
295, 335, 414, 539, 633.

xx : 149, 292.

xxx : 558, 634, 694.

yacco2: 2, 8, 23, 24, 34, 35, 36, 44, 45, 46, 47, 52,
53, 54, 56, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68,
69, 70, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,
97, 99, 101, 102, 103, 106, 107, 108, 109, 112,
113, 114, 115, 117, 120, 121, 124, 125, 126, 130,
131, 132, 133, 134, 135, 136, 137, 139, 140, 143,
144, 145, 146, 147, 148, 149, 150, 151, 152, 153,
154, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 170, 171, 173, 174, 175, 176, 177,
178, 179, 180, 182, 183, 184, 185, 199, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 222, 223,
224, 226, 227, 228, 229, 230, 232, 233, 234, 236,
237, 238, 240, 241, 243, 245, 249, 265, 266, 267,
268, 269, 272, 279, 282, 283, 284, 285, 286, 288,
289, 291, 294, 297, 298, 300, 301, 302, 303, 305,
306, 307, 309, 310, 311, 312, 313, 315, 316, 318,
319, 320, 322, 323, 324, 326, 327, 328, 330, 331,
332, 334, 336, 337, 338, 342, 343, 344, 345, 346,
347, 348, 350, 362, 364, 365, 366, 367, 368, 369,
371, 372, 375, 376, 380, 381, 383, 385, 386, 389,
390, 391, 392, 393, 396, 399, 401, 402, 412, 414,
418, 421, 422, 424, 425, 426, 427, 428, 429, 430,
431, 432, 433, 439, 443, 444, 445, 446, 447, 448,
449, 452, 454, 455, 456, 457, 458, 459, 460, 461,
462, 463, 464, 465, 466, 467, 468, 469, 470, 471,
472, 473, 474, 475, 476, 479, 480, 481, 482, 483,
484, 485, 486, 487, 488, 489, 490, 491, 492, 493,
494, 495, 496, 497, 498, 499, 501, 502, 503, 504,
505, 507, 508, 509, 510, 511, 512, 513, 514, 515,
516, 517, 525, 526, 527, 528, 529, 530, 531, 532,
533, 534, 535, 536, 537, 538, 539, 540, 541, 543,
544, 545, 546, 547, 548, 549, 550, 551, 552, 553,
554, 555, 556, 557, 558, 559, 560, 561, 562, 563,
566, 570, 577, 579, 580, 582, 583, 584, 585, 586,
587, 588, 589, 590, 591, 592, 593, 594, 595, 596,
597, 598, 599, 601, 602, 603, 604, 605, 606,
607, 608, 609, 610, 611, 612, 613, 614, 615,
616, 617, 618, 619, 620, 621, 622, 623, 626,
628, 629, 630, 631, 633, 634, 636, 637, 638,
639, 640, 641, 642, 643, 644, 645, 646, 648,

649, 650, 651, 652, 653, 726, 729.
Yacco2 : 3, 10, 566, 568.
yacco2 : 35.
YACCO2_AR__: 8, 10, 20, 570, 626, 628, 629, 747.
yacco2 characters : 2, 568.
yacco2 compile symbols : 8, 703.
yacco2 compiler symbols : 8.
YACCO2 define trace variables : 8, 570.
Yacco2 faulty postcondition: 429, 430.
Yacco2 faulty precondition: 90, 130, 131, 132,

176, 199, 213, 376, 401, 402, 429, 430, 483,
495, 496, 497, 498, 499, 501, 502, 503, 504,
505, 509, 513, 514, 543, 544, 545, 546, 547,
548, 549, 550, 551, 552, 553, 554, 555, 556,
557, 558, 559, 560, 561, 562, 563.

yacco2 k symbols : 2, 19, 568.
yacco2 lcl option : 684.
YACCO2_MSG__: 8, 10, 20, 564, 570, 598, 599, 601,

602, 603, 604, 605, 610, 611, 612, 613, 614, 615,
616, 617, 618, 619, 620, 621, 622, 623, 637, 638,
639, 642, 643, 644, 645, 648, 649, 650, 651.

YACCO2_MU_GRAMMAR__: 8, 10, 20, 163, 570, 606,
607, 608, 609.

YACCO2_MU_TH_TBL__: 8, 20, 380, 381, 570.
YACCO2_MU_TRACING__: 8, 20, 337, 389, 390, 570.
YACCO2 MU xxx : 10.
yacco2 set iter type : 44, 286.
yacco2 set type: 44, 286.
YACCO2_T__: 8, 10, 20, 78, 79, 96, 97, 99, 101,

102, 230, 337, 338, 365, 497, 570, 637, 638.
yacco2 T enumeration : 2.
YACCO2_TH__: 8, 10, 20, 570, 579, 580, 581, 582,

583, 584, 585, 586, 587, 588, 589, 590, 591, 592,
593, 594, 595, 596, 597, 640, 641.

YACCO2_THP__: 8, 11, 20, 570, 648, 649, 650,
651, 652, 653.

yacco2 threads to run iter type: 139, 384,
401, 402.

yacco2 threads to run type: 139, 211, 212,
223.

YACCO2_TLEX__: 8, 10, 20, 570, 577, 630, 631, 646.
YES: 15, 84, 88, 92, 93, 232, 233, 277, 339, 379,

399, 414, 452, 472, 474, 476, 582, 583, 584,
585, 586, 587, 588, 589, 590, 591, 592, 593,
594, 595, 596, 597, 636.

younger : 104, 122.
younger rrl : 122.
younger sibling : 512, 513.
Younger sibling : 82, 496.
zero brother : 82, 484, 534, 535.
zero content : 82, 485.
zero previous : 82, 487.

330 INDEX WLIBRARY §749

zero 1st son : 82, 479, 482, 534, 535.
zero 2nd son : 82, 483.

WLIBRARY NAMES OF THE SECTIONS 331

〈Check for aborted parse situation. If clean goto next element to remove 359 〉 Used in section 361.

〈Check for zeroed out symbol on parse stack. If so goto next element to remove 357 〉 Used in section 361.

〈Check parse stack for epsilon removal. yes exit 351 〉 Used in section 350.

〈Clean up parse stack record and pop state from stack exposing symbol record 356 〉 Used in section 361.

〈Deal with auto abort 360 〉 Used in section 361.

〈Dispatch on use-of-filter 477 〉 Used in section 476.

〈Error bad character mapping 562 〉 Used in section 56.

〈Error no more raw character storage 563 〉 Used in section 57.

〈Error shift symbol not fnd in fsm table 558 〉 Used in sections 265 and 267.

〈External rtns and variables 22, 46, 140, 173, 211, 427, 632 〉 Cited in section 12. Used in section 35.

〈Get current stack record 353 〉 Used in sections 256, 258, 260, 262, 356, and 361.

〈Global external variables from yacco2’s linker 19 〉 Cited in section 109. Used in section 35.

〈Global externals for yacco2 tracing variables 20 〉 Used in section 35.

〈Global variables 21, 172, 424, 425, 426 〉 Used in section 35.

〈Go to accept t 438 〉 Used in sections 435, 440, and 441.

〈Go to next t 437 〉 Used in sections 435, 440, and 441.

〈 Include files 14, 138 〉 Cited in section 12. Used in section 35.

〈 Initialize stack record 354 〉 Used in sections 356 and 361.

〈 Invalid |?|instead of |+|use 543 〉 Cited in section 700. Used in section 253.

〈 Is popping symbol auto deleted? then deal with it and goto next element to remove 358 〉 Used in section 361.

〈Ms Intel 486 assembler extract ids from map and add their thread entry to thread list 220 〉
〈No arbitration code present 176 〉 Used in section 175.

〈Optimized code call arbitrator 387 〉
〈PDA’s defs 226 〉 Used in section 222.

〈Parallel parsing support definitions 224 〉 Used in section 222.

〈Parse’s all shift, stop, and abort defs 225 〉 Used in section 222.

〈Parse’s stack defs 228 〉 Used in section 222.

〈Parser’s containers defs 227 〉 Used in section 222.

〈Parser’s token defs 229 〉 Cited in section 708. Used in section 222.

〈Pass1: find current tok in potential reducing subrules and exit if fnd 291 〉 Used in section 289.

〈Pass2: find meta symbols in potential reducing subrules and exit if fnd 294 〉 Used in section 289.

〈Pop parse stack 355 〉 Used in section 356.

〈Print items on parse stack 634 〉 Used in section 636.

〈Print parse stack prefix 633 〉 Used in section 636.

〈Remove items from the parse stack 361 〉 Used in section 350.

〈Reserve and get current stack record 352 〉 Used in sections 236, 238, 240, 241, 251, 265, 267, 271, 284, 285, 288,

289, 297, 298, 345, and 362.

〈Should grammar be traced? no ta ta 635 〉 Used in section 636.

〈Structure defs 18, 45, 51, 52, 53, 58, 78, 79, 80, 81, 82, 83, 104, 106, 107, 108, 112, 113, 114, 115, 117, 171, 184, 222, 429,

443, 444, 445, 446, 447, 448, 449, 526, 527, 528, 529, 530, 531, 532, 533 〉 Cited in section 12. Used in section 35.

〈Threads in table to potentially shutdown 182 〉 Used in section 180.

〈Trace AR no arbitration required 627 〉
〈Trace AR stopped arbitrating 629 〉 Used in section 192.

〈Trace AR trace the starting of arbitration 625 〉 Used in section 189.

〈Trace MSG all threads reported back 621 〉 Used in section 277.

〈Trace MSG found thread in thread pool waiting to be run 611 〉 Used in section 383.

〈Trace MSG message received 602 〉 Used in section 393.

〈Trace MSG not all threads reported back 622 〉 Used in section 277.

〈Trace MSG proc call in use so call its thread 623 〉 Used in section 384.

〈Trace MSG return from by procedure call 615 〉 Used in sections 375 and 384.

〈Trace MSG start by procedure call 614 〉 Used in sections 375 and 384.

〈Trace MSG start thread 610 〉 Used in section 385.

332 NAMES OF THE SECTIONS WLIBRARY

〈Trace MSG thread being created 618 〉 Used in section 178.

〈Trace MSG thread fnd but all busy, so launch another one 612 〉 Used in section 383.

〈Trace MSG thread idle after setting waiting for work 617 〉 Used in section 179.

〈Trace MSG thread idle before setting waiting for work 616 〉 Used in section 179.

〈Trace MSG thread not found in global thread pool 613 〉 Used in section 383.

〈Trace MSG thread waiting for message 601 〉 Used in section 393.

〈Trace TH accepted token info 592 〉 Used in sections 418, 421, and 422.

〈Trace TH advise when auto abort happening 587 〉 Used in section 361.

〈Trace TH advise when symbol deleted due to AD switch 586 〉 Used in section 358.

〈Trace TH after parallel parse thread message count reduced 599 〉 Used in section 280.

〈Trace TH before parallel parse thread message count reduced 598 〉 Used in section 280.

〈Trace TH current token, and accepted terminal wrapper 595 〉 Used in sections 272 and 282.

〈Trace TH exposed symbol on parse stack 585 〉 Used in section 361.

〈Trace TH failed parallel try straight parse 588 〉 Used in section 258.

〈Trace TH failed proc call try straight parse 589 〉 Used in section 262.

〈Trace TH finished removing items from the parse stack configuration 580 〉 Used in section 361.

〈Trace TH parallel parse current token when an error has occured 596 〉 Used in section 279.

〈Trace TH parallel parse thread start communication 591 〉 Used in section 384.

〈Trace TH popped state no 583 〉 Used in section 361.

〈Trace TH proc call parse current token when an error has occured 597 〉 Used in section 283.

〈Trace TH re-aligned token stream la boundry info 593 〉 Used in sections 418 and 421.

〈Trace TH remove items from the parse stack configuration 579 〉 Used in section 361.

〈Trace TH request thread received message from parallel thread 594 〉 Used in sections 418, 421, and 422.

〈Trace TH straight parse error 590 〉 Used in section 249.

〈Trace TH the parse stack configuration 581 〉 Used in sections 236, 238, 240, 241, 245, and 348.

〈Trace TH when an epsilon rule is being reduced 582 〉 Used in section 351.

〈Trace TH zeroed out symbol situation when popped from parse stack 584 〉 Used in section 357.

〈Trace acquired grammar’s mutex 607 〉 Used in sections 145 and 158.

〈Trace parallel thread waiting-to-do-work 642 〉 Used in section 193.

〈Trace posting from - to thread info 603 〉 Used in section 396.

〈Trace pp finished working 644 〉 Used in section 193.

〈Trace pp received go start working message 643 〉 Used in section 193.

〈Trace pp start info 637 〉 Used in section 193.

〈Trace pp’s last symbol on stack set as autodelete 640 〉 Used in section 197.

〈Trace procedure pp finished working 645 〉 Used in section 203.

〈Trace procedure pp start info 638 〉 Used in section 203.

〈Trace procedure pp’s last symbol on stack set as autodelete 641 〉 Used in section 206.

〈Trace raw characters 646 〉 Used in section 56.

〈Trace released grammar’s mutex 609 〉 Used in sections 147 and 160.

〈Trace signaled grammar to wakeup while releasing its mutex 604 〉 Used in section 397.

〈Trace stop of parallel parse message 639 〉 Used in section 193.

〈Trace thread to be launched 620 〉 Used in section 384.

〈Trace threads in launched list 619 〉 Used in section 382.

〈Trace trying to acquire grammar’s mutex 606 〉 Used in sections 145 and 158.

〈Trace trying to release grammar’s mutex 608 〉 Used in sections 147 and 160.

〈Trace wakened grammar with its acquired mutex 605 〉 Used in section 397.

〈Type defs 16, 44, 124, 125, 139, 170, 316, 423, 431 〉 Cited in section 12. Used in section 35.

〈Validate File no parameter 548 〉 Used in sections 56 and 73.

〈Validate Line no parameter 545 〉 Used in section 74.

〈Validate Pos in line parameter 547 〉 Used in section 74.

〈Validate Pos parameter 546 〉 Used in section 72.

〈Validate accept message 561 〉

WLIBRARY NAMES OF THE SECTIONS 333

〈Validate any symbol for co-ordinate setting to relate to? 549 〉
〈Validate any token for parsing 544 〉 Used in section 254.

〈Validate error queue 557 〉 Used in section 332.

〈Validate if parser’s supplier exists 552 〉 Used in sections 338 and 365.

〈Validate if rule shift symbol in fsm table 559 〉 Used in section 243.

〈Validate if subscript within supplier’s bnds 553 〉 Used in sections 338 and 365.

〈Validate parse stack number of removal items 555 〉 Used in section 350.

〈Validate parse stack removal for underflow 556 〉 Used in section 350.

〈Validate parser’s finite state table 550 〉 Used in section 636.

〈Validate reduce entry 560 〉 Used in sections 256 and 260.

〈Validate subscript not ≤ 0 554 〉 Used in section 346.

〈Validate that parser stack is not empty 551 〉 Used in section 636.

〈 accrue rc code 54, 56 〉 Used in section 55.

〈 accrue set code 43, 47 〉 Used in section 42.

〈 accrue thread code 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162,

163, 164, 165, 166, 167, 168, 174, 175, 177, 178, 179, 180, 185, 212 〉 Used in section 169.

〈 accrue tree code 451, 452, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472,

473, 474, 475, 476, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499,

501, 502, 503, 504, 505, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 525, 534, 535, 536, 537, 538, 539, 540, 541 〉
Used in section 450.

〈 accrue yacco2 code 33, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 120, 121, 122, 126, 130, 131, 133, 134, 135,

136, 230, 232, 233, 234, 236, 238, 240, 241, 243, 249, 265, 267, 269, 272, 279, 282, 283, 284, 285, 286, 288, 289, 297, 298,

300, 301, 302, 303, 305, 306, 307, 309, 310, 311, 312, 313, 315, 318, 319, 320, 322, 323, 324, 326, 327, 328, 330, 331, 332,

334, 336, 337, 338, 342, 343, 344, 345, 346, 347, 348, 350, 362, 364, 365, 366, 367, 368, 369, 371, 372, 375, 376, 385, 386,

393, 396, 399, 401, 402, 414, 418, 421, 422, 428, 430, 432, 433, 636 〉 Used in section 36.

〈 accrue tok can code 77, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 103 〉 Used in section 76.

〈 acquire global thread table critical region 380 〉 Cited in sections 110, 178, 179, and 377. Used in sections 180,

273, and 384.

〈 acquire parallelism requesting grammar’s mutex if required 275 〉 Used in sections 272 and 279.

〈 acquire token mu 391 〉 Used in sections 79, 85, 90, 96, 98, 280, 320, 324, 328, 332, and 384.

〈 acquire trace mu 389 〉 Used in sections 79, 96, 97, 99, 101, 102, 163, 182, 183, 230, 337, 338, 365, 380, 381, 401, 402,

497, 539, 579, 580, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 601, 602, 603,

604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 626, 628, 629, 633, 634,

637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, and 653.

〈 add thread entry whose first set contains the current token 219 〉 Used in section 218.

〈 allocate T id to search with 412 〉 Used in section 421.

〈 any tokens in container? no return nil ptr 339 〉 Used in section 338.

〈 are there threads to run?. no exit with no-thds-to-run result 379 〉 Used in section 421.

〈binary search for meta symbol in current subrule la 296 〉 Used in section 294.

〈binary search for token in current subrule la 293 〉 Used in section 291.

〈bns 24 〉 Cited in section 666. Used in section 35.

〈 c macros 13, 630, 631 〉 Used in section 35.

〈 check failed directive for possible acceptance 281 〉 Used in sections 279 and 283.

〈 check for empty language. yes unsuccessful parallel parse 270 〉 Used in section 269.

〈 check for empty language. yes, exit as accepted 250 〉 Used in section 249.

〈 check for empty language. yes, just exit 231 〉 Used in section 230.

〈 clean up aborted parallel parse and exit erred 405 〉 Used in sections 418, 421, and 422.

〈 clean up and exit as paralleled 406 〉 Used in section 422.

〈 clean up parse stack but leave as ready to parse again 197 〉 Used in section 193.

〈 clean up procedure parse stack but leave as ready to parse again 206 〉 Used in section 203.

〈 copyright notice 565 〉 Used in sections 35, 36, 42, 55, 76, 169, 188, 191, 193, 203, and 450.

〈 create communication variables 200 〉 Used in section 193.

334 NAMES OF THE SECTIONS WLIBRARY

〈 create element’s key set to be searched in reduce set 290 〉
〈 create parser related variables and set them 202 〉 Used in section 193.

〈 create procedure communication variables 209 〉 Used in section 203.

〈define and set state’s dynamic work variables 214 〉 Used in section 212.

〈define and set work variables of Terminal having threads 216 〉 Used in section 212.

〈define and set work variables of state threading table 215 〉 Used in section 213.

〈deposit sender’s co-ordinates and event in called thread’s critical region 398 〉 Used in section 396.

〈determine disposition of thread 382 〉 Used in section 384.

〈determine if there are threads to run 378 〉 Cited in section 377. Used in section 421.

〈determine if there is a bit map gened for state. no do it 213 〉 Cited in section 722. Used in section 212.

〈dispatch on filter type: accept or reject filter 436 〉 Used in section 435.

〈dispatch on parallel result 409 〉 Used in sections 421 and 422.

〈dispatch on proc call result 416 〉 Used in section 418.

〈dispatch on thread availability: busy, available, and create one 383 〉 Used in section 384.

〈dispatch to node association: forest, among brothers, or parental 518 〉 Used in section 517.

〈dispatch to parallel, or proc call, or straight parsing 254 〉 Used in sections 251 and 271.

〈does terminal have a legitimate co-ordinate? yes set it and exit. no keep trying 71 〉
〈 end of traverse reached for lookahead? no put T in container 99 〉 Used in section 98.

〈 end of traverse reached? yes rtn 101 〉 Used in section 96.

〈 ens 25 〉 Cited in section 666. Used in section 35.

〈 establish initial parser’s token setting 199 〉 Used in section 193.

〈 establish procedure initial parser’s token setting 208 〉 Used in section 203.

〈 execute subrule with it directives and create rule 244 〉 Used in section 243.

〈 extract thread ids from map and add their thread entry to thread list 218 〉 Cited in section 217. Used in

section 217.

〈 fetch and return token from container instead of tree 97 〉 Used in section 96.

〈find parallel reduce entry 257 〉 Used in section 256.

〈find proc call reduce entry 261 〉 Used in section 260.

〈find reduce entry 263 〉 Used in sections 251 and 271.

〈find rule’s shift entry in fsm 248 〉 Used in section 243.

〈find shift entry 237 〉 Used in sections 251 and 271.

〈fire off fsm’s op directive 252 〉 Used in sections 249 and 269.

〈fire off visit functor 439 〉 Used in section 435.

〈handle a forest situation, with or without a younger brother 522 〉 Used in section 517.

〈handle parent / sibling relationship 519 〉 Used in section 517.

〈handle sibling relationship 523 〉 Used in section 517.

〈house clean procedure the parser and local communication variables 205 〉 Used in section 203.

〈house clean the parser and local communication variables 196 〉 Used in section 193.

〈 iSTL 32 〉 Used in section 14.

〈 iar begin 30 〉 Used in section 175.

〈 iar end 31 〉 Used in section 175.

〈 icompile??? 29 〉 Used in section 35.

〈 ilrk 28 〉 Used in sections 55 and 76.

〈 insert token into requesting grammar’s accept queue 278 〉 Used in sections 272 and 282.

〈 irc 27 〉 Used in sections 55 and 76.

〈 is node’s content found in bypass filter? yes next t, no accept t 441 〉 Used in section 435.

〈 is node’s content in accept filter? no next t, yes accept t 440 〉 Used in section 435.

〈 is parallel parsing successful? If so reduce the |||phrase 256 〉 Used in sections 251 and 271.

〈 is proc call parsing successful? If so reduce the |t|phrase 260 〉 Used in sections 251 and 271.

〈 iyacco2 26 〉 Used in sections 36, 42, 55, 76, 169, and 450.

〈 let’s parallel parse. do u? 198 〉 Cited in section 272. Used in section 193.

〈 let’s procedure parallel parse. do u? 207 〉 Used in section 203.

WLIBRARY NAMES OF THE SECTIONS 335

〈 look for threads to shutdown 183 〉 Used in section 180.

〈 lookahead T needed? no rtn fnd t 98 〉 Used in section 97.

〈malloc raw characters from static pool instead of newing 57 〉 Used in section 56.

〈notify parallelism requesting grammar if last thread to complete 277 〉 Used in section 274.

〈notify requesting grammar if launched as a thread 274 〉 Used in sections 272 and 279.

〈 only child? yes make parent childless and exit 520 〉 Used in section 519.

〈parallel parsing unsuccessful. So, set up + go to straight parsing 258 〉 Used in sections 251 and 271.

〈parser’s internal variables 223 〉 Used in section 222.

〈pause for x seconds 181 〉 Cited in section 110. Used in section 180.

〈pop rule’s rhs subrule from parse stack 246 〉 Used in section 243.

〈pp accept queue AR 626 〉 Used in section 625.

〈pp accept queue war begin code 189 〉 Used in section 188.

〈pp accept queue war end code 192 〉 Used in section 191.

〈pp wait for work or shutdown message 195 〉 Used in section 193.

〈proc call parsing unsuccessful. So, set up + go to straight parsing 262 〉 Used in sections 251 and 271.

〈process parallel tokens 271 〉 Used in section 269.

〈process tokens 251 〉 Used in section 249.

〈put goto state onto parse stack, and return accepted or reduced result 245 〉 Used in section 243.

〈put node in container 102 〉 Used in sections 96 and 99.

〈put rule onto parse stack 247 〉 Used in section 243.

〈 re-align current token stream to accept token co-ordinates 411 〉 Used in sections 418 and 421.

〈 re-align token stream to la boundry 410 〉 Used in sections 418 and 421.

〈 re-bond younger child with parent and exit with child 521 〉 Used in section 519.

〈 reduce requesting grammar’s active threads count 280 〉 Used in sections 272 and 279.

〈 release global thread table critical region 381 〉 Cited in sections 110, 178, 179, and 377. Used in sections 180,

273, and 384.

〈 release parallelism requesting grammar’s mutex if required 276 〉 Used in sections 272 and 279.

〈 release token mu 392 〉 Used in sections 79, 85, 90, 96, 98, 280, 320, 324, 328, 332, and 384.

〈 release trace mu 390 〉 Cited in section 747. Used in sections 79, 96, 97, 99, 101, 102, 163, 182, 183, 230, 337, 338,

365, 380, 381, 401, 402, 497, 539, 579, 580, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597,

598, 599, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623,

626, 628, 629, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, and 653.

〈 remove accepted token reference from Caccept parse and delete Caccept parse 408 〉 Used in sections 418

and 421.

〈 remove node’s association from tree 524 〉 Used in section 517.

〈 request threads to work 384 〉 Cited in section 742. Used in section 385.

〈 search T’s thd ids against State’s thd id list. fnd add to-run thread list 217 〉 Used in section 212.

〈 see if just read node’s content is in filter set 442 〉 Used in section 435.

〈 sequential search for meta symbol in current subrule la 295 〉 Used in section 294.

〈 sequential search for token in current subrule la 292 〉 Used in section 291.

〈 set parameter passed to pp as a message 201 〉 Used in section 193.

〈 set parse stack symbol to current token 242 〉 Used in sections 236, 240, and 241.

〈 set parse stack symbol to invisible shift operator 239 〉 Used in section 238.

〈 set procedure parameter passed to pp as a message 210 〉 Used in section 203.

〈 set thread status if launched as a thread 273 〉 Cited in section 272. Used in sections 272 and 279.

〈 shift parallel operator on to pp’s parsing stack 420 〉 Used in section 421.

〈 shift parallel’s returned symbol and goto state 266 〉 Used in section 265.

〈 shift proc call operator on to pp’s parsing stack 417 〉 Used in section 418.

〈 shift proc call’s returned symbol and goto state 268 〉 Used in section 267.

〈 signal thread to wake up and work 397 〉 Cited in section 110. Used in section 396.

〈 startup those threads 413 〉 Used in section 421.

〈 trace AR pp accept queue no arbitration required 628 〉 Used in section 627.

336 NAMES OF THE SECTIONS WLIBRARY

〈 trace COND_WAIT entered 648 〉 Used in sections 150 and 163.

〈 trace COND_WAIT exit 649 〉 Used in sections 150 and 163.

〈 trace CREATE_THREAD after call 653 〉 Used in sections 153 and 166.

〈 trace CREATE_THREAD before call 652 〉 Used in sections 153 and 166.

〈 trace SIGNAL_COND_VAR after call 651 〉 Used in sections 151 and 164.

〈 trace SIGNAL_COND_VAR before call 650 〉 Used in sections 151 and 164.

〈 traverse tree 100 〉 Used in sections 96 and 98.

〈 tree walker’s traversal with filter mechanism 435 〉 Used in sections 455, 458, 461, 464, 467, and 470.

〈 try parallel parse. no threads-to-run go straight 255 〉 Used in sections 251 and 271.

〈 try proc call parse. no threads-to-run go straight 259 〉 Used in sections 251 and 271.

〈 try reduce 264 〉 Cited in section 719. Used in sections 251, 256, 260, and 271.

〈 try various shift types. if executed go to process next token in token stream 253 〉 Cited in section 738.

Used in sections 251 and 271.

〈uns 23 〉 Cited in section 666. Used in sections 36, 76, 189, 193, 200, 203, and 209.

〈wait for event to arrive with loop 395 〉
〈wait for event to arrive with no loop 394 〉 Cited in sections 110 and 395. Used in section 393.

〈wait for parallelism response if required 407 〉 Used in sections 421 and 422.

〈 war_begin_code.h 188 〉
〈 war_end_code.h 191 〉
〈winddown duties of pp 194 〉 Used in section 193.

〈winddown duties of procedure pp 204 〉 Used in section 203.

〈 wpp_core.h 193 〉
〈 wproc_pp_core.h 203 〉
〈 wrc.cpp 55 〉
〈 wset.cpp 42 〉
〈 wthread.cpp 169 〉
〈 wtok_can.cpp 76 〉
〈 wtree.cpp 450 〉
〈 yacco2.cpp 36 〉
〈 yacco2.h 35 〉
〈 add to stack 349 〉 Used in sections 236, 238, 240, 241, 245, 266, 268, 417, and 420.

〈 create set entry for CAbs lr1 sym 50 〉 Used in section 60.

〈 create set entry for Rc 49 〉 Used in section 57.

〈 create set entry 48 〉 Used in section 290.

〈 lr stk ::clean up() 127 〉
〈 lr stk :: lr stk ::empty () 128 〉
〈 lr stk ::pop() 129 〉
〈 lr stk ::push state 132 〉 Used in section 349.

WLIBRARY

Section Page

License . 1 1

Summary of Yacco2’s user library . 2 2
Introduction to Yacco2’s parse library . 3 3
Using Yacco2 . 4 3
Overview of Yacco2’s components: . 5 3
Rules of the name . 6 4
The preprocessor coding game . 8 5
Thread library use . 9 5
Parsing trace variables . 10 6
Thread performance . 11 6
Section organization . 12 6
C macros . 13 6
Include files . 14 7

Global macro definitions . 15 8
Typedef definitions . 16 9
Recursion index for internal tracing of output . 17 9
Global external variables from yacco2’s linker . 19 10
Global tracing variables . 20 10
Global variables . 21 10
External rtns . 22 10
cweb output of Yacco2’s user library . 34 12
Yacco2’s library implementation . 36 13

Constant definitions . 37 14

Enumeration of Alphabets — Terminals and Rules . 40 15

Set handling . 42 16
Structure of a set . 45 17
Set element compare functor . 46 17
From a terminal’s enumeration create a set’s key for searching . 47 17

Table lookup functor . 51 19

Raw character mapper . 53 20
Set up Raw characters malloc variables . 54 20
Output rc code . 55 21
Map raw character to character symbol . 56 21
Malloc raw characters from static pool instead of newing of Malloc 57 22

WLIBRARY TABLE OF CONTENTS 1

Abstract symbol class for all alphabets . 58 23
Grammar abstract symbol implementation . 59 24
enum id set partition no and enum id set member . 61 25
rhs no of parms . 62 26
parser . 63 26
id . 64 26
enumerated id . 65 26
set enumerated id . 66 26
set affected by abort and affected by abort . 67 27
set auto delete and CAbs lr1 sym ::auto delete . 68 27
dtor . 69 27
set rc , set rc pos , and rc pos . 70 28
Does terminal have a legitimate co-ordinate? . 71 28
set external file id and external file id . 73 29
Set line no, and character position routines . 74 30
set who created , who line no , who file . 75 30

Token container structure, templates, and functions . 76 31
Sour Apple on template definition . 78 31
Tok can template . 79 32
Specialized tok can containers: ifstream and string . 80 35
Tree container and its related paraphernalia . 81 37
Tree node definition AST . 82 39
Tree tok can〈AST ∗〉 container with accept / bypass filters . 83 41
String tok can〈std ::string 〉 implementation . 84 43
Tok can < string , std ::vector > operator[] . 85 44
Tok can < string >size . 86 45
Balance of sundry routines . 87 46
External file tok can〈std :: ifstream 〉 implementation . 88 47
File ok . 89 47
Tok can < ifstream , std ::vector > operator[] . 90 48
Tok can < ifstream >size . 91 49
tok can〈std :: ifstream 〉 ::open file . 92 50
tok can〈std :: ifstream 〉 ::close file . 93 51
Balance of sundry routines . 94 52
Tree token container implementation tok can〈AST ∗〉 . 95 53
Tree container dispensor . 96 54
Balance of tree container routines . 103 58

Structure and Rule Recycling Optimization . 104 59

Finite automaton table definitions and their functions . 105 61
State structure . 106 61
Shift table lookup . 107 62
Reduce table entry . 108 62

Threading Definitions . 109 63
Critical region discussion surrounding Parallel thread table . 110 65

Diagrams, do we have diagrams — examples of critical region activity 111 67
Thread entry . 112 69
Thread stable . 113 69
State’s thread table . 114 69
Threads having terminal in first set . 115 70

Finite state machine definition . 116 71
CAbs fsm . 117 71

2 TABLE OF CONTENTS WLIBRARY

Trapping of Premature Parsing Failures — failed directive . 118 72

Finite state machine implementation . 119 73
CAbs fsm and ∼CAbs fsm . 120 73
Fsm implementation . 121 74
find a recycled rule and recycle rule . 122 75

Parse stack environment . 123 77
Parse record . 124 78
Lr parse stack structure . 125 78
Parse stack implementation . 126 79
Parse stack implementation . 130 80
Parse stack implementation . 131 81
set aborted and aborted implementation . 133 81
set rule s reuse entr and rule s reuse entry implementation . 134 82
set state and state implementation . 135 82
set symbol and symbol implementation . 136 82

Thread support library: native thread wrapper functions . 137 83
Set up the required include files . 138 83
Thread library implementation . 141 85

Microsoft’s NT thread implementation . 142 85
Create mutex — CREATE_MUTEX . 143 85
Lock mutex — LOCK_MUTEX . 144 85
Lock mutex — LOCK_MUTEX_OF_CALLED_PARSER . 145 85
Unlock mutex — UNLOCK_MUTEX . 146 85
Unlock mutex — UNLOCK_MUTEX_OF_CALLED_PARSER . 147 86
Destroy mutex — DESTROY_MUTEX . 148 86
Create conditional variable — CREATE_COND_VAR . 149 86
Conditional wait — COND_WAIT . 150 86
Signal conditional variable — SIGNAL_COND_VAR . 151 87
Destroy conditional variable — DESTROY_COND_VAR . 152 87
Create thread — CREATE_THREAD . 153 87
Thread id — THREAD_SELF . 154 88

Pthreads implementation . 155 88
Create Mutex — CREATE_MUTEX . 156 88
Lock mutex — LOCK_MUTEX . 157 88
Lock mutex — LOCK_MUTEX_OF_CALLED_PARSER . 158 88
Unlock mutex — UNLOCK_MUTEX . 159 88
Unlock mutex — UNLOCK_MUTEX_OF_CALLED_PARSER . 160 89
Destroy mutex — DESTROY_MUTEX . 161 89
Create conditional variable — CREATE_COND_VAR . 162 89
Conditional wait — COND_WAIT . 163 89
Signal conditional variable — SIGNAL_COND_VAR . 164 89
Destroy conditional variable — DESTROY_COND_VAR . 165 90
Create thread — CREATE_THREAD . 166 90
Thread id — THREAD_SELF . 167 90

Close off the wrapper conditional code . 168 90

Yacco2’s internal thread implementation . 169 91
Thread control runtime environment . 170 91
worker thread blk structure . 171 91
Global Parallel thread table declaration of use . 172 91
Global routines declaration of use . 173 92
Global Parallel thread table definition . 174 92

WLIBRARY TABLE OF CONTENTS 3

Global Proxy arbitrator . 175 92
No arbitration code present . 176 92
worker thread blk initialization: monolithic grammar . 177 93
worker thread blk initialization: threaded grammar . 178 93
set waiting for work . 179 93
Global shutdown of threads . 180 94

Pause for x seconds . 181 94
Threads in table to potentially shutdown . 182 95
Look for threads to shutdown . 183 96

Caccept parse Structure — Accept result from threads . 184 97
Caccept parse and ∼Caccept parse implementation . 185 98

Thread code for arbitrator, and parallel parse . 186 100
Arbitrator code generator — begin and end files: war xxx code .h 187 100
Arbitrator begin code . 188 100

Example of arbitrated grammar code . 190 101
Arbitrator end code . 191 102
Parallel thread code: injection code for emitted pp wpp core .h . 193 103
Procedure call: injection code for emitted pp wproc pp core .h . 203 106

Determine threads to launch by their first sets . 211 109
find threads by first set . 212 109
Determine if there is a bit map gened for state . 213 110

Parser Definitions — Pushdown Automaton . 221 113
The parser structure . 222 113
Parser’s internal variables . 223 114
Parallel parsing support definitions . 224 115
Parse’s all shift, stop, and abort defs . 225 115
PDA’s defs . 226 116
Parser’s containers defs . 227 116
Parse’s stack defs . 228 117
Parser’s token defs . 229 117
Parser Regular parser . 230 118
Parser Parallel parser . 232 120
Parser Procedure call: Parallel parser . 233 122
∼Parser . 234 123

Parser — PDA’s implementation . 235 124
Shift . 236 124
Find shift entry . 237 124
Invisible shift . 238 124

Set parse stack symbol to invisible shift operator . 239 124
Questionable shift . 240 124
All shift . 241 125
Reduce . 243 125
Execute the subrule, its directives, and create the rule . 244 125
Regular parse . 249 127
Parallel shift . 265 132
Proc call shift . 267 133
Parallel parse . 269 134
Parallel parse successful . 272 136
Parallel parse unsuccessful . 279 138
Proc call parse successful . 282 139
Proc call parse unsuccessful . 283 139

4 TABLE OF CONTENTS WLIBRARY

Find current T shift entry . 284 140
Find Rule or paralleled returned T shift entry . 285 142
add set to map . 286 143
Reduce Attempts . 287 143

Find |?|in reduce lookahead to force a LR(0) reduction . 288 144
find reduce entry . 289 146

find parallel reduce entry . 297 150
find proc call reduce entry . 298 151

Start token routines . 299 152
start token . 300 152
set start token . 301 152
start token pos . 302 152
set start token pos . 303 152
All shift routines . 304 152
set use all shift on . 305 152
set use all shift off . 306 153
use all shift . 307 153

Parser symbol table functor and abort, stop routines . 308 154
sym lookup functor . 309 154
abort parse . 310 154
set abort parse . 311 154
stop parse . 312 154
set stop parse . 313 154

Parser’s FSM support routines . 314 155
fsm tbl . 315 155

Parse containers . 316 156
Supplier container . 317 156

token supplier . 318 156
set token supplier . 319 156
add token to supplier . 320 156

Producer container . 321 157
token producer . 322 157
set token producer . 323 157
add token to producer . 324 157

Recycle container . 325 157
recycle bin . 326 157
set recycle bin . 327 157
add token to recycle bin . 328 158

Error queue . 329 158
set error queue . 330 158
error queue . 331 158
add token to error queue . 332 158

Accept queue RSVP, RSVP_FSM, RSVP_WLA macro use comments . 333 158
Put potential Caccept parse into accept queue . 334 159

Token Get routines: specific stack token, next token in stream . 335 160
get spec stack token . 336 160
get next token . 337 161
get spec token . 338 163

Parse stack routines . 340 164
cleanup stack due to abort . 342 164
current stack pos . 343 164

WLIBRARY TABLE OF CONTENTS 5

parse stack . 344 164
top stack record . 345 164
get stack record . 346 164
no items on stack . 347 165
Add state to parse stack add to stack . 348 165
Remove items from the parse stack remove from stack . 350 165
clear parse stack . 362 168

Token Get, Reset, Override Flavours: current token , reset current token , etc 363 169
current token . 364 169
Reset current token . 365 169
override current token . 366 169
override current token pos . 367 170
current token pos . 368 170
Get shift’s next token get shift s next token . 369 170

Thread name of grammar that is a thread . 370 171
thread name . 371 171
Thread entry . 372 171

Thread “hows and whys” on thread activation . 373 172
How to call a thread . 374 173

Procedure call: start procedure call . 375 173
Manually: spawn thread manually . 376 173
Start threads: start threads . 377 174

Determine if there are threads to run by current token 378 174
Are there threads to run? . 379 174
Acquire global thread table critical region . 380 174
Release global thread table critical region . 381 175
Determine disposition of thread in global thread table 382 175
Dispatch on thread availability . 383 176
Request threads to work . 384 177

start threads . 385 178
Call arbitrator: call arbitrator . 386 179
Pedestrian routines for threading . 388 180

Acquire trace mu . 389 180
Release trace mu . 390 180
Acquire token mu . 391 180
Release token mu . 392 180
Wait for event: wait for event . 393 180
Wait for an event to arrive with no loop . 394 181
Wait for an event to arrive with loop . 395 181
post event to requesting grammar . 396 181
Signal thread to wake up and work . 397 182
Deposit sender’s co-ordinates and event in called thread’s critical region 398 182
have all threads reported back . 399 182

Paranoid routines — Aborts . 400 183
abort accept queue irregularites . 401 183
abort no selected accept parse in arbitrator . 402 184

Lets parse do u? . 403 185
Common parsing code . 404 185

Clean up aborted parallel parse and exit erred . 405 185
Exit as paralleled . 406 185
Wait for parallelism response if required . 407 185
Extract accept parse’s token Caccept parse . 408 185

6 TABLE OF CONTENTS WLIBRARY

Dispatch on parallel result . 409 185
Re-align token stream to la boundry . 410 185
Re-align current token stream to accept token co-ordinates 411 186
Allocate T id to search with . 412 186
Startup those threads . 413 186
Clean up parallelism scribbles: clean up . 414 186

Chained procedure call parsing: chained proc call parsing . 415 186
Dispatch on proc call result . 416 187
Shift |t|onto parse stack . 417 187

chained proc call parsing . 418 187
Start parallel parsing: start parallel parsing . 419 187

Shift (|||) onto parse stack . 420 187
start parallel parsing . 421 188

start manually parallel parsing . 422 189

Yacco2 global variables . 423 192
Global variables . 424 192
Global routines . 427 193
Global variables implementations . 428 193
Runtime errors . 429 193
Runtime error messages implementations . 430 194
Global garbage sweeper . 431 194
Delete tokens . 432 195
Clear yacco2 opened files dictionary . 433 195

Tree containers, functors, and walkers . 434 196
Tree walker’s traversal with filter mechanism . 435 197
ast postfix tree walker . 443 198
Prefix tree walker . 444 198
Postfix tree walker of self only . 445 199
Prefix tree walker of a forest . 446 199
Breadth only tree walker . 447 199
Prefix with breadth only tree walker . 448 199
Moon walking — get ancestry for a specific node . 449 200
Tree implementations . 450 200

ast base stack implementation . 452 201
Tree walker implementations . 453 202

ast postfix . 454 202
ast postfix exec . 455 202
ast postfix advance . 456 203
ast prefix . 457 204
ast prefix exec . 458 204
ast prefix advance . 459 205
ast postfix 1forest . 460 206
ast postfix 1forest advance . 462 207
ast prefix 1forest . 463 208
ast prefix 1forest advance . 465 209
ast breadth only . 466 210
ast breadth only advance . 468 211
ast prefix wbreadth only . 469 212
ast prefix wbreadth only advance . 471 213
ast moonwalk looking for ancestors . 472 214

let s functor . 473 214
deal with functor . 474 215

WLIBRARY TABLE OF CONTENTS 7

let s moonwalk . 475 215
deal with parent . 476 216

Build and restructure trees . 478 217
restructure 2trees into 1tree . 479 217
Create trees crt tree of 1son—crt tree of 9sons . 480 218
content of node . 481 219
zero 1st son link . 482 219
zero 2nd son link . 483 220
zero brother link . 484 220
zero content . 485 220
set content of node . 486 220
zero previous link . 487 220
set content wdelete : mark node’s content to be deleted when node deleted 488 220
set previous link . 489 221
wdelete is node’s contents marked as to-be-deleted? . 490 221
wdelete set delete attribute: true or false . 491 221
Fetch various tree nodes: brother . 492 221
previous node: returns its heritage parent or older brother . 493 221
Birth, pruning, and death of a tree node: AST . 494 221
join pts : parent to son bonding . 495 222
join sts : brother to brother bonding . 496 222
ast delete : delete the tree node . 497 223
find depth . 498 225
find breadth . 499 226

Tree relinking routines: before, between, after and other sundries 500 227
relink . 501 227
relink between . 502 228
relink after . 503 229
relink before . 504 230
replace node . 505 231

Various tree node routines . 506 232
add son to tree . 507 232
add child at end . 508 232
get spec child . 509 233
Get specific son node by number . 510 234
get child at end . 511 235
get youngest sibling . 512 235
get younger sibling . 513 235
get older sibling : returns only older brother . 514 236
get parent : child guidance required . 515 236
common ancestor : Are we distant ? . 516 237
divorce node from tree . 517 237
Re-bond younger child with parent . 521 238
clone tree . 525 239

Some tree functors: remove, insert back, print a tree, etc . 526 240
tok can ast functor . 527 240
tok can ast no stop functor . 528 240
tok can ast bypass functor . 529 240
prt ast functor . 530 241
fire a func ast functor . 531 241
str ast functor — build up source string . 532 241

8 TABLE OF CONTENTS WLIBRARY

remove unwanted ast functor . 533 242
Implementation of some functors . 534 243
Insert items back into a tree . 535 245
tok can ast functor continue looping thru the tree . 536 246
tok can ast bypass functor . 538 246
prt ast functor . 539 247
fire a func ast functor . 540 248
str ast functor . 541 248

Constraints . 542 249

Macro definitions . 564 254
Copyright . 565 254
EXTERNAL GPSing macro is used to print out T’s external file 566 254
FILE_LINE macro source file co-ordinates for tracing . 567 254
T_CTOR macro is used by the terminal defs supplied to the grammar 568 255
T_CTOR, T_CTOR_RW macros . 569 255
Define YACCO2 define trace variables . 570 255
Token placement macros . 571 256

ADD_TOKEN_TO_RECYCLE_BIN . 572 256
DELETE_T_SYM macro . 573 256
Add token to an accept queue: RSVP, RSVP_FSM, RSVP_WLA macros 574 257
ADD_TOKEN_TO_PRODUCER_QUEUE . 575 257
ADD_TOKEN_TO_ERROR_QUEUE and ADD_TOKEN_TO_ERROR_QUEUE_FSM 576 257

Generated finite state automaton macros . 577 258
Pushdown automaton’s flow control macros . 578 259

T_0 trace remove items from the parse stack . 579 259
T 0a trace finished removing items from the parse stack . 580 259
T_1 trace the parse stack if the grammar is requesting to be debugged 581 259
T_2 trace when an epsilon rule is being reduced . 582 260
T_3 trace the state no when popped from the parse stack . 583 260
T_4 trace when invisible shift symbol popped from stack . 584 260
T_5 trace exposed symbol on parse stack . 585 261
T_6 trace top item on the parse stack when auto-delete switch on 586 261
T 6a trace top item on the parse stack when auto-abort switch on 587 261
T_7 trace when threading failed: try straight parse . 588 262
T_7 trace when proc call failed: try straight parse . 589 262
T_11 straight parse error . 590 263
T_14 trace parallel parse thread startup communication . 591 263
T_17 trace accepted token info . 592 264
Trace re-aligned token stream la boundry info . 593 264
T_18 trace requesting grammar’s received message from a thread 594 265
T_22 and T 22a trace returned thread accept info . 595 265
T_23 trace parallel parse current token when an error has occured 596 266
T_23 trace proc call parse current token when an error has occured 597 266
T_24 trace before parallel parse thread message count reduced 598 267
T_25 trace parallel parse current token when an error has occured 599 267

Message macros . 600 267
TT_1 trace thread waiting for message . 601 268
TT_2 trace message received . 602 268
TT_4 trace posting from - to thread info . 603 268
TT 4a trace signaled grammar to wakeup . 604 268
TT 4b trace wakened grammar with its acquired mutex . 605 269
TT 4c trace trying to acquire grammar’s mutex . 606 269

WLIBRARY TABLE OF CONTENTS 9

TT 4d trace acquired grammar’s mutex . 607 269
TT 4e trace trying to release grammar’s mutex . 608 269
TT 4f trace released grammar’s mutex . 609 269
TT_5 trace start thread . 610 270
TT_6 trace of found thread in thread pool waiting to be run 611 270
TT_7 due to recursion trace no thread available in thread pool 612 270
TT_8 trace thread not found in global thread pool . 613 270
Trace start thread by procedure call instead of threading . 614 271
Trace return from procedure call instead of threading . 615 271
Trace thread idle before setting waiting for work . 616 271
Trace thread idle after setting waiting for work . 617 271
Trace thread being created . 618 272
Trace threads in launched list . 619 272
Trace thread to be launched . 620 272
All threads reported back . 621 273
NOT all threads reported back . 622 273
Call procedure but in use . 623 273

Arbitrator macros . 624 274
TAR_1 trace the starting of arbitration . 625 274
TAR_2 trace no arbitration required . 627 274
TAR_3 trace stopped arbitrating . 629 275

TLEX macros — roll-your-own tracing macros . 630 276
Print interplay between requesting grammar and launched thread 631 276
trace parser env traces the parsing stack . 632 276

Print items on parse stack in FILO order . 634 277
Should grammar be traced? . 635 277

trace parser env implementation . 636 277
Trace pp start info . 637 278
Trace procedure pp start info . 638 279
Trace stop of parallel parse message . 639 279
Trace pp’s last symbol on stack set as autodelete . 640 280
Trace procedure pp’s last symbol on stack set as autodelete . 641 280
Trace parallel thread waiting-to-do-work . 642 280
Trace pp received go start working message . 643 280
Trace pp finished working . 644 281
Trace procedure pp finished working . 645 281
Trace raw characters . 646 281

Thread performance macros . 647 282
Entered into waiting for an event . 648 282
Exit out of waiting for an event . 649 282
Before SIGNAL_COND_VAR . 650 282
After SIGNAL_COND_VAR . 651 283
Before CREATE_THREAD . 652 283
After CREATE_THREAD . 653 283

Notes to myself . 654 284
Evaluate if extern “C” should be used in Set element compare functor 655 284
Cleanup from failed parallel parse . 656 284
Verfiy if all successful threads consume a token even if its... 657 284
Manual arbitrator how does it work? . 658 284
Ccm to ar message needed? . 659 284
Why (CHARP) instead of Cparse record definition in... 660 284

10 TABLE OF CONTENTS WLIBRARY

Why nil ptr test in T_11? . 661 284
Clean up parallel parse in control monitor instead of grammar... 662 285
Conversion of control monitor and parallel parse code . 663 285
Why is there an abort attribute in the parse stack record? . 664 285
Make all yacco2’s types, structures etc housed within yacco2’s namespace 665 285
Make enclosure of namespace yacco2 explicit in implementation part of code 666 285
The old version of terminal enumeration: . 667 286
Tree token template container . 668 286
Add in Yacco2 arbitration requiring code on the possibility of... 669 286
Rework of thread management . 670 286
To check: does stop msg have wait/reply mechanism? . 671 287
Change tree container to a specialized version of tok can〈AST ∗〉 672 287
Eliminate the control monitor . 673 287
Eliminate pp support as a thread optimization . 674 287
Another thread optimization . 675 287
a N * 2 . 676 288
Remove unique id from CAbs lr1 sym . 677 288
Okay guys Yacco2 is starting to smoke . 678 288
Slim down the CAbs lr1 sym space . 679 288
Grammar as a logic sequencer: Allow no token containers . 680 289
Logic bug: same accept token added to accept queue more than once 681 289
Porting of cweb code . 682 289
cweave C++ code . 683 289
failed directive added in the fsm construct . 684 289
More token info for tracing . 685 289
Added to the CAbs lr1 sym definition a “who created” GPS . 686 290
Rewrote tok can〈AST ∗〉 due to global functor firing . 687 290
Adjusted array of “[]” declaration . 688 290
More porting issues dealing with threads and syncing signals . 689 291
Changed back to passing Parser as a pointer for tracing purposes 690 291
Some more optimizations . 691 291

1) precalculates a compressed set key from a terminal’s enumerate id 692 291
2) eliminate passing shift’s element enumerate value . 693 291
3) eliminating the tok can reader mutex — nope . 694 292

Elimination of reader mutex for optimization reasons . 695 292
Parallel thread reduction should be lr(0) . 696 292
Make accept queue more efficient . 697 292
Use Procedure call when only 1 thread needs to be run 698 293
Thread’s start-up attributes for stack size and system scope? 699 293

Error detection within a grammar: new |?| symbol introduced 700 293
Speed wonderful speed in “Oliver Twist” and not William Burroughs 701 294
Improve dumped data when Shift T not found in parse table . 702 294
VMS spits core dumps when its thread stack is exceeded . 703 294
Caught by your short and curly — local variables in grammar rule 704 294
Add a complete trace on fetching a T when symbol functor in use 705 295
Add right recursion support for rule recycling . 706 295
Changed input order of T Vocabulary — exchanged T with Error T 707 296
Tree container is out-of-sorts from self modifying trees . 708 297
Multiple Reader/Writer improvement to supplier container . 709 298
Removed grammar stk state no from the CAbs lr1 sym definition 710 298
Note on what’s in the token container and its size . 711 298
Sets: Sequential versus binary search optimization . 712 299

WLIBRARY TABLE OF CONTENTS 11

Change T containers’s subscripting to unsigned integer or my subtle stupidities 713 299
Porting to Microsoft: Visual Studio 8 . 714 300
Mutexing the containers . 715 300
Some refinements to source file/line tracings . 716 300

Bugs in all their splender . 717 301
Error on “file-overrun” . 718 301
Parallel parse assumed that the grammar would do more... 719 301
Parallel thread table aborts when program winds down . 720 301
|+|and end-of-container . 721 301
Test availability of BIT_MAPS_FOR_SALE__ . 722 301
Monolithic grammar’s start token should be set in constructor . 723 301
Mismatched file number associated with error token co-ordinates 724 302
Validate accept message against the new lookahead token position 725 302
Linux bug — dropping namespace yacco2 :: on extern ”C” referenced objects 726 302
Why me the ginea pig using other C++ compiler foibles? . 727 302
MS C++ problems . 728 303
Regular parse and no input container: just parsed the empty language 729 303
MS 7.0 heap delete bug... 730 303
MS 7.0 bug pranks . 731 303
Intel C++ release 9 . 732 304
Apple’s cough in handling template definition . 733 304
HP Alpha C++ “this” object mis-address . 734 305
Rule reuse but forgot to remove the “AD” from each grammar . 735 305
Recursion on “Procedure call” of a thread . 736 305
VMS misqueue on Mutex Recursion and Pthread stacksize . 737 306
|?| used instead of |+| making it a perpetual motion machine . 738 306
Rule reuse Code emmission did not store the newed rule in its recycle table 739 306
String template container did not set the eof pos variable and random boom 740 306
TOKEN GAGGLE’s virtual table access [] operator not respected 741 307
Procedure calls in VMS revisited: thread versus procedure . 742 307
Size of tree container — number of items in container . 743 307
Find reduce entry current token not found . 744 307
Date macro use — Apple LLVM C++ compiler . 745 308
Eog symbol not gpsing on external file and internal line no . 746 308
Cleaned up Arbitrator’s YACCO2_AR__ tracings . 747 308

Error detection and handling . 748 309

Index . 749 312

	License
	Summary of Yacco2's user library
	Introduction to Yacco2's parse library
	Using Yacco2
	Overview of Yacco2's components:
	Rules of the name
	The preprocessor coding game
	Thread library use
	Parsing trace variables
	Thread performance
	Section organization
	C macros
	Include files
	Global macro definitions
	Typedef definitions
	Recursion index for internal tracing of output
	Global external variables from yacco2's linker
	Global tracing variables
	Global variables
	External rtns
	cweb output of Yacco2's user library
	Yacco2's library implementation
	Constant definitions
	Enumeration of Alphabets --- Terminals and Rules
	Set handling
	Structure of a set
	Set element compare functor
	From a terminal's enumeration create a set's key for searching
	Table lookup functor
	Raw character mapper
	Set up Raw characters malloc variables
	Output rc code
	Map raw character to character symbol
	Malloc raw characters from static pool instead of newing of Malloc
	Abstract symbol class for all alphabets
	Grammar abstract symbol implementation
	enum_id_set_partition_no and enum_id_set_member
	rhs_no_of_parms
	parser
	id
	enumerated_id
	set_enumerated_id
	set_affected_by_abort and affected_by_abort
	set_auto_delete and CAbs_lr1_sym::auto_delete
	dtor
	set_rc, set_rc_pos, and rc_pos
	Does terminal have a legitimate co-ordinate?
	set_external_file_id and external_file_id
	Set line no, and character position routines
	set_who_created, who_line_no, who_file
	Token container structure, templates, and functions
	Sour Apple on template definition
	Tok_can template
	Specialized tok_can containers: ifstream and string
	Tree container and its related paraphernalia
	Tree node definition AST
	Tree tok_canAST * container with accept / bypass filters
	String tok_canstd::string implementation
	Tok_can<string , std::vector > operator[]
	Tok_can<string >size
	Balance of sundry routines
	External file tok_canstd::ifstream implementation
	File_ok
	Tok_can<ifstream , std::vector > operator[]
	Tok_can<ifstream >size
	tok_canstd::ifstream::open_file
	tok_canstd::ifstream::close_file
	Balance of sundry routines
	Tree token container implementation tok_canAST *
	Tree container dispensor
	Balance of tree container routines
	Structure and Rule Recycling Optimization
	Finite automaton table definitions and their functions
	State structure
	Shift table lookup
	Reduce table entry
	Threading Definitions
	Critical region discussion surrounding Parallel_thread_table
	Diagrams, do we have diagrams --- examples of critical region activity

	Thread entry
	Thread stable
	State's thread table
	Threads having terminal in first set
	Finite state machine definition
	CAbs_fsm
	Trapping of Premature Parsing Failures --- failed directive

	Finite state machine implementation
	CAbs_fsm and penalty @M CAbs_fsm
	Fsm implementation
	find_a_recycled_rule and recycle_rule
	Parse stack environment
	Parse record
	Lr parse stack structure
	Parse stack implementation
	Parse stack implementation
	Parse stack implementation
	set_aborted and aborted implementation
	set_rule_s_reuse_entr and rule_s_reuse_entry implementation
	set_state and state implementation
	set_symbol and symbol implementation
	Thread support library: native thread wrapper functions
	Set up the required include files
	Thread library implementation
	Microsoft's NT thread implementation
	Create mutex --- CREATE_MUTEX
	Lock mutex --- LOCK_MUTEX
	Lock mutex --- LOCK_MUTEX_OF_CALLED_PARSER
	Unlock mutex --- UNLOCK_MUTEX
	Unlock mutex --- UNLOCK_MUTEX_OF_CALLED_PARSER
	Destroy mutex --- DESTROY_MUTEX
	Create conditional variable --- CREATE_COND_VAR
	Conditional wait --- COND_WAIT
	Signal conditional variable --- SIGNAL_COND_VAR
	Destroy conditional variable --- DESTROY_COND_VAR
	Create thread --- CREATE_THREAD
	Thread id --- THREAD_SELF

	Pthreads implementation
	Create Mutex --- CREATE_MUTEX
	Lock mutex --- LOCK_MUTEX
	Lock mutex --- LOCK_MUTEX_OF_CALLED_PARSER
	Unlock mutex --- UNLOCK_MUTEX
	Unlock mutex --- UNLOCK_MUTEX_OF_CALLED_PARSER
	Destroy mutex --- DESTROY_MUTEX
	Create conditional variable --- CREATE_COND_VAR
	Conditional wait --- COND_WAIT
	Signal conditional variable --- SIGNAL_COND_VAR
	Destroy conditional variable --- DESTROY_COND_VAR
	Create thread --- CREATE_THREAD
	Thread id --- THREAD_SELF

	Close off the wrapper conditional code
	Yacco2's internal thread implementation
	Thread control runtime environment
	worker_thread_blk structure
	Global Parallel_thread_table declaration of use
	Global routines declaration of use
	Global Parallel_thread_table definition
	Global Proxy arbitrator
	No arbitration code present
	worker_thread_blk initialization: monolithic grammar
	worker_thread_blk initialization: threaded grammar
	set_waiting_for_work
	Global shutdown of threads
	Pause for x seconds
	Threads in table to potentially shutdown
	Look for threads to shutdown

	Caccept_parse Structure --- Accept result from threads
	Caccept_parse and penalty @M Caccept_parse implementation
	Thread code for arbitrator, and parallel parse
	Arbitrator code generator --- begin and end files: war_xxx_code.h
	Arbitrator begin code
	Example of arbitrated grammar code

	Arbitrator end code
	Parallel thread code: injection code for emitted pp wpp_core.h
	Procedure call: injection code for emitted pp wproc_pp_core.h
	Determine threads to launch by their first sets
	find_threads_by_first_set
	Determine if there is a bit map gened for state
	Parser Definitions --- Pushdown Automaton
	The parser structure
	Parser's internal variables
	Parallel parsing support definitions
	Parse's all shift, stop, and abort defs
	PDA's defs
	Parser's containers defs
	Parse's stack defs
	Parser's token defs
	Parser Regular parser
	Parser Parallel parser
	Parser Procedure call: Parallel parser
	penalty @M Parser
	Parser --- PDA's implementation
	Shift
	Find shift entry
	Invisible shift
	Set parse stack symbol to invisible shift operator

	Questionable shift
	All shift
	Reduce
	Execute the subrule, its directives, and create the rule
	Regular parse
	Parallel shift
	Proc call shift
	Parallel parse
	Parallel parse successful
	Parallel parse unsuccessful
	Proc call parse successful
	Proc call parse unsuccessful
	Find current T shift entry
	Find Rule or paralleled returned T shift entry
	add_set_to_map
	Reduce Attempts
	Find in reduce lookahead to force a LR(0) reduction
	find_reduce_entry

	find_parallel_reduce_entry
	find_proc_call_reduce_entry
	Start token routines
	start_token
	set_start_token
	start_token_pos
	set_start_token_pos
	All shift routines
	set_use_all_shift_on
	set_use_all_shift_off
	use_all_shift
	Parser symbol table functor and abort, stop routines
	sym_lookup_functor
	abort_parse
	set_abort_parse
	stop_parse
	set_stop_parse
	Parser's FSM support routines
	fsm_tbl
	Parse containers
	Supplier container
	token_supplier
	set_token_supplier
	add_token_to_supplier

	Producer container
	token_producer
	set_token_producer
	add_token_to_producer

	Recycle container
	recycle_bin
	set_recycle_bin
	add_token_to_recycle_bin

	Error queue
	set_error_queue
	error_queue
	add_token_to_error_queue

	Accept queue RSVP, RSVP_FSM, RSVP_WLA macro use comments
	Put potential Caccept_parse into accept queue
	Token Get routines: specific stack token, next token in stream
	get_spec_stack_token
	get_next_token

	get_spec_token
	Parse stack routines
	cleanup_stack_due_to_abort
	current_stack_pos
	parse_stack
	top_stack_record
	get_stack_record
	no_items_on_stack

	Add state to parse stack add_to_stack
	Remove items from the parse stack remove_from_stack
	clear_parse_stack
	Token Get, Reset, Override Flavours: current_token, reset_current_token, etc
	current_token
	Reset current token
	override_current_token
	override_current_token_pos
	current_token_pos
	Get shift's next token get_shift_s_next_token
	Thread name of grammar that is a thread
	thread_name
	Thread entry
	Thread ``hows and whys'' on thread activation
	How to call a thread
	Procedure call: start_procedure_call
	Manually: spawn_thread_manually
	Start threads: start_threads
	Determine if there are threads to run by current token

	Are there threads to run?
	Acquire global thread table critical region
	Release global thread table critical region
	Determine disposition of thread in global thread table
	Dispatch on thread availability
	Request threads to work
	start_threads
	Call arbitrator: call_arbitrator
	Pedestrian routines for threading
	Acquire trace mu
	Release trace mu
	Acquire token mu
	Release token mu
	Wait for event: wait_for_event
	Wait for an event to arrive with no loop
	Wait for an event to arrive with loop
	post_event_to_requesting_grammar
	Signal thread to wake up and work
	Deposit sender's co-ordinates and event in called thread's critical region
	have_all_threads_reported_back

	Paranoid routines --- Aborts
	abort_accept_queue_irregularites
	abort_no_selected_accept_parse_in_arbitrator

	Lets parse do u?
	Common parsing code
	Clean up aborted parallel parse and exit erred
	Exit as paralleled
	Wait for parallelism response if required
	Extract accept parse's token Caccept_parse
	Dispatch on parallel result
	Re-align token stream to la boundry
	Re-align current token stream to accept token co-ordinates
	Allocate T id to search with
	Startup those threads
	Clean up parallelism scribbles: clean_up
	Chained procedure call parsing: chained_proc_call_parsing
	Dispatch on proc call result

	Shift onto parse stack

	chained_proc_call_parsing
	Start parallel parsing: start_parallel_parsing
	Shift () onto parse stack

	start_parallel_parsing
	start_manually_parallel_parsing
	Yacco2 global variables
	Global variables
	Global routines
	Global variables implementations
	Runtime errors
	Runtime error messages implementations
	Global garbage sweeper
	Delete_tokens
	Clear_yacco2_opened_files_dictionary
	Tree containers, functors, and walkers
	Tree walker's traversal with filter mechanism
	ast_postfix tree walker

	Prefix tree walker
	Postfix tree walker of self only
	Prefix tree walker of a forest
	Breadth only tree walker
	Prefix with breadth only tree walker
	Moon walking --- get ancestry for a specific node
	Tree implementations
	ast_base_stack implementation
	Tree walker implementations
	ast_postfix
	ast_postfix exec
	ast_postfix advance
	ast_prefix
	ast_prefix exec
	ast_prefix advance
	ast_postfix_1forest
	ast_postfix_1forest advance
	ast_prefix_1forest
	ast_prefix_1forest advance
	ast_breadth_only
	ast_breadth_only advance
	ast_prefix_wbreadth_only
	ast_prefix_wbreadth_only advance
	ast_moonwalk_looking_for_ancestors
	let_s_functor
	deal_with_functor
	let_s_moonwalk
	deal_with_parent

	Build and restructure trees
	restructure_2trees_into_1tree
	Create trees crt_tree_of_1son---crt_tree_of_9sons
	content of node
	zero_1st_son link
	zero_2nd_son link
	zero_brother link
	zero_content
	set_content of node
	zero_previous link
	set_content_wdelete: mark node's content to be deleted when node deleted
	set_previous link
	wdelete is node's contents marked as to-be-deleted?
	wdelete set delete attribute: true or false
	Fetch various tree nodes: brother
	previous node: returns its heritage parent or older brother
	Birth, pruning, and death of a tree node: AST
	join_pts: parent to son bonding
	join_sts: brother to brother bonding
	ast_delete: delete the tree node
	find_depth
	find_breadth
	Tree relinking routines: before, between, after and other sundries
	relink
	relink_between
	relink_after
	relink_before
	replace_node
	Various tree node routines
	add_son_to_tree
	add_child_at_end
	get_spec_child
	Get specific son node by number
	get_child_at_end
	get_youngest_sibling
	get_younger_sibling
	get_older_sibling: returns only older brother
	get_parent: child guidance required
	common_ancestor: Are we distant ?
	divorce_node_from_tree
	Re-bond younger child with parent
	clone_tree
	Some tree functors: remove, insert back, print a tree, etc
	tok_can_ast_functor
	tok_can_ast_no_stop_functor
	tok_can_ast_bypass_functor
	prt_ast_functor
	fire_a_func_ast_functor
	str_ast_functor --- build up source string
	remove_unwanted_ast_functor
	Implementation of some functors
	Insert items back into a tree
	tok_can_ast_functor continue looping thru the tree
	tok_can_ast_bypass_functor
	prt_ast_functor
	fire_a_func_ast_functor
	str_ast_functor
	Constraints
	Macro definitions
	Copyright
	EXTERNAL_GPSing macro is used to print out T's external file
	FILE_LINE macro source file co-ordinates for tracing
	T_CTOR macro is used by the terminal defs supplied to the grammar
	T_CTOR, T_CTOR_RW macros
	Define YACCO2_define_trace_variables
	Token placement macros
	ADD_TOKEN_TO_RECYCLE_BIN
	DELETE_T_SYM macro
	Add token to an accept queue: RSVP, RSVP_FSM, RSVP_WLA macros
	ADD_TOKEN_TO_PRODUCER_QUEUE
	ADD_TOKEN_TO_ERROR_QUEUE and ADD_TOKEN_TO_ERROR_QUEUE_FSM

	Generated finite state automaton macros
	Pushdown automaton's flow control macros
	T_0 trace remove items from the parse stack
	T_0a trace finished removing items from the parse stack
	T_1 trace the parse stack if the grammar is requesting to be debugged
	T_2 trace when an epsilon rule is being reduced
	T_3 trace the state no when popped from the parse stack
	T_4 trace when invisible shift symbol popped from stack
	T_5 trace exposed symbol on parse stack
	T_6 trace top item on the parse stack when auto-delete switch on
	T_6a trace top item on the parse stack when auto-abort switch on
	T_7 trace when threading failed: try straight parse
	T_7 trace when proc call failed: try straight parse
	T_11 straight parse error
	T_14 trace parallel parse thread startup communication
	T_17 trace accepted token info
	Trace re-aligned token stream la boundry info
	T_18 trace requesting grammar's received message from a thread
	T_22 and T_22a trace returned thread accept info
	T_23 trace parallel parse current token when an error has occured
	T_23 trace proc call parse current token when an error has occured
	T_24 trace before parallel parse thread message count reduced
	T_25 trace parallel parse current token when an error has occured

	Message macros
	TT_1 trace thread waiting for message
	TT_2 trace message received
	TT_4 trace posting from - to thread info
	TT_4a trace signaled grammar to wakeup
	TT_4b trace wakened grammar with its acquired mutex
	TT_4c trace trying to acquire grammar's mutex
	TT_4d trace acquired grammar's mutex
	TT_4e trace trying to release grammar's mutex
	TT_4f trace released grammar's mutex
	TT_5 trace start thread
	TT_6 trace of found thread in thread pool waiting to be run
	TT_7 due to recursion trace no thread available in thread pool
	TT_8 trace thread not found in global thread pool
	Trace start thread by procedure call instead of threading
	Trace return from procedure call instead of threading
	Trace thread idle before setting waiting for work
	Trace thread idle after setting waiting for work
	Trace thread being created
	Trace threads in launched list
	Trace thread to be launched
	All threads reported back
	NOT all threads reported back
	Call procedure but in use

	Arbitrator macros
	TAR_1 trace the starting of arbitration
	TAR_2 trace no arbitration required
	TAR_3 trace stopped arbitrating
	TLEX macros --- roll-your-own tracing macros
	Print interplay between requesting grammar and launched thread
	trace_parser_env traces the parsing stack
	Print items on parse stack in FILO order
	Should grammar be traced?

	trace_parser_env implementation
	Trace pp start info
	Trace procedure pp start info
	Trace stop of parallel parse message
	Trace pp's last symbol on stack set as autodelete
	Trace procedure pp's last symbol on stack set as autodelete
	Trace parallel thread waiting-to-do-work
	Trace pp received go start working message
	Trace pp finished working
	Trace procedure pp finished working
	Trace raw characters
	Thread performance macros
	Entered into waiting for an event
	Exit out of waiting for an event
	Before SIGNAL_COND_VAR
	After SIGNAL_COND_VAR
	Before CREATE_THREAD
	After CREATE_THREAD
	Notes to myself
	Evaluate if extern ``C'' should be used in Setelementcompare functor
	Cleanup from failed parallel parse
	Verfiy if all successful threads consume a token even if its...
	Manual arbitrator how does it work?
	Ccm_to_ar message needed?
	Why (CHARP) instead of Cparse_record definition in...
	Why nil ptr test in T_11?
	Clean up parallel parse in control monitor instead of grammar...
	Conversion of control monitor and parallel parse code
	Why is there an abort attribute in the parse stack record?
	Make all yacco2's types, structures etc housed within yacco2's namespace
	Make enclosure of namespace yacco2 explicit in implementation part of code
	The old version of terminal enumeration:
	Tree token template container
	Add in Yacco2 arbitration requiring code on the possibility of...
	Rework of thread management
	To check: does stop msg have wait/reply mechanism?
	Change tree container to a specialized version of tok_canAST *
	Eliminate the control monitor
	Eliminate pp_support__ as a thread optimization
	Another thread optimization
	a N * 2
	Remove unique_id__ from CAbs_lr1_sym
	Okay guys Yacco2 is starting to smoke
	Slim down the CAbs_lr1_sym space
	Grammar as a logic sequencer: Allow no token containers
	Logic bug: same accept token added to accept queue more than once
	Porting of cweb code
	cweave C++ code
	failed directive added in the fsm construct
	More token info for tracing
	Added to the CAbs_lr1_sym definition a ``who created'' GPS
	Rewrote tok_canAST * due to global functor firing
	Adjusted array of ``[]'' declaration
	More porting issues dealing with threads and syncing signals
	Changed back to passing Parser as a pointer for tracing purposes
	Some more optimizations
	1) precalculates a compressed set key from a terminal's enumerate id
	2) eliminate passing shift's element enumerate value
	3) eliminating the tok_can reader mutex --- nope
	Elimination of reader mutex for optimization reasons
	Parallel thread reduction should be lr(0)
	Make accept_queue more efficient
	Use Procedure call when only 1 thread needs to be run
	Thread's start-up attributes for stack size and system scope?

	Error detection within a grammar: new symbol introduced
	Speed wonderful speed in ``Oliver Twist'' and not William Burroughs
	Improve dumped data when Shift T not found in parse table
	VMS spits core dumps when its thread stack is exceeded
	Caught by your short and curly --- local variables in grammar rule
	Add a complete trace on fetching a T when symbol functor in use
	Add right recursion support for rule recycling
	Changed input order of T Vocabulary --- exchanged T with Error T
	Tree container is out-of-sorts from self modifying trees
	Multiple Reader/Writer improvement to supplier container
	Removed grammar_stk_state_no__ from the CAbs_lr1_sym definition
	Note on what's in the token container and its size
	Sets: Sequential versus binary search optimization
	Change T containers's subscripting to unsigned integer or my subtle stupidities
	Porting to Microsoft: Visual Studio 8
	Mutexing the containers
	Some refinements to source file/line tracings
	Bugs in all their splender
	Error on ``file-overrun''
	Parallel parse assumed that the grammar would do more...
	Parallel thread table aborts when program winds down
	and end-of-container
	Test availability of BIT_MAPS_FOR_SALE__
	Monolithic grammar's start_token should be set in constructor
	Mismatched file number associated with error token co-ordinates
	Validate accept message against the new lookahead token position
	Linux bug --- dropping namespace yacco2:: on extern "C" referenced objects
	Why me the ginea pig using other C++ compiler foibles?
	MS C++ problems
	Regular parse and no input container: just parsed the empty language
	MS 7.0 heap delete bug...
	MS 7.0 bug pranks
	Intel C++ release 9
	Apple's cough in handling template definition
	HP Alpha C++ ``this'' object mis-address

	Rule reuse but forgot to remove the ``AD'' from each grammar
	Recursion on ``Procedure call'' of a thread
	VMS misqueue on Mutex Recursion and Pthread stacksize
	 used instead of making it a perpetual motion machine
	Rule reuse Code emmission did not store the newed rule in its recycle table
	String template container did not set the eof_pos_ variable and random boom
	TOKEN_GAGGLE's virtual table access [] operator not respected
	Procedure calls in VMS revisited: thread versus procedure
	Size of tree container --- number of items in container
	Find_reduce_entry current token not found
	Date macro use --- Apple LLVM compiler
	Eog symbol not gpsing on external file and internal line no
	Cleaned up Arbitrator's YACCO2_AR__ tracings
	Error detection and handling
	Index
	Names of the sections
	Check for aborted parse situation. If clean goto next element to remove
	Check for zeroed out symbol on parse stack. If so goto next element to remove
	Check parse stack for epsilon removal. yes exit
	Clean up parse stack record and pop state from stack exposing symbol record
	Deal with auto abort
	Dispatch on use-of-filter
	Error bad character mapping
	Error no more raw character storage
	Error shift symbol not fnd in fsm table
	External rtns and variables
	Get current stack record
	Global external variables from yacco2's linker
	Global externals for yacco2 tracing variables
	Global variables
	Go to accept t
	Go to next t
	Include files
	Initialize stack record
	Invalid instead of use
	Is popping symbol auto deleted? then deal with it and goto next element to remove
	Ms Intel 486 assembler extract ids from map and add their thread_entry to thread list
	No arbitration code present
	Optimized code call arbitrator
	PDA's defs
	Parallel parsing support definitions
	Parse's all shift, stop, and abort defs
	Parse's stack defs
	Parser's containers defs
	Parser's token defs
	Pass1: find current tok in potential reducing subrules and exit if fnd
	Pass2: find meta symbols in potential reducing subrules and exit if fnd
	Pop parse stack
	Print items on parse stack
	Print parse stack prefix
	Remove items from the parse stack
	Reserve and get current stack record
	Should grammar be traced? no ta ta
	Structure defs
	Threads in table to potentially shutdown
	Trace AR no arbitration required
	Trace AR stopped arbitrating
	Trace AR trace the starting of arbitration
	Trace MSG all threads reported back
	Trace MSG found thread in thread pool waiting to be run
	Trace MSG message received
	Trace MSG not all threads reported back
	Trace MSG proc call in use so call its thread
	Trace MSG return from by procedure call
	Trace MSG start by procedure call
	Trace MSG start thread
	Trace MSG thread being created
	Trace MSG thread fnd but all busy, so launch another one
	Trace MSG thread idle after setting waiting for work
	Trace MSG thread idle before setting waiting for work
	Trace MSG thread not found in global thread pool
	Trace MSG thread waiting for message
	Trace TH accepted token info
	Trace TH advise when auto abort happening
	Trace TH advise when symbol deleted due to AD switch
	Trace TH after parallel parse thread message count reduced
	Trace TH before parallel parse thread message count reduced
	Trace TH current token, and accepted terminal wrapper
	Trace TH exposed symbol on parse stack
	Trace TH failed parallel try straight parse
	Trace TH failed proc call try straight parse
	Trace TH finished removing items from the parse stack configuration
	Trace TH parallel parse current token when an error has occured
	Trace TH parallel parse thread start communication
	Trace TH popped state no
	Trace TH proc call parse current token when an error has occured
	Trace TH re-aligned token stream la boundry info
	Trace TH remove items from the parse stack configuration
	Trace TH request thread received message from parallel thread
	Trace TH straight parse error
	Trace TH the parse stack configuration
	Trace TH when an epsilon rule is being reduced
	Trace TH zeroed out symbol situation when popped from parse stack
	Trace acquired grammar's mutex
	Trace parallel thread waiting-to-do-work
	Trace posting from - to thread info
	Trace pp finished working
	Trace pp received go start working message
	Trace pp start info
	Trace pp's last symbol on stack set as autodelete
	Trace procedure pp finished working
	Trace procedure pp start info
	Trace procedure pp's last symbol on stack set as autodelete
	Trace raw characters
	Trace released grammar's mutex
	Trace signaled grammar to wakeup while releasing its mutex
	Trace stop of parallel parse message
	Trace thread to be launched
	Trace threads in launched list
	Trace trying to acquire grammar's mutex
	Trace trying to release grammar's mutex
	Trace wakened grammar with its acquired mutex
	Type defs
	Validate File no parameter
	Validate Line no parameter
	Validate Pos in line parameter
	Validate Pos parameter
	Validate accept message
	Validate any symbol for co-ordinate setting to relate to?
	Validate any token for parsing
	Validate error queue
	Validate if parser's supplier exists
	Validate if rule shift symbol in fsm table
	Validate if subscript within supplier's bnds
	Validate parse stack number of removal items
	Validate parse stack removal for underflow
	Validate parser's finite state table
	Validate reduce entry
	Validate subscript not <= 0
	Validate that parser stack is not empty
	accrue rc code
	accrue set code
	accrue thread code
	accrue tree code
	accrue yacco2 code
	accrue tok_can code
	acquire global thread table critical region
	acquire parallelism requesting grammar's mutex if required
	acquire token mu
	acquire trace mu
	add thread entry whose first set contains the current token
	allocate T id to search with
	any tokens in container? no return nil ptr
	are there threads to run?. no exit with no-thds-to-run result
	binary search for meta symbol in current subrule la
	binary search for token in current subrule la
	bns
	c macros
	check failed directive for possible acceptance
	check for empty language. yes unsuccessful parallel parse
	check for empty language. yes, exit as accepted
	check for empty language. yes, just exit
	clean up aborted parallel parse and exit erred
	clean up and exit as paralleled
	clean up parse stack but leave as ready to parse again
	clean up procedure parse stack but leave as ready to parse again
	copyright notice
	create communication variables
	create element's key set to be searched in reduce set
	create parser related variables and set them
	create procedure communication variables
	define and set state's dynamic work variables
	define and set work variables of Terminal having threads
	define and set work variables of state threading table
	deposit sender's co-ordinates and event in called thread's critical region
	determine disposition of thread
	determine if there are threads to run
	determine if there is a bit map gened for state. no do it
	dispatch on filter type: accept or reject filter
	dispatch on parallel result
	dispatch on proc call result
	dispatch on thread availability: busy, available, and create one
	dispatch to node association: forest, among brothers, or parental
	dispatch to parallel, or proc call, or straight parsing
	does terminal have a legitimate co-ordinate? yes set it and exit. no keep trying
	end of traverse reached for lookahead? no put T in container
	end of traverse reached? yes rtn
	ens
	establish initial parser's token setting
	establish procedure initial parser's token setting
	execute subrule with it directives and create rule
	extract thread ids from map and add their thread_entry to thread list
	fetch and return token from container instead of tree
	find parallel reduce entry
	find proc call reduce entry
	find reduce entry
	find rule's shift entry in fsm
	find shift entry
	fire off fsm's op directive
	fire off visit functor
	handle a forest situation, with or without a younger brother
	handle parent / sibling relationship
	handle sibling relationship
	house clean procedure the parser and local communication variables
	house clean the parser and local communication variables
	iSTL
	iar begin
	iar end
	icompile???
	ilrk
	insert token into requesting grammar's accept queue
	irc
	is node's content found in bypass filter? yes next t, no accept t
	is node's content in accept filter? no next t, yes accept t
	is parallel parsing successful? If so reduce the phrase
	is proc call parsing successful? If so reduce the phrase
	iyacco2
	let's parallel parse. do u?
	let's procedure parallel parse. do u?
	look for threads to shutdown
	lookahead T needed? no rtn fnd t
	malloc raw characters from static pool instead of newing
	notify parallelism requesting grammar if last thread to complete
	notify requesting grammar if launched as a thread
	only child? yes make parent childless and exit
	parallel parsing unsuccessful. So, set up + go to straight parsing
	parser's internal variables
	pause for x seconds
	pop rule's rhs subrule from parse stack
	pp accept queue AR
	pp accept queue war_begin_code
	pp accept queue war_end_code
	pp wait for work or shutdown message
	proc call parsing unsuccessful. So, set up + go to straight parsing
	process parallel tokens
	process tokens
	put goto state onto parse stack, and return accepted or reduced result
	put node in container
	put rule onto parse stack
	re-align current token stream to accept token co-ordinates
	re-align token stream to la boundry
	re-bond younger child with parent and exit with child
	reduce requesting grammar's active threads count
	release global thread table critical region
	release parallelism requesting grammar's mutex if required
	release token mu
	release trace mu
	remove accepted token reference from Caccept_parse and delete Caccept_parse
	remove node's association from tree
	request threads to work
	search T's thd ids against State's thd id list. fnd add to-run thread list
	see if just read node's content is in filter set
	sequential search for meta symbol in current subrule la
	sequential search for token in current subrule la
	set parameter passed to pp as a message
	set parse stack symbol to current token
	set parse stack symbol to invisible shift operator
	set procedure parameter passed to pp as a message
	set thread status if launched as a thread
	shift parallel operator on to pp's parsing stack
	shift parallel's returned symbol and goto state
	shift proc call operator on to pp's parsing stack
	shift proc call's returned symbol and goto state
	signal thread to wake up and work
	startup those threads
	trace AR pp accept queue no arbitration required
	trace COND_WAIT entered
	trace COND_WAIT exit
	trace CREATE_THREAD after call
	trace CREATE_THREAD before call
	trace SIGNAL_COND_VAR after call
	trace SIGNAL_COND_VAR before call
	traverse tree
	tree walker's traversal with filter mechanism
	try parallel parse. no threads-to-run go straight
	try proc call parse. no threads-to-run go straight
	try reduce
	try various shift types. if executed go to process next token in token stream
	uns
	wait for event to arrive with loop
	wait for event to arrive with no loop
	wait for parallelism response if required
	war_begin_code.h
	war_end_code.h
	winddown duties of pp
	winddown duties of procedure pp
	wpp_core.h
	wproc_pp_core.h
	wrc.cpp
	wset.cpp
	wthread.cpp
	wtok_can.cpp
	wtree.cpp
	yacco2.cpp
	yacco2.h
	add_to_stack
	create_set_entry for CAbs_lr1_sym
	create_set_entry for Rc
	create_set_entry
	lr_stk::clean_up()
	lr_stk::lr_stk::empty()
	lr_stk::pop()
	lr_stk::push_state

