Signal::StackTrace

When you're there and you know it.

Steven Lembark
<lembark @wrkhors.com>

Signals In General

* Signals are used on *NIX for asynchronous
communication.

* You send them when you want to, the recipiant gets
them [pretty much] right away.

* This gives a nice mechanism for notifying a process
that 1t needs to do something — say print a stack
trace.

Perly Signal Handling

* Pretty simple:
$SIG{ $signame } =sub { ... }

* You can turn them off just as easily:

$SIG{ $signame } = 'IGNORE'
or
delete $SIG{ $signame }

* You can localize them like any other value:
Local $SIG{ $signame } =sub { ...}

* In this case I used 'USR1' by default:
$SIG{USR1}=sub{...}

Finding Where You Are From

* The 'caller’ function tells where the currently
executing sub was called from.

* In an array context this includes the subroutine and
line number.

* Caller can look 'up' the stack by passing a value to
caller.

* Incrementing the value until there are no more
callers gives a stack trace.

Signal Handling With Caller

* Fortunately, signal handlers run in the context of the
current call: caller reports the stack for the currently
running subroutine.

* Stack tracing from a signal handler will tell where
the code was running when the signal hit.

Stack Trace Code

my $stack trace
= sub

{ my %data = ();
walk up the stack until caller returns nada.
for(my $i = 0 ; my @caller = caller $i ; ++$i)
{ # using a hash slice names the values.

@data{ @headerz } = @caller;

$print_list->("Caller level $i:", \%data);
}

$print_list->("End of trace");

return

sub import

: Installing the Signal Handler

shift;

remainder of the stack are signal names, default to SIGUSR1.
%SIG is global, no need to worry about the caller's package.

i{f(@_)
if(my @junk = grep {! exists $known_sigz{$_}} @_)
{
croak "Unknown signals: unknown signals @junk";
}

all the signals are known, install them all
with the stack trace handler.

@SIG{ @_ } = ($stack_trace) x @_;
}

else

{
$SIG{ USR1 } = $stack_trace;

}

return

Oddz & Endz

* Legit signal names are installed with perl:

my %known_sigz = ();

@known_sigz{ split ' ', $Config{ sig name } } = ();

* Pretty printing a list: Dumper refs.

my $print_list
= sub

{

local $Data::
local $Data::
local $Data::
local $Data::
local $Data::
local $Data::
local $Data::

Dumper::Purity
Dumper::Terse
Dumper::Indent
Dumper::Deparse
Dumper::Sortkeys
Dumper::Deepcopy
Dumper::Quotekeys

) I 1 I 1 A 1 O 1
(Yl o JES QNS G G G o

print STDERR join "\n", map {ref$? Dumper$:$ } @ _

