Obiject::Exercise

Keeping your objects healthy.

Steven Lembark
<slembark @cheetahmail.com>

Objects Need Exercise

* Both in development and “normal” use.

- Error & regression testing.
- Benchmarking and capacity planning.
— Setup for normal operations.

— Bulk data processing.

* This is a description of how the
Object::Execute harness evolved.

Common Execution Cycle

* Run a command.
* Check $@, optionally aborting if it is set.

* Compare the return value to a known one or
run a code snipped to evaluate it, optionally
aborting on a mismatched value.

* During development, set a breakpoint if the
operation or comparison fails.

* Run the next command...

The Cycle is Repetitive

* We've all seen — or written — code like this:

my Sobject = Some::Class—->construct(@argz);

my S$sanity = '"';

Ssanity = S$object->first_method(@more_argz);
'"HASH' eq ref S$sanity or die “Not a hashref...”;
$Ssanity = $object—->second part(@even_more_argz);
SDB::single = 1 unless S$sanity;

$Ssanity->[0] eqg 'foobar' or die “No foobar...
$sanity = $object—->third_part(@yet_more_argz);
$SDB::single = 1 if 'ARRAY' ne ref $sanity;
"ARRAY' eqg ref $sanity or die “Not an arrayref’”;
$sanity = $object—->third_part('a' .. 'z');

144

Replacing the Cruft

* This is a good example MJD's “Red Flags”:

— Most of the code is framework, probably updated
via cut+paste.

- You can easily spend more time writing and

debugging the framework code than the module
itself.

- It 1s difficult to generate the code so you end up
having to code it all manuall.

* The trick to cleaning it up is abstracting out
the framework and leaving the data.

A better way: Lazy Exercise

* Being lazy means not doing something the
computer can do for you or having to do it
yourself more than once.

* Perl's OO handles this gracefully by allowing
Sobject—->$name (@argz) notation:I can
store the method calls as data instead of
hard-coding them.

* This allows storing the operations as data
instead of code.

Using Object:.Exercise

* O::E is basically a “little language” for object
execution — a very little language.

* Instructions are either arrayref's that are
executed by the object or a small-ish set of
text instructions that control the harness.

* Upcoming improvement is allowing
Plugin::Installer to easily add add your own
instructions.

Object Execution: Arrayref

* The most common thing you'll do is call a
method, possibly checking the results.

* To run a method and ignore anything other
than failure use: [$method => @argz] (i.e., a
method and list of arguments).

* $method can be either text or a coderef,
which allows dispatching to local handler
code.

Pass 1: Storing Operations

* The previous code could be reduced to a list of
arrayref's each one with a method name (or
subref) and some arguments.

* All I need then is an object:

sub passl
{
my S$obj = shift;
for(@_)
{
my Smethod = shift @S$_;
Sobj—->Smethod (Q@S$_)
}
}

Dealing With Failure

* Adding an eval{} allows checking the results
and stopping execution on a failure:

sub pass?2

{
my $obj = shift;
for(@_)
{
my Smethod = shift @S$_;
eval { Sobj->Smethod(QRS_) };

print $@ 1f S$S@;
SDB::single = 1 if $@;
0

Taking a Closure Look

» Setting $DB::single = 1 in the Perl debugger
starts a breakpoint.

* $DB::single = 1 if $debug sets a breakpoint
conditional on $debug being perly-true.

* Adding “our $debug” means it can be
localized to true if $@ is set or or cmp_deeply
returns false.

* This allows “&$cmd” to stop right before the
method is called.

sub pass3
{
my Sobj = shift;
for(@_)
{
my (Smethod, @argz) = @S_;
my $cmd = sub{ Sobj->$method(@argz) };

eval { &S$Scmd };
if(s@)
{
print $@;
$DB::single = 1;
0 # &Scmd here re-runs

Adding A Breakpoint

* I wanted to stop execution before dispatching
the method call on re-runs. But “&$cmd”
immediately runs the code.

* Adding a breakpoint to the closure allows
stopping before the method is called:

our Sdebug = "'
sub pass3
{
my Sobj = shift;
for(@_)
{
my (Smethod, Qargz) = Q@S$S_;
my $cmd
= sub
{
SDB::single = 1 if $debug;
Sobj—>Smethod (@argz)
I

eval { &Scmd };

if(s@)
{
print $@;
local Sdebug = 1; # &$cmd stops before the method.
$DB::single = 1;
0

harness execution stops here.

Getting Testy About It

* Usually you will want to check the results of
execution.

* Instead of a single arrayref, I nested two of
them: one with the method the other
expected results:

[
[$Smethod => @Qargz],
[comparison value],

How methods are executed

* If there is data for comparison then the
return is saved, otherwise it can be ignored.

for(@_)

{
my ($operation, S$compare)
= 'ARRAY' eq ref $_->[0] 2 @{ S_ } : ($_);
if(S@)

{

set Sdebug, S$DB::single = 1.
}
elsif(! cmp_deeply S$result, Scompare, Smessage)
{

set Sdebug, S$DB::single = 1.
}
elsif (Sverbose)
{

print ...
}

sub pass3

{
my $obj = shift;
for(@_)
{
my (Smethod, Qargz) = @S$_;
my Scmd
= sub
{
SDB::single = 1 if S$debug;
$obj—>Smethod (@argz);
I

eval { &Scmd };

if(S@)
{
print $@;
local Sdebug = 1; # &$cmd stops at $Sobj—>method()
$DB::single = 1;
0

execution stops here

Doing it your way...

* Q: What if the execution requires more than
just $obj->$method(@argz)?

* A: Use a coderef as the method.

* It will be called as $obj->$coderef with a sanity check

for $@ afterward. This can be handy for updating the
object's internals as operations progress.

[
[make_hash => ('a' .. 'z'")], [{ 'a' .. 'z'" }]
1,
[
[Sreset_object_params, gw(verbose 1)
1,
[

Control statements

* There is a [very] little language for
controlling execution.

* These are non-arrayref entries in the list of
operations:

- 'break’' & 'continue' set $debug to true/false.

- 'verbose' & 'quiet' set $verbose for log messages.

The Result: Object::Exercise

* An early version is on CPAN.

* Supports benchmark mode (no comparison,
full speed execution w/ Benchmark &
:hireswallclock.

e F'ew more control statements.

* Plenty of POD.

